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Abstract. This study deals with the problem of establishing the network of emergency service units. The goal of 

the basic problem proposed in the literature is to locate certain number of units at given discrete points of the region 

and to allocate cities to established units, in order to balance the load of established emergency units. Having in mind 

that emergency units work in shifts, we extend the basic model to a multi-period model and involve additional 

constraints on the number of units to be located. Since, in practice, the number of emergency incidents varies on daily 

or monthly basis, we consider the uncertainty of the number of incidents and propose a robust integer programming 

formulation of the multi-period model, which controls the deviation of objective value under uncertainty of input data. 

In order to solve both deterministic and robust variant of the problem, we design an efficient hybrid metaheuristic 

method based on combination of Particle Swarm Optimization method (PSO) and Reduced Variable Neighborhood 

Search (RVNS). Computational results show that the proposed hybrid PSO-RVNS method quickly reaches all known 

optimal solutions obtained by CPLEX solver, and provides solutions for instances that remained out of reach of 

CPLEX. In the single-period case, PSO-RVNS outperforms existing metaheuristic method from the literature in the 

sense of CPU time. Short running times of PSO-RVNS and high-quality solutions indicate the efficiency of the 

proposed hybrid metaheuristic approach when solving the considered problem. Results presented in this study may 

help security experts and emergency managers to design an efficient and sustainable emergency system. 

Keywords: emergency system; facility location problem; robust optimization; particle swarm optimization; 

reduced variable neighborhood search. 

 

1. Introduction 

In this paper, we consider a generalization of the 

problem of establishing the network of emergency 

service units that was introduced by Stanimirović et 

al. [33]. The authors of [33] deal with the problem of 

designing the network of the Police Special Forces 

Units (PSFUs) in the Republic of Serbia. A set of 

potential locations for establishing PSFU units is 

given, and a set of cities to be allocated to established 

units. Each city is assigned the number of criminal 

acts within its area, which was obtained from 

statistical data over past years. The number of the 

PSFUs to be located is limited by a given constant, 

and according to the most common situation in 

practice, it is assumed that each city will be assigned 

to its closest established PSFU unit. The model 

proposed in [33] also involves penalties in the case 

that a city is assigned to a PSFU unit that lies outside 

given range that ensures an efficient PSFU reaction. 

Differently from studies that optimize emergency 

service systems from customers’ point of view, i.e., 

minimize the maximum distance between customer 

and service provider [8, 9, 11, 19], Stanimirović et al. 

[33] deal with designing the network of emergency 

units from providers’ point of view [5, 13, 26]. In 

practice, emergency units are required to travel longer 

distances than others to reach an assigned city, or to 

react in cities with higher number of incidents, and 

therefore, the workload of emergency units will be 
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most likely unequal. On the other side, all units are 

generally equally paid, regardless of amount of their 

workload during a shift. Therefore, the objective of 

the model proposed in [33] is to minimize the 

maximal load of a PSFU unit, while preserving the 

efficiency of the emergency system. In the literature, 

there are examples of location models that involve 

workload balance of facilities in the objective [1, 16, 

20, 21]. The balanced workload of facilities may be 

used in long-term planning and designing public 

services, such as health-care systems, determining 

optimal locations of various public services within a 

city area or a region, finding optimal locations of 

telecommunication hubs, etc.  

Since in practice, the number of incidents in each 

city may vary from average values obtained from sta-

tistical data, it is necessary to take into account de-

mand uncertainties in emergency network model. Cap-

turing data uncertainty in deterministic models may be 

achieved in different approaches that were proposed in 

the literature in past years [7, 19, 27, 31, 36]. Starting 

from deterministic PSFU location model, Stanimirović 

et al. [33] also proposed a robust optimization model 

that captures the uncertainty of the number of incid-

ents in each city. More precisely, in [33] it is assumed 

that the coefficients representing the number of crimi-

nal incidents in are subject to uncertainty, and they are 

modeled as independent, symmetric and bounded ran-

dom variables with unknown distribution.  

In [33], both deterministic and robust models are 

tested by CPLEX 12.5 commercial solver on the set of 

real-life test instances including up to 165 cities and 

234 potential PSFU sites, and different protection 

levels. Obtained solutions are analyzed by security 

experts from practical point of view. Since the largest 

problem instance remained out of reach of CPLEX 

12.5 solver, the Stanimirović et al. [33] also designed 

an evolutionary-based algorithm (EA) that was enhan-

ced with a local search method (LS). The proposed 

hybrid method EA-LS was benchmarked on the same 

real-life data set. The results of computational experi-

ments presented in [33] showed that the proposed 

hybrid method EA-LS quickly reached all known opti-

mal solutions and provided solutions for the instances 

unsolved to optimality by CPLEX 12.5 solver. The 

analysis on the impact of different protection levels on 

the objective value increase was also presented.  

In this study, we extend the model presented in 

[33] to a multi-period problem of locating emergency 

units, having in mind that emergency units usually 

work in two or three shifts during the day. In addition, 

we impose the upper limit on the number of the 

available emergency units through all time periods and 

the lower limits on the number of active units within 

each considered period. We further allow the number 

of emergency incidents to vary within each time 

period and propose a robust formulation of the 

deterministic multi-period model.  

We also design a novel hybrid optimization 

method for solving both deterministic and robust 

variants of the considered problem. The proposed hy-

brid method is designed as a combination of Particle 

Swarm Optimization method (PSO) and Reduced Va-

riable Neighborhood Search (RVNS). In each iteration 

of the proposed PSO-RVNS method, a subset of solu-

tions obtained by PSO, are used as initial solutions for 

the RVNS, in order to obtain further improvements. 

Parameters of the PSO-RVNS are fine-tuned in order 

to achieve the best performance of the algorithm.  

The proposed hybrid PSO-RVNS approach is ben-

chmarked on single-period real-life problem instances 

used in [33] and generated multi-period instances that 

are derived from single-period ones. Results obtained 

by th PSO-RVNS approach are compared with the re-

sults of EALS from [33] for solving deterministic and 

robust variant of the single-period problem. Computa-

tional results clearly indicate the superiority of the 

proposed PSO-RVNS method over existing EA-LS 

heuristic in the sense of CPU times for problem 

instances of larger dimension. For multi-period case, 

most of the tested instances remained out of reach for 

CPLEX solver, while the proposed PSO-RVNS con-

verges steadily to its best solutions, which coincide 

with optimal solutions obtained by CPLEX (in cases 

when optimal solutions are known). Short running 

times of the PSORVNS (even in the case of the largest 

considered instance) indicate the efficiency of the 

proposed hybrid approach. 

The rest of paper is organized as follows. In Sec-

tion 2, discrete optimization model of the multi-period 

problem is presented. In Section 3, the discrete model 

is extended to a robust optimization model that invol-

ves uncertainty of the number of emergency incidents. 

Hybrid PSORVNS metaheuristic method is described 

in Section 4. In Section 5, we present computational 

results obtained on real-life problem instances for 

single period case and compare them with the results 

of EA-LS method from [33]. Results of computational 

experiments for deterministic and robust multi-period 

case are also presented in Section 5. Finally, in Section 

6 we give the summary of obtained results and some 

directions for future work.  

2. Mathematical formulation of the multi-

period emergency units location problem  

Let 𝐼  represent the set of cities, and 𝐽  the set of 

potential locations for establishing emergency units. 

Let 𝑇 denote the set of considered time periods (work 

shifts of emergency units). As in [28], it is assumed 

that 𝐼 ⊆ 𝐽 holds, meaning that an emergency unit may 

be located in a city itself. Each city 𝑖 ∈ 𝐼 has assigned 

values 𝑓𝑡𝑖 ≥ 0, 𝑡 ∈ 𝑇 representing the average number 

of incidents in the city 𝑖 ∈ 𝐼 in a time period 𝑡 ∈ 𝑇. 

For each pair of locations 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽, the dis-

tance 𝑑𝑖𝑗  is calculated as driving distance between 

two locations. It is assumed that between each pair of 

locations there is a direct link (road) connecting them. 

Let 𝑐 represents the maximal driving distance between 

a location of an emergency unit and a location of the 
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incident that allows the unit to react in a timely manner. 

For each 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽, the following sets are defined: 

 𝐶𝑖𝑗 = {𝑘 ∈ 𝐽: 𝑑𝑖𝑘 ≤ 𝑑𝑖𝑗}, 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 represents 

the set of potential locations 𝑘 ∈ 𝐽 for which the 

distance from location 𝑖 is less than or equal to 

the distance from 𝑖 to 𝑗; 

 𝐹𝑖𝑗 = {𝑘 ∈ 𝐽: 𝑑𝑖𝑘 > 𝑑𝑖𝑗}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 stands for 

the set of potential locations 𝑘 ∈ 𝐽 for which the 

distance from 𝑖 is greater than distance from 𝑖  
to 𝑗;  

 Note that 𝐶𝑖𝑗 ∪ 𝐹𝑖𝑗 = 𝐽  and 𝐶𝑖𝑗 ∩ 𝐹𝑖𝑗 = ∅  hold 

for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽; 

 𝑆𝑗 = {𝑖 ∈ 𝐼: 𝑑𝑖𝑗 ≤ 𝑐} , 𝑗 ∈ 𝐽  denotes the set of 

locations 𝑖 ∈ 𝐼  for which the distance from 

location j is less than or equal to 𝑐;  

 𝐷𝑗 = {𝑖 ∈ 𝐼: 𝑑𝑖𝑗 > 𝑐}, 𝑗 ∈ 𝐽 represents the set of 

locations 𝑖 ∈ 𝐼 for which the distance from lo-

cation 𝑗 is greater than 𝑐.  

 Here 𝑆𝑗 ∪ 𝐷𝑗 = 𝐼  and 𝑆𝑗 ∩ 𝐷𝑗 = ∅  hold for all 

𝑗 ∈ 𝐽. 

For each time period 𝑡 ∈ 𝑇 , we introduce an 

integer parameter 𝑘𝑡,𝑚𝑖𝑛  representing the minimum 

number of emergency units to be located in time 

period 𝑡 ∈ 𝑇 . The total number of established units 

through all time periods is limited by integer 𝑘𝑚𝑎𝑥, 

where 𝑘𝑚𝑎𝑥 ≥ ∑ 𝑘𝑡,𝑚𝑖𝑛𝑡∈𝑇 .  

As in [33], for each pair 𝑖 ∈ 𝐼  and 𝑗 ∈ 𝐽 , a 

parameter 𝑝𝑖𝑗 is involved, representing the penalty in 

the case that a location 𝑖 ∈ 𝐷𝑗 is assigned to a unit at 

location 𝑗. In order to avoid excessively large penalty 

values, the value of parameter 𝑝𝑖𝑗 is calculated as: 

𝑝𝑖𝑗 = min {
|𝑑𝑖𝑗−𝑐|

𝑐
, 1}. 

The proposed multi-period emergency service 

location model uses a continuous variable 𝑧𝑚𝑎𝑥  
representing the objective function value, and two sets 

of binary variables that indicate location and 

allocation decisions. More precisely, binary variable 

𝑦𝑡𝑗 , 𝑡 ∈ 𝑇 , 𝑗 ∈ 𝐽  indicates if an emergency unit is 

established at location 𝑗 ∈ 𝐽 in a time period 𝑡 ∈ 𝑇: 

𝑦𝑡𝑗 = {

1, emergency unit is established at 

location 𝑗 in time period 𝑡
0, otherwise,

 

while binary variable 𝑥𝑡𝑖𝑗  indicates whether or not a 

police unit established at location 𝑗 ∈ 𝐽  reacts on 

incidents in a city 𝑖 ∈ 𝐼 for a time period 𝑡 ∈ 𝑇: 

𝑥𝑡𝑖𝑗 = {

1, if in time period 𝑡 city i is assigned 

to unit at location 𝑗 ,
0, otherwise.

 

The goal of the considered problem is to determine 

locations for emergency units, such that the maximal 

value of 

∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗 + ∑ 𝑓𝑡𝑖(1 + 𝑝𝑖𝑗)𝑥𝑡𝑖𝑗

𝑖∈𝐷−𝐽 𝑖∈𝑆𝑗

 

for all 𝑡 ∈ 𝑇 and 𝑗 ∈ 𝐽 is minimized. 

Having in mind the problem’s nature, it is assumed 

that emergency incidents in each city are handled by 

the nearest established emergency unit (single 

allocation scheme and closest-assignment rule). In the 

considered problem, no capacity restrictions and no 

fixed costs for establishing units are involved. It is 

also assumed that the performance rate of each 

emergency unit is the same.  

Using the notation and conditions mentioned 

above, the mixed integer linear programming (MILP) 

formulation of the multi-period emergency units 

location problem may be written as:  

min 𝑧𝑚𝑎𝑥 (1) 

such that 

∑ 𝑥𝑡𝑖𝑗 = 1
𝑗∈𝐽

    ∀𝑡 ∈ 𝑇    ∀𝑖 ∈ 𝐼,  (2) 

𝑥𝑡𝑖𝑗 ≤ 𝑦𝑡𝑗    ∀𝑡 ∈ 𝑇    ∀𝑖 ∈ 𝐼    ∀𝑗 ∈ 𝐽, (3) 

𝑦𝑡𝑗 ≤ ∑ 𝑥𝑡𝑖𝑘𝑘∈𝐶𝑖𝑗
    ∀𝑡 ∈ 𝑇    ∀𝑖 ∈ 𝐼    ∀𝑗 ∈ 𝐽, (4) 

∑ 𝑦𝑡𝑗 ≥ 𝑘𝑚𝑖𝑛,𝑡𝑗∈𝐽
    ∀𝑡 ∈ 𝑇, (5) 

∑  𝑡∈𝑇 ∑ 𝑦𝑡𝑗 ≤ 𝑘𝑚𝑎𝑥𝑗∈𝐽
, (6) 

∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗𝑖∈𝑆𝑗
+ ∑ 𝑓𝑡𝑖(1 + 𝑝𝑖𝑗)𝑥𝑡𝑖𝑗 ≤ 𝑧𝑚𝑎𝑥𝑖∈𝐷𝑗

    

∀𝑡 ∈ 𝑇    ∀𝑗 ∈ 𝐽, (7) 

𝑥𝑡𝑖𝑗 ∈ {0,1} ∀𝑡 ∈ 𝑇    ∀𝑖 ∈ 𝐼    ∀𝑗 ∈ 𝐽, (8) 

𝑦𝑡𝑗 ∈ {0,1}    ∀𝑡 ∈ 𝑇    ∀𝑗 ∈ 𝐽, (9) 

𝑧𝑚𝑎𝑥 ≥ 0. (10) 

By objective (1) and constraint (7), the maximal 

load of established emergency units through all time 

periods is minimized. Each city is assigned to exactly 

one emergency unit location, which is ensured by (2). 

Constraints (3)–(4) denote that each city is assigned to 

its closest established unit. By constraints (5), lower 

bounds on the number of located units in each time 

period are given, while constraint (6) imposes the 

upper bound on the number of established locations 

through all time periods. Constraints (7) define lower 

bounds on the value of objective variable 𝑧𝑚𝑎𝑥 . 

Variables 𝑥𝑡𝑖𝑗  and 𝑦𝑡𝑗  are binary (8)–(9), while 

variable 𝑧𝑚𝑎𝑥 is nonnegative (10).  

In the single-period case (|𝑇| = 1), index 𝑡 may be 

omitted from variables 𝑥𝑡𝑖𝑗  and 𝑦𝑡𝑗 , 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 . 

Parameters 𝑓𝑡𝑖  are then reduced to 𝑓𝑖 , 𝑖 ∈ 𝐼 , while 

𝑘𝑚𝑖𝑛,𝑡  is reduced to 𝑘𝑚𝑖𝑛 . If the lower bound for 

number of established units is set to zero (𝑘𝑚𝑖𝑛 = 0), 

the MILP model (1)–(10) reduces to the MILP model 

proposed by Stanimirović et al. in [33]. 

3. Robust variant of the problem 

There are numerous examples of applying tradi-

tional optimization techniques when dealing with un-

certainty in emergency service design, such as sto-

chastic programming and optimization under probabi-

listic constraints [17–19, 27, 34, 36]. However, the 

difficulties in applying stochastic programming arise 
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when the exact distribution of input data is unknown, 

which often happens when modeling real-life emer-

gency service problems. For optimization under pro-

babilistic constraints, the problem usually arises when 

it is not possible to cover all scenarios that capture the 

distribution of input data, even if all scenarios are 

known. In this case, the size of resulting optimization 

model increases drastically as a function of the 

number of scenarios. This results in fact that optimal 

solution can not be found due to time or memory 

limits of computer resources.  

Robust optimization [32] represents an alternative 

approach to stochastic programming and optimization 

under probabilistic constraints. It allows us to control 

the degree of conservatism of the solution, and it is 

computationally tractable both practically and theore-

tically, see [2, 3]. In robust models, random variables 

are modeled as uncertain parameters belonging to a 

convex or polyhedral uncertainty set, and the goal is to 

protect the system against the worst case within the 

uncertainty set [4].  

In this study, we use robust optimization approach 

to optimize the emergency system in the worst-case 

situations that arise under uncertainty of number of 

emergency incidents. The goal of robust model is to 

protect the emergency system against the uncertainty 

of the number of incidents 𝑓𝑡𝑖 that occur in city 𝑖 ∈ 𝐼 

in time period 𝑡 ∈ 𝑇 . Therefore, the number of 

incidents in a city 𝑖 ∈ 𝐼 in time period 𝑡 ∈ 𝑇  is 

modeled as an independent and bounded random 

variable, denoted as 𝑓𝑡𝑖  and it is assumed that it has 

unknown distribution. Considering the nature of the 

problem, we are interested in cases when 𝑓𝑡𝑖  may 

decrease or increase from the nominal values 𝑓𝑡𝑖 . 

However, without loss of generality, we may suppose 

that 𝑓𝑡𝑖 ∈ [𝑓𝑡𝑖 , 𝑓𝑡𝑖 + 𝑓𝑡𝑖] , where 𝑓𝑡𝑖 ≥ 0 , 𝑖 ∈ 𝐼 , 𝑡 ∈ 𝑇 . 

Note that it is enough to consider the asymmetric 

interval, since symmetric interval [𝑔𝑡𝑖 − �̂�𝑡𝑖 , 𝑔𝑡𝑖 + �̂�𝑡𝑖] 

may be obtained from [𝑓𝑡𝑖 , 𝑓𝑡𝑖 + 𝑓𝑡𝑖]  by introducting 

substitutions 𝑔𝑡𝑖 = 𝑓𝑡𝑖 + �̂�𝑡𝑖 and 𝑓𝑡𝑖 = 2�̂�𝑡𝑖. 

Let us observe the set 𝐺 = {(𝑡, 𝑖) ∈ 𝑇 × 𝐼: 𝑓𝑡𝑖 > 0 

consisting of all pairs (𝑡, 𝑖) ∈ 𝑇 × 𝐼  for which the 

number of incidents increases from the nominal value 

𝑓𝑡𝑖. For robustness purposes, we introduce protection 

level parameter Γ ∈ [0, |𝐺|] ∩ ℕ, which controls level 

of robustness in the objective. In the case of Γ = 0, we 

completely ignore the change in the number of 

incidents, while in the case of Γ = |𝐺|, all possible 

changes in the number of incidents are considered. In 

general, for higher values of Γ, the level of robustness 

is increased at the expense of higher objective values 

[4]. 

Using the notation and assumptions from 

deterministic model (1)–(10), the robust mathematical 

model of the considered multi-period emergency units 

location problem is given as follows: 

(1), under constraints (2)–(6), (8)–(10) and 

𝑞𝑡𝑗 ≤ 𝑧𝑚𝑎𝑥    ∀𝑡 ∈ 𝑇    ∀𝑖 ∈ 𝐼, (11) 

where 

𝑞𝑡𝑗 = ∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗𝑖∈𝑆𝑗
+ ∑ 𝑓𝑡𝑖(1 + 𝑝𝑖𝑗)

𝑖∈𝐷𝑗
+

max
𝑃⊂𝐺:|𝑃|≤Γ

∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗(𝑡,𝑖)∈𝑃
 (12) 

We now formulate Theorem 1 that will be used to 

present mathematical formulation of robust multi-

period emergency units location model. 

Theorem 1. Consider the nominal Integer Progra-

mming (IP) problem 

min ∑ 𝑐𝑗𝑥𝑗𝑗∈𝐽
, 

∑ 𝑎𝑖𝑗𝑥𝑗𝑗∈𝐽
≤ 𝑏𝑗      ∀𝑖 ∈ 𝐼, 

𝑥𝑗 ∈ {0,1}    ∀𝑗 ∈ 𝐽. 

Let 𝐽𝑖 , 𝑖 ∈ 𝐼 represent the set of coefficients 𝑎𝑖𝑗 , 𝑗 ∈ 𝐽𝑖 

that are subject to uncertainty, i.e., 𝐽𝑖 = {𝑗 ∈ 𝐽: �̂�𝑖𝑗 >

0}. Let integer parameters 𝛤𝑖 ∈ [0, |𝐽𝑖|], 𝑖 ∈ 𝐼  denote 

protection levels for the i-th constraint. The IP 

problem 

min ∑ 𝑐𝑗𝑥𝑗𝑗∈𝐽 , 

∑ 𝑎𝑖𝑗𝑥𝑗𝑗∈𝐽
+ max

𝑆𝑖⊆𝐽𝑖:|𝑆𝑖|≤Γ𝑖

∑ �̂�𝑖𝑗𝑥𝑗𝑗∈𝑆𝑖
    ∀𝑖 ∈ 𝐼, 

𝑥𝑗 ∈ {0,1}    ∀𝑗 ∈ 𝐽 

has an equivalent Mixed Integer Linear Programming 

(MILP) formulation: 

min ∑ 𝑐𝑗𝑥𝑗𝑗∈𝐽
, 

∑ 𝑎𝑖𝑗𝑥𝑗𝑗∈𝐽
+ 𝑧𝑖Γ𝑖 + ∑ 𝑝𝑖𝑗𝑗∈𝐽𝑖

≤ 𝑏𝑖    ∀𝑖 ∈ 𝐼, 

𝑧𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗𝑦𝑗    ∀𝑖 ∈ 𝐼    ∀𝑗 ∈ 𝐽𝑖, 

𝑝𝑖𝑗 ≥ 0   ∀𝑖 ∈ 𝐼    ∀𝑗 ∈ 𝐽𝑖, 

𝑧𝑖 ≥ 0    ∀𝑖 ∈ 𝐼, 

𝑥𝑗 ∈ {0,1}    ∀𝑗 ∈ 𝐽. 

It is easy to see that the presented theorem follows 

directly from the Theorem 1 given in [4]. Finally, 

having in mind Theorem 1, the robust variant of the 

multi-period emergency units location model may be 

formulated as: 

(1), subject to (2)–(6), (8)–(10) and 

∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗𝑖∈𝑆𝑗
+ ∑ 𝑓𝑡𝑖(1 + 𝑝𝑖𝑗)𝑥𝑡𝑖𝑗𝑖∈𝐷𝑗

+ Γ𝑧 +

∑ 𝑟𝑖𝑖∈𝐺 ≤ 𝑧𝑚𝑎𝑥   ∀𝑡 ∈ 𝑇    ∀𝑗 ∈ 𝐽𝑖, (13) 

𝑧 + 𝑟𝑖 ≥ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗    ∀𝑡 ∈ 𝑇    ∀𝑖 ∈ 𝐺    ∀𝑗 ∈ 𝐽, (14) 

𝑧 ≥ 0, (15) 

𝑟𝑖 ≥ 0    ∀𝑖 ∈ 𝐺. (16) 

Note that the robust model (1), subject to (2)–(6), 

(8)–(10) and (13)–(16) represents a generalization of 

the robust model proposed in [33]. 

4. Proposed hybrid metaheuristic method 

Hybrid metaheuristics showed to be promising 

approaches for solving numerous optimization prob-
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lems [6, 35]. In the literature, one of the most popular 

strategies to develop a hybrid metaheuristic method is 

to combine a population-based approach and a variant 

of a local search heuristic [20, 22, 25, 28]. In general, 

population-based heuristics offer more facilities for 

exploration, while local search methods provide more 

capabilities for exploitation. However, it is important 

to achieve a good balance between exploitation and 

exploration strategies, such that the resulting hybrid 

method provides high-quality solutions in reasonably 

short running times [6, 25]. 

In this paper, we present a hybrid metaheuristic 

method that is obtained by combining a Particle 

Swarm Optimization (PSO) as a population-based 

heuristic, and a Reduced Variable Neighbourhood 

Search (RVNS) as a local search heuristic. The 

proposed PSO-RVNS works over population 𝑁𝑟 , 

consisting of |𝑁𝑟| solutions. In each iteration of the 

algorithm, solutions are evaluated and ranked in 

respect to their objective values. The objective 

function calculation is designed and implemented such 

that PSO-RVNS successfully solves both deterministic 

and robust variant of the problem. The PSO method is 

applied only to less-quality solutions from 𝑁𝑟 , while 

high-quality solutions 𝑁𝑒 ⊂ 𝑁𝑟  are directly passed to 

the RVNS part of the hybrid method. The RVNS 

heuristic is applied to all solutions from the set 𝑁𝑟 , 

looking for their improvements. Described steps are 

repeated until a stopping condition is satisfied. The 

described way of combining PSO and RVNS methods 

takes advantage of good sides of both constructive 

heuristics. The basic structure of the proposed PSO-

RVNS hybrid method is presented in Algorithm 1. 

 

Algorithm 1. The basic structure of the PSORVNS method 

1: Read input 

2: while stopping condition is satisfied do 

3: 𝑖 ← 𝑖 + 1 

4: Calculate objective function value of the solutions 

from 𝑁𝑟 

5: Choose the set of high quality solutions 𝑁𝑒 from 𝑁𝑟 

6: Apply PSO to all solutions from the set 𝑁𝑟 ∖ 𝑁𝑒 

7: for 𝑟 ∈ 𝑁𝑟 do 

8:   Apply RVNS to solution r 

9: end for 

10: end while 

11: Write output 

 

4.1. Representation of solutions 

Each solution from the set 𝑁𝑟 is assigned an infor-

mation on locations of established emergency units in 

each time period. It is represented by a binary array of 

length 𝑁, where 𝑁 = |𝑇| ⋅ |𝐽|. The binary array consi-

sts of |𝑇| segments of length |𝐽|, where each segment 

𝑡 ∈ {1, … , |𝑇|} corresponds to one time period. If loca-

tion 𝑗 is opened in a period 𝑡, the ((𝑡 − 1) ⋅ |𝐽| + 𝑗)-th 

bit in the array takes the value of 1, and 0 otherwise. 

A solution is denoted as feasible if 

 the number of bits in the 𝑡-th segment of its 

code is greater than or equal to 𝑘𝑡,𝑚𝑖𝑛, and 

 the total number of bits with the value of 1 is 

less than or equal to 𝑘𝑚𝑎𝑥. 

For example, for |𝑇| = 3 , |𝐽| = 3 , 𝑘1,𝑚𝑖𝑛 =
𝑘2,𝑚𝑖𝑛 = 𝑘3,𝑚𝑖𝑛 = 1 and 𝑘𝑚𝑎𝑥 = 4, a solution to the 

problem is represented as |100|010|010|. In the first 

period, an emergency unit is established at location 1, 

while in the second and third period, emergency unit 

established at location 2. The solution is feasible, sin-

ce the sum of all bits with the value of 1 is equal to 3 

(which is less than 𝑘𝑚𝑎𝑥 ), while each time period 

contains at least 𝑘𝑡,𝑚𝑖𝑛 = 1 established unit. 

4.2. Objective function calculation 

The indices of locations with established emer-

gency units for each time periods are read from the 

solution’s code. After that, its objective function value 

in the case the deterministic model is calculated 

through the following steps: 

Step 1. For each time period 𝑡 ∈ {1, … , |𝑇|} , create 

the subset of locations 𝐸𝑡 = {𝑗 ∈ 𝐽 : 

emergency unit is established at 𝑗  in time 

period 𝑡}; 

Step 2. For each city i and each time period 𝑡, assign 

the city 𝑖 is to a unit at location 𝑗 ∈ 𝐸𝑡, such 

that the distance 𝑑𝑖𝑗  is minimal. If there is 

more than one location 𝑗 ∈ 𝐸𝑡  such that the 

distance 𝑑𝑖𝑗 is minimal, randomly choose one 

of them;  

Step 3. Let 𝑤𝑡𝑗  represent the workload of an esta-

blished unit at location 𝑗 ∈ 𝐸𝑡. Set 𝑤𝑡𝑗 = 0; 

Step 4. For all cities 𝑖 that are assigned to 𝑗 ∈ 𝐸𝑡 

a) if 𝑑𝑖𝑗 ≤ 𝑐, increase 𝑤𝑡𝑗 by the value of 𝑓𝑡𝑖; 

b) if 𝑑𝑖𝑗 > 𝑐 , increase 𝑤𝑡𝑗  by the value of 

𝑓𝑡𝑖(1 + 𝑝𝑖𝑗); 

Step 5. Set the objective function value to 

max {𝑤𝑡𝑗: 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽}. 

The complexity of objective function calculation 

in the deterministic case is equal to 𝑂(|𝑇|  ⋅ |𝐼| ⋅ |𝐽|). 

Once the objective function value of the solution 

to the deterministic case (Γ =  0) is calculated, the 

corresponding objective function value for the robust 

case (F > 0) may be obtained in an efficient manner 

by using the result of the following theorem. 

Theorem 2. Let 𝑓1, 𝑓2, . . . , 𝑓𝑛, 𝑓𝑛+1  be the nonnegative 

real parameters such that 𝑓1 ≥ 𝑓2 ≥ ⋯ ≥
𝑓𝑛 ≥ 𝑓𝑛+1 = 0 holds, and let 𝛤 be a posi-

tive integer parameter 𝛤 ∈ {0, 1, … , 𝑛 }. If 

𝑧 + 𝑟𝑖 ≥ 𝑓𝑖 , 𝑖 = 1, … , 𝑛  holds for 

𝑧, 𝑟1, 𝑟2, … , 𝑟𝑛 ≥ 0, then the minimal value 

of function 𝐹𝛤: ℝ𝑛 → ℝ 
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𝐹𝛤(𝑧, 𝑟1, … , 𝑟𝑛) = 𝛤𝑧 + ∑ 𝑟𝑖

𝑛

𝑖=1

 

 is achieved for 𝑧 = 𝑓𝛤+1. 

The proof of Theorem 2 can be found in 

Appendix A. 

Let 𝐹𝛤
𝑚𝑖𝑛 represent the objective function value of 

the robust model for the fixed protection level 

parameter 𝛤 > 0 . Let array 𝑓𝑡𝑘𝑖𝑘
 , 1 ≤ 𝑘 ≤ 𝑀 , 𝑀 =

|𝑇|  ⋅ |𝐼|, represent a permutation of 𝑓𝑡𝑖 , 𝑡 ∈ 𝑇 , 𝑖 ∈ 𝐼 

such that 

𝑓𝑡1𝑖1
≥ 𝑓𝑡2𝑖2

≥ ⋯ ≥ 𝑓𝑡𝑀𝑖𝑀
. (17) 

From Theorem 2 and (13), it follows that 

𝐹𝛤
𝑚𝑖𝑛 = 𝐹0

𝑚𝑖𝑛 + ∑ 𝑓𝑡𝑘𝑖𝑘

𝛤

𝑘=1
, (18) 

which allows us to easily calculate objective value of 

the solution to the robust model (with 𝛤 > 0) when 

the objective value of the corresponding solution to 

the deterministic model (𝛤 = 0) is known. Note that 

similar conclusion may be applied for calculating 

objective function value for the robust variant of the 

problem proposed in [33]. 

4.3. Particle Swarm Optimization part 

Particle swarm optimization method (PSO) is a 

population-based metaheuristic, based on the idea of 

swarm intelligence. Since 1995, when the concept of 

PSO was introduced by Kennedy and Eberhart [14], it 

has been applied to both continuous and discrete 

optimization problems in a wide range of areas. An 

overview of publications on applications of PSO to 

various optimization problems may be found in [29]. 

The PSO works over a swarm X of particles mo-

ving in a N-dimensional search space (𝑁 = |𝑇| ⋅ |𝐽|). 
Each swarm represents a candidate solution to the 

problem. PSO shares many similarities with evolutio-

nary-based algorithms, but the main difference is that 

PSO includes no variation operators (e.g. crossover, 

mutation), and therefore, it is easier to implement 

compared to EA. In spite the fact that the structure of 

PSO is simpler than the structure of EA, the PSO still 

provides good and efficient diversification of solutions 

in the search space. 

In this study, we design a variant of PSO that is 

used as population-based part of the proposed hybrid 

method. In each iteration of the hybrid algorithm, PSO 

is applied only to the set of non-elite solutions from 

the previous iteration. Therefore, the initial swarm of 

particles X in each iteration is actually the set of non-

elite solutions 𝑁𝑟\𝑁𝑒  from the previous iteration of 

the hybrid method. The percentage of elite individuals 

represents a parameter that is experimentally adjusted 

(see Section 5.1). 

Each particle 𝑖 ∈ 𝑋  is assigned vectors 𝐱𝑖 ∈ ℝn 

and 𝐯𝑖 ∈ ℝn, 𝑖 ∈ 𝑋. A N-dimensional binary vector 𝐱𝑖 

represents the current position of a particle 𝑖 ∈ 𝑋 and 

corresponds to a candidate solution in the search 

space. The velocity of a particle is represented by a  

N-dimensional vector 𝐯𝑖  with real coordinates that 

take values from interval [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] , where 𝑣𝑚𝑖𝑛 

and 𝑣𝑚𝑎𝑥  are predetermined parameters. If a coordi-

nate of the velocity vector 𝑣𝑖 exceeds 𝑣𝑚𝑖𝑛 or 𝑣𝑚𝑎𝑥, it 

is reset to𝑣𝑚𝑖𝑛or 𝑣𝑚𝑎𝑥 , respectively. In addition, for 

each particle 𝑖 ∈ 𝑋 , its best visited position in N-

dimensional binary vector 𝐩𝑖 is memorized. The best 

and the second best position visited by whole swarm 

are saved in N-dimensional binary vectors g and 𝐠′, 
respectively. 

In the initialization phase, the positions of particles 

are set in accordance with non-elite solutions that are 

subject to PSO. More precisely, the position vector 𝐱𝑖 

of a particle 𝑖 ∈ 𝑋 is equal to the binary code of a non-

elite solution 𝑖 ∈ 𝑁𝑟\𝑁𝑒. Coordinates of velocity vec-

tor 𝐯𝑖, 𝑖 ∈ 𝑋 are obtained by uniform distribution from 

[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]. Having in mind the nature of considered 

problem, in the proposed PSO implementation, 𝑣𝑚𝑖𝑛 

and 𝑣𝑚𝑎𝑥 are set to 0 and 1, respectively. Initial values 

of vectors 𝐩𝑖, 𝑖 ∈ 𝑋, g and 𝐠′ are also calculated in this 

step. 

After the initialization phase, in each PSO itera-

tion, a particle 𝑖 ∈ 𝑋 successively adjusts its position 

𝐱𝑖  in respect to the best position 𝐩𝑖  visited by itself, 

and the best position visited by the whole swarm 𝐠. In 

addition, inspired by idea presented in [30], we use the 

second best global position 𝐠′ when adjusting a par-

ticle’s position. In [30] it is experimentally confirmed 

that the variant of PSO that uses the second best glo-

bal position has better performance compared to the 

standard PSO. Therefore, in each iteration, coordinates 

of velocity change vector ∆𝑣𝑖,𝑙  of a particle 𝑖  are 

calculated as: 

∆𝐯𝑖,𝑙 = 𝑟𝑝𝑐𝑝(𝐩𝑖 − 𝐱𝑖) + 𝑟𝑔𝑐𝑔(𝐠 − 𝐱𝑖) +

𝑟𝑔′𝑐𝑔′(𝑔′ − 𝑥𝑖), 𝑙 = 1, 2, … , 𝑁, 𝑖 ∈ 𝑋. 

Note that velocity change vector of a particle also 

depends on a cognitive learning parameter 𝑟𝑝 , and 

social learning parameters 𝑟𝑔 and 𝑟𝑔′. 

Parameter 𝑟𝑝 represents the attraction that a partic-

le will fly toward its own success, while parameters 𝑟𝑔 

and 𝑟𝑔′  denote the tendency that a particle will be 

leaded by the success of the best and the second best 

positioned particle in whole swarm, respectively. In 

each PSO iteration, the values of parameters 𝑟𝑝, 𝑟𝑔 and 

𝑟𝑔′  are chosen by uniform distribution from the 

interval (0;1). The values of 𝑐𝑝, 𝑐𝑔  and 𝑐𝑔′  are taken 

from paper by Shin and Kita [30]: 𝑐𝑝 = 𝑐𝑔 = 1.5, and 

𝑐𝑔′ = 5, since they are experimentally determined in 

[30]. Parameters 𝑐𝑝 , 𝑐𝑔  and 𝑐𝑔′  have constant values 

through all PSO iterations. 

In each PSO iteration, flying direction of a particle 

𝑖 ∈ 𝑋 is calculated as: 

𝐯𝑖,𝑙 ← {

1, if 𝐯𝑖,𝑙 + ∆𝐯𝑖,𝑙 > 1,

0, if 𝐯𝑖,𝑙 + ∆𝐯𝑖,𝑙 < 0,

𝐯𝑖,𝑙 + ∆𝐯𝑖,𝑙 otherwise.
 



Hybrid Metaheuristic Method for Solving a Multi-Period Emergency Service Location Problem 

327 

After we obtain the flying direction of particle  

𝑖 ∈ 𝑋 , a new particle position is calculated as 𝐱𝑖 =
𝐱𝑖 + 𝐯𝑖 . Since we are dealing with discrete problem 

with binary variables, the velocity of a particle is 

associated with the probability that a bit in a particle’s 

position vector will take the value of 1. Therefore, a 

sigmoid function 𝑆(𝑣) = 1/(1 + 𝑒−𝑣)  is used to 

normalize the coordinates of velocity vector into 

interval [0,1] , see [15]. A random number r is 

generated uniformly from (0,1), and the coordinates 

of position vector 𝑥𝑖,𝑙 , 𝑙 = 1, 2, … , 𝑁 of particle 𝑖 ∈ 𝑋 

are adjusted as follows: 

𝐱𝑖,𝑙 ← {
1, if 𝑟 < (1 + 𝑒−𝑣𝑖,𝑙)−1,
0, otherwise.

  

In this way, it is ensured that 𝑥𝑖,𝑙 ∈ {0, 1} , 𝑙 =
1, 2, … . , 𝑁 for the adjusted position of particle 𝑖 ∈ 𝑋. 

Note that it may happen the new particle position 

𝐱𝑖  may correspond to an infeasible solution. This 

situation will occur if the total number of bits 𝑥𝑖,𝑙, 𝑙 =
1, 2, … . , 𝑁 with the value of 1 is greater than 𝑘𝑚𝑎𝑥, or 

if for some 𝑡 ∈ {1, 2, … , |𝑇|}, the number of bits 𝑥𝑖,𝑙 

with the value of 1 in the t-th segment of 𝐱𝑖 is smaller 

than 𝑘𝑚𝑖𝑛,𝑡. If the total number of bits with the value 

of 1 is 𝑘, where 𝑘 > 𝑘𝑚𝑎𝑥, we randomly choose 𝑘 −
𝑘𝑚𝑎𝑥  coordinates 𝑥𝑖,𝑙  with the value of 1 and invert 

them to 0. Similarly, if number of bits with the value 

of 1 in the t-th segment is 𝑘𝑡 , where 𝑘𝑡 < 𝑘𝑚𝑖𝑛,𝑡 , 

exactly𝑘𝑚𝑖𝑛,𝑡 − 𝑘𝑡 randomly chosen coordinates with 

the value of 0 are inverted to 1. 

If a particle 𝑖 ∈ 𝑋 has moved to a better position 𝐱𝑖 

compared to its best local position, vector 𝐩𝑖  is 

updated with 𝐱𝑖. If the new best local position is better 

than the best global one, the best global position 𝐠 of 

the swarm is updated. The second best global position 

𝐠′ is also updated, if necessasry. 

4.4. Reduced Variable Neighborhood Search part 

Variable neighborhood search (VNS) is a metah-

euristic method proposed by Mladenović and Hansen 

in [23]. The basic idea of VNS is systematic change of 

neighborhood within a local search. In general, VNS 

sequentially explores neighborhoods of the current 

solution looking for a better solution, and moves from 

the current solution to its neighbour if an improvement 

was made. The summary of VNS applications to 

various optimization problems and its hybrids with 

other optimization techniques can be found in [35]. 

Let 𝑈𝑙(𝑟) denotes the set of solutions belonging to 

the l-th neighborhood of the current solution 𝑟, where 

𝑙𝑚𝑎𝑥  denotes the number of different neighborhood 

structures. Assuming that 𝑙  is initially set to 1, the 

basic VNS procedure typically consists of the follo-

wing three phases: 

 Shake – generate a random solution 𝑟′ from the 

l-th neighborhood of the current solution 𝑈𝑙(𝑟); 

 Local search – apply a local search method 

starting from the randomly generated solution 

𝑟′ ∈ 𝑈𝑙(𝑟) and find a local optimum in 𝑈𝑙(𝑟); 

 Move – if the local optimum is better than the 

current solution, move there and set 𝑙 ← 1 . 

Otherwise, set 𝑙 ← 𝑙 + 1. 

These steps are repeated until 𝑙 = 𝑙𝑚𝑎𝑥. The initial 

VNS solution is randomly generated, but it also may 

be obtained by the means of some other heuristic. In 

this way, it is ensured that VNS starts the search from 

a good quality solution. 

In cases that local search is costly, the acceleration 

of VNS may be achieved by completely omitting the 

local search phase. This is the basic idea behind the 

variant of VNS, denoted as Reduced Variable 

Neighborhood search (RVNS). In RVNS, solutions are 

chosen at random in successive neighborhoods of the 

current solution, and the search is restarted each time 

when an improvement is obtained (see [12]). In this 

paper, we have used Reduced Variable Neighborhood 

Search instead of basic VNS, in order to achieve 

improvements within short running times. The results 

of preliminary experiments showed that the idea of 

omitting local search drastically reduced running time 

of the hybrid PSO-RVNS, while the solution quality 

was preserved. 

The RVNS method is applied each iteration of the 

proposed hybrid algorithm. Let us consider a solution 

𝑟 to the problem, and let (𝑡, 𝑗), 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 denote a 

bit on ((𝑡 − 1) ⋅ |𝐽| + 𝑗) -th position in the code of 

solution r. Neighbourhood structures 𝑈𝑙(𝑟), 𝑙 = 1,2,3 

used in this paper are as follows: 

 𝑈1(𝑟) – the set of solutions obtained from solu-

tion r by swapping two different bits (𝑡, 𝑖) and 

(𝑡, 𝑗), 𝑖, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗 in the same code’s segment 

𝑡 ∈ {1, … , |𝑇|}; 

 𝑈2(𝑟)  – the set of solutions obtained from 

solution r by swapping bits (𝑡1, 𝑖)  and 

(𝑡2, 𝑗), 𝑖, 𝑗 ∈ 𝐽 belonging to two different code’s 

segments 𝑡1, 𝑡2 ∈ {1, … , |𝑇|}, 𝑡1 ≠ 𝑡2; 

 𝑈3(𝑟) – the set of solutions obtained from the 

solution r by inverting a randomly chosen bit 
(𝑡, 𝑗), 𝑖 ∈ 𝐽  from a code’s segment 𝑡 ∈
{1, … , |𝑇|}. 

The basic structure of the RVNS procedure used in 

this study is presented by Algorithm 2. In each itera-

tion of the proposed hybrid method, the RVNS heuris-

tic is applied 10 times to each solution 𝑟  from the 

population 𝑁𝑟 . A neighbor solution 𝑟′  is considered 

better than solution 𝑟, if the objective function 𝑓(𝑟′) is 

less than 𝑐𝑟 ⋅ 𝑓(𝑟). The value of parameter 𝑐𝑟 is adjus-

ted by using analysis of variance (see Section 5.1). 

When generating a neighbor solution 𝑟  in the 

Shaking phase of the RVNS, it is necessary to either 

invert the bit values from 0 to 1, or from 1 to 0 in the 

code of current solution 𝑟 . Instead of recalculating 

objective function value of the generated neighbor 

from the beginning, we take into consideration only 

changes in objective value that resulted from inversion 

of the particular bit of the current solution 𝑟 . The 

applied strategy significantly reduced computational 

time of the RVNS part.  
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Algorithm 2. RVNS method 

1: for each solution 𝑟 ∈ 𝑁𝑟 do 

2:  𝑙 ← 1 

3: 𝐰𝐡𝐢𝐥𝐞 𝑙 ≤ 𝑙𝑚𝑎𝑥  𝐝𝐨 

4:   Shaking: generate randomly solution 𝑟′ ∈ 𝑈𝑙(𝑟) 

5:  if 𝑓(𝑟′) ≤ 𝑐𝑟 ⋅ 𝑓(𝑟) then 

6: 𝑟 ← 𝑟′ 

7: 𝑙 ← 1 

8:  else 

9: 𝑙 ← 𝑙 + 1 

10:  end if  

11:  end while  

12: end for  

 

Let us assume that the value of ((𝑡 − 1) ⋅ |𝐽| + 𝑗)-

th bit in the code of current solution is changed from 1 

to 0. It means that emergency unit at location 𝑗 in time 

period 𝑡 is removed. Therefore, the sum of 𝑓𝑡𝑖 among 

all cities 𝑖 that were assigned to the unit at location 𝑗 

in time period 𝑡  becomes 0. Each city 𝑖  that was 

assigned to the unit at location 𝑗 in time period 𝑡, is 

now being assigned to the established unit at its 

closest location 𝑗′ in the same time period. The value 

of the workload of the unit at location 𝑗′  is further 

updated. Since we only consider the set of cities that 

were assigned to the unit at location 𝑗 in time period 𝑡, 

the overall computational time of this step is reduced 

from 𝑂(|𝑇| ⋅ |𝐼| ⋅ |𝐽|) to 𝑂(|𝐽𝑗| ⋅ |𝐽|).  

Similarly, let us assume that the value of ((𝑡 − 1) ⋅

|𝐽| + 𝑗) -th bit in the code of current solution is 

inverted from 0 to 1. This implies that emergency unit 

at location 𝑗 in time period 𝑡 is now established. For 

all cities 𝑖 ∈ 𝐼, we check if the value 𝑑𝑖𝑗 is less than 

𝑑𝑖𝑘, where 𝑘 is the location of the closest established 

emergency unit for city 𝑖 ∈ 𝐼 in time period 𝑡 ∈ 𝑇. If 

𝑑𝑖𝑗 < 𝑑𝑖𝑘 holds, the city 𝑖 ∈ 𝐼 is now assigned to the 

unit at location 𝑗 in time period 𝑡 . The workload of 

location 𝑗 is increased by 𝑓𝑡𝑖 , while the workload of 

location 𝑘  is decreased by the same value. As in 

previous case, the overall computational time of this 

step is 𝑂(|𝐼|). 

4.5. Other aspects of the PSO-RVNS 

Initial population, containing |𝑁𝑟|  individuals, is 

generated by uniform distribution, thus providing a 

good diversity of the initial solutions. Infeasible in-

dividuals in the initial population are corrected to be 

feasible, as described in Section 4.3. The PSO method 

corrects infeasible solutions that might appear during 

PSO iterations (see Section 4.3), while RVNS impro-

vement procedure is designed in such way that the 

feasibility of the solutions is preserved. 

In the proposed PSO-RVNS, we use the elitism in 

generation replacement strategy. All individuals are 

ranked according to their objective function value, and 

the best fitted |𝑁𝑒| ones are selected as elite indivi-

duals. These individuals directly pass in the next PSO-

RVNS generation, and therefore, they do not need re-

calculation of the objective function value (since they 

have been evaluated in one of previous generations). 

In this way, we provide additional time-savings in 

total CPU time. Remaining (non-elite) individuals are 

replaced in the next generation. The percentage of 

elite individuals is denoted as 𝑝𝑒𝑙 , which represents 

one of the parameters of the algorithm that is experi-

mentally adjusted. The number of elite individuals 
|𝑁𝑒| is calculated as the product 𝑝𝑒𝑙 ⋅ |𝑁𝑟| rounded to 

the nearest integer. 

If a duplicate individual appears during the algo-

rithm’s run, it is being removed by setting its objective 

value to +∞ . In this way, we tend to preserve the 

diversity of individuals and to prevent the premature 

convergence of the algorithm. The PSO-RVNS stops if 

the solution with the best objective value remains 

unchanged through 𝑟𝑒𝑝 subsequent generations.  

The number of individuals in the population |𝑁𝑟|, 
the percentage of elite individuals in the population 

𝑝𝑒𝑙 , and the stopping criterion parameter 𝑟𝑒𝑝  are 

experimentally determined by using analysis of 

variance (see Section 5). 

5. Experimental analysis  

All computational experiments in this study were 

carried out on an Intel i5-2430M 2.4 GHz with 8 GB 

RAM memory under Windows 7 operating system. 

The CPLEX 12.1 commercial solver was employed to 

obtain optimal solutions, if possible. The PSO-RVNS 

implementation was coded in C++ programming 

language. On each test instance, the proposed PSO-

RVNS was run 15 times.  

In order to benchmark PSO-RVNS method, we 

start from the real-life instances introduced in [33], 

which are obtained from the network of Police Special 

Forces Units (PSFUs) in the Republic of Serbia. These 

instances involve geographical positions locations of 

cities and potential locations for PSFUs in the 

Republic of Serbia. The driving distances between the 

cities and potential PSFU locations are calculated by 

using given locations. The largest instance contains all 

165 cities and 234 locations, while the smaller-size 

instances are obtained by grouping cities and locations 

that belong to one or more neighbor administrative 

regions in Serbia. The average number of incidents on 

a monthly basis 𝑓𝑖 for a city 𝑖 ∈ 𝐼 is obtained from the 

data provided by the Statistical Office of the Republic 

of Serbia, see [33].  

In the single-period case (|𝑇| = 1), the PSORVNS 

method was tested on instances i12, i6_7_8, i1_2_3_4 

and i_all used in [33], and the obtained results were 

compared with the EA-LS approach proposed in the 

same paper. In order to benchmark PSO-RVNS for the 

multi-period case, we have generated instances with 

|𝑇| = 2  and |𝑇| = 3  periods by modifying instances 

from [33].  

In Table 1 we give the overview of test instances 

used in our computational study. The first two colu-
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mns contain the name of the instance and its descript-

tion, respectively. The name of a single-period instan-

ce is the same as in [33], while the name of a multi-

period instance includes the number of periods. For 

example, i12_t2 denotes the instance with two periods 

that is generated from instance i12 used in [33]. 

Column headings |𝐼|, |𝐽|, and |𝑇| in Table 1 represent 

the number of cities, potential locations and time 

periods, respectively. The values of 𝑓𝑡𝑖  are generated 

in respect to the values of 𝑓𝑖 from [33]. For |𝑇| = 2, 

the values of 𝑓𝑡𝑖 are in the ratio 1: 2, while for |𝑇| = 3, 

the corresponding ratio is 1: 1: 2 . As in [33], it is 

allowed that the values fti increase up to 5% from 

their nominal values. For each instance presented in 

Table 1, different values of 𝑘𝑚𝑎𝑥, and parameter Γ are 

considered, while the values of parameters 𝑘𝑡,𝑚𝑖𝑛 ,  
𝑡 ∈ 𝑇 are set to 1.  

 

Table 1. Overview of test instances used in computational study 

 

Table 2. The results of parameter analysis test 

 
 

5.1. Calibration of the PSO-RVNS parameters 

In order to attain best performance of the proposed 

PSO-RVNS algorithm, we have performed experi-

mental analysis of several parameters:  

 |𝑁𝑟| – the size of population; 

 𝑐𝑟 – coefficient used in acceptance criterion for 

the newly generated solution in RVNS part; 

 𝑟𝑒𝑝  – the maximal number of subsequent 

generations without improvement of the best 

solution; 

 𝑝𝑒𝑙 – the percentage of elite individuals in the 

population.  

A full factorial design experiment is conducted to 

obtain the best combination of parameters [24]. The 

levels of parameters used in the experiment are as 

follows:  

 parameter |𝑁𝑟| has two levels – 30 and 60; 

 parameter 𝑐𝑟  has three levels – 1, 1.001 and 

1.005; 

 parameter 𝑟𝑒𝑝 has two levels – 1000 and 2000; 

 parameter 𝑝𝑒𝑙  has two levels – 66:67% and 

75%. 

The total number of combinations is 2 ⋅ 3 ⋅ 2 ⋅ 2 =
24. In order to test all considered combinations, we 

use the subset of four problem instances: i12, 

i6_7_8_t2, i1_2_3_4_t3, and i_all. On each instance, 
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PSO-RVNS algorithm was run 15 times for each com-

bination of parameters. For each considered instance 

and each parameter combination, the best objective 

value obtained by PSORVNS was memorized.  

In Table 2, we present the results of the one-way 

analysis of variance (ANOVA) for the conducted 

experiments, see [24]. The column headings in Table 2 

have the following meaning: 

 Inst. – instance’s name; 

 Par. – parameter that is being tested; 

 SS – sum of squares between groups; 

 DF – degrees of freedom between group; 

 MS – mean of squares between groups; 

 F – the value obtained by F-test; 

 p – corresponding p-value.  

Critical value used in the parameter analysis test is 

set to 0.05. According to p-values presented in the last 

column of Table 2, only parameter 𝑐𝑟 has some effect 

on the objective value of the best PSO-RVNS solution 

(see the results obtained for instances i6_7_8_t2 and 

i_all). For instances i12 and i1_2_3_4_t3, each 

combination of parameters leaded to the same result, 

and therefore no parameter has significant effect when 

testing these two instances. We may conclude that 

parameters |𝑁𝑟|, 𝑟𝑒𝑝 and 𝑝𝑒𝑙  do not have significant 

effect on the obtained PSO-RVNS results. In all cases, 

the value of 𝑐𝑟 = 1.001 showed to be the best choice, 

while the values of other three parameters are set to 

|𝑁𝑟| = 30, 𝑟𝑒𝑝 = 1000, and 𝑝𝑒𝑙 = 75%.  

5.2. Results and comparisons for single-period case 

In this subsection we present the computational 

results of the proposed PSO-RVNS for single-period 

case and compare them with the results of EA-LS 

method from [33] and CPLEX 12.1 commercial sol-

ver. The results and comparisons on the set of instan-

ces with |𝑇| = 1 period, different values of 𝑘𝑚𝑎𝑥 and 

protection parameter Γ are presented in Tables 3 – 7. 

The meaning of the column headings through these 

tables are as follows: 

 𝑘𝑚𝑎𝑥  – maximal number of locations to be 

established; 

 Γ – the value of parameter controlling the level 

of robustness; 

 Sol. – the objective value of optimal solution 

(obtained by CPLEX 12.1) or best-known 

solution (when no optimal solution is known);  

 𝑡𝐶𝑃𝐿𝐸𝑋[𝑠]  – running time of CPLEX 12.1 

solver for the robust model from [33]; 

 𝑡𝐶𝑃𝐿𝐸𝑋
𝑖𝑚𝑝𝑟

[𝑠]  – running time of CPLEX 12.1 

obtained the robust model from [33] when 

using Theorem 2; 

 EA-LSbest – the objective value of the best EA-

LS solution, with mark opt or best when it 

coincides with the objective value of optimal or 

best known solution, respectively; 

 PSO-RVNSbest – the objective value of the best 

PSO-RVNS solution, with mark opt or best 

when it coincides with the objective value of 

optimal or best known solution, respectively; 

 𝑡𝐸𝐴−𝐿𝑆[𝑠]  – average time (in seconds) for 

which EA-LS produced its the best solution; 

 𝑡𝑃𝑆𝑂−𝑅𝑉𝑁𝑆[𝑠] – average time (in seconds) for 

which PSO-RVNS method produced its best 

solution; 

 Incr[%] – increment of the objective value of 

the solution for the given level of robustness Γ.  

In Table 3, the results for instance i12 and 𝑘𝑚𝑎𝑥 ∈
{3,4,5}  are presented. Both EA-LS and PSO-RVNS 

reached all optimal results previously obtained by 

CPLEX 12.1 solver. From the values presented in 

column Impr[%], it may be noticed that objective 

function value increases as parameter Γ increases. For 

example, for 𝑘𝑚𝑎𝑥 = 3, the increment of the objective 

function ranges from 0% for Γ = 0 (no deviation of 

𝑓𝑡𝑖) up to 10.919% for Γ = 17 (when all values of 𝑓𝑡𝑖 

are changed). Similarly, for 𝑘𝑚𝑎𝑥 ∈ {4,5} , the 

objective function value increases from 0% for Γ = 0 

up to 15.232% for Γ = 17.  

 

Table 3. Results and comparisons for instance i12 (single-period case) 
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Table 4. Results and comparisons for instance i6_7_8 (single-period case) 

 
 

The average CPU time of EA-LS method for 

instance i12 among all values of 𝑘𝑚𝑎𝑥 and Γ was 0.02 

s, while the average running time of PSORVNS was 

0.923 s. However, it should be mentioned that EA-LS 

method was tested on a machine with Intel Core i7-

860 2.8 GHz processor and 8 GB RAM memory, 

which has higher performances compared to the 

computing machine used for experiments in this study 

(Intel Core i5-2430M 2.4 GHz processor with 8 GB 

RAM memory). Due to difference in computing plat-

forms, we have normalized the average computational 

time of the EA-LS by using the approach described in 

[10] and the data from http://www.cpubenchmark.net/. 

The average normalized EA-LS running time 

NAT(EA-LS) is equal to product of average EA-LS 

time AT(EALS) multiplied by 

𝑃𝐶𝑃𝑈𝑆(𝐼𝑛𝑡𝑒𝑙 𝐶𝑜𝑟𝑒 𝑖7−860 2.8 𝐺𝐻𝑧)

𝑃𝐶𝑃𝑈𝑆(𝐼𝑛𝑡𝑒𝑙 𝐶𝑜𝑟𝑒 𝑖5−2430𝑀 2.4 𝐺𝐻𝑧)
. 

where PCPUS stands for Passmark CPU Score. There-

fore, the calculated normalized average EALS running 

time for instance i12 is 0.03 seconds, which is given in 

the last row of Table 3 with mark *. 

Note that in [33], the CPLEX 12.5 solver was 

applied to the robust model involving |𝐼||𝐽| + |𝐽| +
|𝐺| + 2 constraints and 2|𝐼||𝐽| + |𝐺||𝐽| + |𝐼| + 3|𝐽| +
|𝐺| + 4  variables. From Theorem 2, it follows that 

solutions for the robust case Γ > 0  can be easily 

calculated by using solution that was previously 

obtained for the deterministic case Γ = 0. Therefore, 

in cases when Γ > 0, we use the results of Theorem 2 

and employ CPLEX 12.1 solver on the model with 
|𝐼||𝐽| + |𝐽| + 1  variables and 2|𝐼||𝐽| + |𝐼| + 3|𝐽| + 3 

constraints. In order to investigate the effects of the 

applied time-saving strategy when solving the robust 

model, we have tested both variants by using CPLEX 

12.1 solver on the same machine – Intel Core i5-

2430M 2.4 GHz processor with 8 GB RAM. By 

comparing CPLEX 12.1 running times presented in 

columns 𝑡𝐶𝑃𝐿𝐸𝑋[𝑠] and 𝑡𝐶𝑃𝐿𝐸𝑋
𝑖𝑚𝑝𝑟

[𝑠], it can be seen that 

the use of Theorem 2 speeds up optimization process 

and enables CPLEX 12.1 to produce optimal solutions 

in significantly shorter CPU times. The average 

running time of CPLEX 12.1 was 0.53 seconds when 

solving the robust formulation from [33], while only 

0.29 seconds was needed when using Theorem 2, 

which is almost 2 times faster. The same strategy was 

also used in the proposed PSO-RVNS method when 

calculating objective function values for the robust 

model. The PSO-RVNS uses the objective value of a 

solution obtained for the deterministic case (Γ = 0) to 

efficiently calculate the corresponding objective value 

in the robust case (Γ > 0). For this reason, for each 

considered instance, computational times of PSO-

RVNS obtained for the same value of parameter kmax 

are the same for all Γ ∈ {0, … , |𝐼|}. 

In Table 4, we present results for instance i6_7_8 

and 𝑘𝑚𝑎𝑥 ∈ {10,11,12} in the same way as in Table 4. 

Both EA-LS and PSO-RVNS methods reach optimal 

solutions, which were previously obtained by CPLEX 

12.1 solver. As in the case of instance i12, it may be 

noticed that objective function value increases as the 

value of parameter Γ increases. The highest increment 

of the objective function value is obtained for Γ = 32: 

for 𝑘𝑚𝑎𝑥 = 10 , the objective function value is 

increased by 38.043%, while for 𝑘𝑚𝑎𝑥 = 11  and 

𝑘𝑚𝑎𝑥 = 12 , the objective value is increased by 

38.371% and 39.012%, respectively. The average 

computational time of PSO-RVNS was 2.10 seconds, 

while the EA-LS showed to be slightly faster, since its 

normalized average running time was 1.9 seconds. 

Time savings obtained by using Theorem 2 when 

solving the robust model by CPLEX 12.1 are more 

obvious in the case of instance i6_7_8. In average, 

CPLEX 12.1 needed 110.8 seconds when solving 

robust model from [33] for instance i6_7_8 among all 

values of 𝑘𝑚𝑎𝑥  and Γ. However, when applying the 

results of Theorem 2, CPLEX 12.1 needed only 8.1 

seconds (in average), which is more than 13 times 

faster.  

In Table 5 we present the results obtained for insta-

nce i1_2_3_4 and 𝑘𝑚𝑎𝑥 ∈ {21,22,23} . The EA-LS 

and PSO-RVNS methods were successful in reaching 
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Table 5. Results and comparisons for instance i1_2_3_4 (single-period case) 

 
 

optimal solutions provided by CPLEX 12.1. From the 

last column, it may be noticed that objective function 

value increases as parameter Γ increases. The highest 

increment of the objective function value is obtained 

for Γ = 62. For 𝑘𝑚𝑎𝑥 ∈ {21,22,23} objective function 

value is increased up to 45.37%. The average CPU 

time of PSO-RVNS method for instance i1_2_3_4 

among all values of 𝑘𝑚𝑎𝑥 and Γ was 5.1 s, while the 

normalized average CPU time of EA-LS was 0.9 

seconds.  

The proposed PSO-RVNS method shows its 

advantages when the size of instances increases. The 

results and comparisons for the largest instance i_all is 

presented in Table 6. We have considered the same 

values for parameter 𝑘𝑚𝑎𝑥 ∈ {4,24,36,48,60}  as in 

[33]. Note that in the case of instance i_all, CPLEX 

12.1 solver was unable to provide optimal solutions 

with the given time limit of 3 h. For 𝑘𝑚𝑎𝑥 = 4 , 

𝑘𝑚𝑎𝑥 = 36 , 𝑘𝑚𝑎𝑥 = 48  and 𝑘𝑚𝑎𝑥 = 60 , both PSO-

RVNS and EA-LS obtained the same (best-known) 

solutions. However, for 𝑘𝑚𝑎𝑥 = 24 , the proposed 

PSO-RVNS improved the best EA-LS solutions for all 

0 ≤ Γ ≤ 165 . The PSO-RVNS was also superior 

compared to the EA-LS regarding CPU times for the 

largest instance i_all. The normalized average 

computational time of EA-LS method for instance 

i_all among all values of 𝑘𝑚𝑎𝑥  and Γ  was 79.35 

seconds, while the average computational time of the 

proposed PSO-RVNS was 22.33 seconds, which is 

around 3.5 shorter. From the last column, it may be 

noticed that objective function value increases with 

the increase of protection parameter Γ . The highest 

increment of the objective function value is obtained 

for Γ = 165: for 𝑘𝑚𝑎𝑥 =  4, 𝑘𝑚𝑎𝑥 =  24 and 𝑘𝑚𝑎𝑥 ∈
{36,48,60}, objective function value is increased by 

10.985%, 47.395% and 48.354%, respectively.  

The presented results for the single-period case 

show that PSO-RVNS reached all optimal and best-

known solutions from [33]. In several cases of the 

largest considered instance i_all, the proposed PSO-

RVNS improved best EA-LS solutions from the same 

paper. Regarding CPU times, the EA-LS appears to be 

more efficient than PSORVNS when solving small 

size instances, while it outperformed EA-LS in the 

terms of computational time for the largest instance 

i_all. Computational results obtained with CPLEX 

12.1 instance show significant improvements regar-

ding CPU times when using the results of Theorem 2.  

5.3. Results for |𝑻| > 𝟏  

In this subsection we present the results on PSO-

RVNS instances with |𝑇| = 2  and |𝑇| = 3  time 

periods. For each instance, we consider the different 

values of parameter 𝑘𝑚𝑎𝑥 . Similarly, as in the case 

with one period, the objective values in the robust case 

may be easily calculated by using the corresponding 

values in the deterministic case. The values of the 

parameter 𝑘𝑚𝑎𝑥  for each instance represent the 

product of number of periods and value of 𝑘𝑚𝑎𝑥  for 

corresponding instance with one period. For example, 

for instance i12 with one period, the values of 𝑘𝑚𝑎𝑥 

are 3, 4 and 5, for twoperiod instance i12_t2 the 

considered values of 𝑘𝑚𝑎𝑥 are 6, 8 and 10, while for 

three-period instance i12_t3, the values of 𝑘𝑚𝑎𝑥  are 

equal to 9, 12 and 15, etc.  

The results of of PSO-RVNS obtained on multi-

period instances in the deterministic case (Γ = 0) are 

presented in Table 7. This table also contains optimal 

solution obtained by CPLEX 12.1 solver and the 

corresponding running time 𝑡𝐶𝑃𝐿𝐸𝑋
𝑖𝑚𝑝𝑟

[𝑠]. In cases when 

CPLEX found no solution within the given time limit 

of 3h, mark - is placed the corresponding row. When 

PSO-RVNS reached optimal solution obtained by 

CPLEX 12.1, it is denoted by mark opt. The remain-

der of the Table 7 follows the structure of tables from 

the previous subsection. As it can be seen from 

Table 7, CPLEX 12.1 provided optimal solutions for 

15 out of 28 instances only. The proposed PSORVNS 

method quickly reached all known optimal solutions, 

but also provided solutions for 13 instances that 

remained out of reach of CPLEX 12.1 solver. The 
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Table 6. Results and comparisons for instance i_all and 𝑘𝑚𝑎𝑥 ∈ {4,24,36,48,60} (single-period case) 

 
 

average running time of PSO-RVNS on instances from 

Table 7 was 53.3 seconds. As in deterministic case, the 

increase of the objective function values follows the 

increase of the protection parameter Γ. 

Tables 8–9 show the results obtained for modified 

instance i_all with |𝑇| = 2  and |𝑇| = 3  periods, 

respectively. As it was expected, these instances could 

not be solved to optimality by CPLEX 12.1 solver 

within the given time limit of 3 hours. For all 

instances from Tables 8–9 PSORVNS achieved its 

best solutions in short CPU times. The average 

running time of PSO-RVNS was 53.2 seconds for 

i_all_t2 and 129.6 seconds for i_all_t3. The average 

increase of the objective function value was 62.54% 

and 85.23%, respectively.  

Figure 1 shows the increment of the objective 

function value as a function of parameter Γ in the case 

of instance i12_t2. The function value increases for 
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Table 7. Results of CPLEX and PSO-RVNS for instances with Γ = 0, |𝑇| = 2 and |𝑇| = 3 (multi-period case) 

 

Table 8. Results of PSO-RVNS for instance i_all_t2 and 

|𝑇| = 2 (multi-period case) 

 

Table 9. Results of PSO-RVNS for instance i_all_t3 and 

|𝑇| = 3 (multi-period case) 
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Figure 1. Change in the objective function value as a function of Γ for instance i12_t2 

 

Figure 2. Change in the objective function value as a function of Γ for instance i12_t3 

0 ≤ Γ ≤ 34, while for Γ ≥ 34 it remains unchanged. 

We present the result graphically for two values of 

parameter 𝑘𝑚𝑎𝑥: 6 and 10. For 𝑘𝑚𝑎𝑥 = 6, the highest 

increment is obtained for Γ ≥ 34  and it is equal to 

19.537. The value for 𝑘𝑚𝑎𝑥 = 10 is equal to 22.848. 

The blue line shows the values for 𝑘𝑚𝑎𝑥 = 6, and the 

red one for 𝑘𝑚𝑎𝑥 = 10.  

Similarly, Figure 2 presents the increment of the 

objective function value as a function of parameter Γ 

in the case of instance i12_t3. The function value 

increases for 0 ≤ Γ ≤ 51, while for Γ ≥ 51 it remains 

unchanged. We present the result graphically for two 

different values of pa rameter 𝑘𝑚𝑎𝑥: 9 (blue line) and 

15 (red line). For 𝑘𝑚𝑎𝑥 = 9, the highest increment is 

obtained for Γ ≥ 51  and it is equal to 26.049. The 

value for 𝑘𝑚𝑎𝑥 = 15 is equal to 30.464. 

6. Conclusions 

This study introduces a generalization of the prob-

lem of emergency service location from [33]. Having 

in mind that needs for emergency service may vary on 

weekly or daily basis, we involve multiple periods in 

the model proposed in [33]. In addition, we impose 

lower bounds on the number of services to be located 

in each period and the upper limit on the total number 

of available emergency services through all periods. 

Considering the nature of the problem, we further 

propose a robust optimization model of the multi-

period problem which captures the uncertainty of 

emergency incidents. It is assumed that input data 

representing the number of incidents in the considered 

city and time period are subject to uncertainty, and 

they are modeled as independent and bounded random 

variables with unknown distribution.  

Both deterministic and robust variant of the multi-

period model are tested by CPLEX 12.1 solver on the 

set of modified real-life instances [33]. In the case of 

robust variant, we propose the strategy that speeds up 

objective function calculation and therefore, significa-

ntly reduces the running time of CPLEX 12.1 solver. 

In spite of the applied time saving strategy, the largest 

problem instances remained out of reach for CPLEX 

within the given time limit of 3h. Therefore, a hybrid 

optimization approach (PSO-RVNS), based on combi-

nation of Particle Swarm Optimization (PSO) and 

Reduced Variable Neighbourhood Search (RVNS), is 

proposed. The elements of the proposed hybrid PSO-

RVNS are designed for the problem under conside-

ration and its parameters are experimentally adjusted 

to obtain the best algorithm’s performance.  
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The results of the conducted computational experi-

ments showed that the proposed PSO-RVNS quickly 

reached all optimal solutions obtained by CPLEX 12.1 

for both deterministic and robust variants of the 

problem. In cases when optimal solutions are known, 

the PSO-RVNS steadily converged to its best solution 

in short CPU times. In the single-period case, it has 

been shown that for largest problem instances, the 

PSO-RVNS outperformed the EA-LS method from 

[33] in the case of both solution quality and CPU 

times. The analysis of the solutions obtained in the 

robust case of the multi-period problem showed that 

the value of objective function increases as the 

protection level parameter Γ  increases, as in the 

single-period case.  

Based on the presented results of computational 

experiments, we conclude that the proposed PSO-

RVNS showed to be successful when solving both 

deterministic and robust variant of the multi-period 

emergency service location problem, and it represents 

a promising approach that may be applied to similar 

location problems. Some directions for future work 

involve parallelization of the proposed PSO-RVNS 

method and its hybridization with other heuristic or 

exact optimization techniques.  
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Appendix A. Objective function calculation for the case 𝚪 > 𝟎 

 

For the objective function calculation in the case 

𝛤 > 0, we use the results of Theorem 2. 

Proof. (Theorem 2) Let us first assume that 𝑧 ≠
𝑓𝑘  holds for all 𝑘 , 1 ≤ 𝑘 ≤ 𝑛 + 1. Therefore, there 

exists an index 𝑗 such that 𝑧 = 𝑓𝑗 − 𝑡, where 𝑡 > 0. 

Let 𝑧′ = 𝑓𝑗 = 𝑧 + 𝑡  and 𝑟𝑖
′ = 𝑟𝑖 − 𝑡 , 1 ≤ 𝑖 ≤ 𝑛 . We 

now have 

𝑧′ + 𝑟𝑖
′ = (𝑧′ − 𝑡) + (𝑟𝑖

′ + 𝑡) = 𝑧 + 𝑟𝑖 ≥ 𝑓𝑖,(A.1) 

and  

𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) = Γ𝑧 + ∑ 𝑟𝑖
𝑛
𝑖=1   

= Γ(𝑧′ − 𝑡) + ∑ (𝑟𝑖
′ + 𝑡)

𝑛

𝑖=1
  

= Γ𝑧′ + ∑ 𝑟𝑖
′𝑛

𝑖=1
+ (𝑛 − Γ)𝑡  

= 𝐹Γ(𝑧′, 𝑟1
′, … , 𝑟𝑛

′) + (𝑛 − Γ)𝑡. (A.2) 

Since 0 ≤ Γ ≤ 𝑛, it follows that  

𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) ≥ 𝐹Γ(𝑧′, 𝑟1
′, … , 𝑟𝑛

′). 

We may now conclude that it is enough to 

consider the case when 𝑧 = 𝑓𝑘 for 𝑘 ∈ {1, … , 𝑛 + 1}. 

Let 𝑧 = 𝑓𝑘 for some 𝑘 ∈ {1, … , 𝑛 + 1}. 

In order to achieve the minimum of 

𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛), 

the following conditions need to be satisfied for all 

1 ≤ i ≤ 𝑛: 

𝑟𝑖 = {
𝑓𝑖 − 𝑧, if 𝑓𝑖 ≥ 𝑧,

0, if 𝑓𝑖 < 𝑧.
 (a.3) 

From (A.3) it follows that 

𝑟𝑖 = {
𝑓𝑖 − 𝑧, if 𝑖 ≤ k,

0, if i > k.
 (a.4) 

We now rewrite 𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) as 

𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) = ∑ 𝑟𝑖
𝑛
𝑖=1 + Γ𝑧  

= ∑ (𝑓𝑖 − 𝑓𝑘) + Γ𝑓𝑘
𝑘
𝑖=1   

= ∑ 𝑓𝑖
𝑘
𝑖=1 + (Γ − 𝑘)𝑓𝑘. (A.5) 

The following cases may be distinguished: 

1° If 𝑘 = Γ + 1, then 

∑ 𝑓𝑖 + (Γ − 𝑘)
𝑘

𝑖=1
𝑓𝑘 = ∑ 𝑓𝑖 + (Γ − Γ − 1)𝑓Γ+1

Γ+1
𝑖=1   

= ∑ 𝑓𝑖 + 𝑓Γ+1 − 𝑓Γ+1
Γ
𝑖=1   

= ∑ 𝑓𝑖
Γ
𝑖=1 . (A.6) 

2° If 𝑘 > Γ + 1, then 

∑ 𝑓𝑖 + (Γ − 𝑘)𝑓𝑘
𝑘
𝑖=1 = ∑ 𝑓𝑖

Γ
𝑖=1   

+ ∑ 𝑓𝑖
k
𝑖=Γ+1 + (Γ − 𝑘)𝑓𝑘  

= ∑ 𝑓𝑖
Γ
𝑖=1 + ∑ (𝑓𝑖 − 𝑓𝑘)

𝑘

𝑖=Γ+1
. (A.7) 

Since 𝑓𝑖 ≥ 𝑓𝑘  for all 𝑖 ∈ {Γ + 1, … , 𝑘} , for  

𝑘 > Γ + 1 we have 

∑ 𝑓𝑖
Γ
𝑖=1 + ∑ (𝑓𝑖 − 𝑓𝑘)

𝑘

𝑖=Γ+1
≥ ∑ 𝑓𝑖

Γ
𝑖=1 . (A.8) 

3° If 𝑘 < Γ + 1, then 

∑ 𝑓𝑖
k
𝑖=1 + (Γ − 𝑘)𝑓𝑘 = ∑ 𝑓𝑖

Γ
𝑖=1   

− ∑ 𝑓𝑖
Γ
𝑖=k+1 + (Γ − 𝑘)𝑓𝑘 =  

∑ 𝑓𝑖
Γ
𝑖=1 + ∑ (𝑓𝑘 − 𝑓𝑖)

Γ

𝑖=k+1
. (A.9) 

Note that in this case for all 𝑖 ∈ {𝑘 + 1, … , Γ}, we 

have 𝑓𝑘 ≥ 𝑓𝑖. Therefore, for 𝑘 < Γ + 1, we have 

∑ 𝑓𝑖
Γ
𝑖=1 + ∑ (𝑓𝑘 − 𝑓𝑖) ≥ ∑ 𝑓𝑖

Γ
𝑖=1

Γ

𝑖=𝑘+1
  (A.10) 

From cases 1° − 3° , we may conclude that the 

minimal value of 𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) = Γ𝑧 + ∑ 𝑟𝑖
𝑛
𝑖=1  is 

obtained for 𝑧 = 𝑓Γ+1 , and it is equal to 𝐹𝛤
𝑚𝑖𝑛 =

∑ 𝑓𝑖
𝛤
𝑖=1 . ␄ 

 


