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This paper presents the stability analysis of the linear recursive (prediction) filters with higher-order predictors 
in a DPCM (differential pulse-code modulation) system, where traditional methods become too difficult and com-
plex. Stability conditions for the third- and fourth-order predictor are given by using the Schur–Cohn stability cri-
terion. The probability of stability estimation is performed by using the Monte Carlo method. Verification of the 
proposed method is performed for lower-order predictors (the first- and second-order). We calculated numerical 
values of the probability of stability for higher-order predictors and previously experimentally obtained parame-
ters. With large enough number of trials (samples) in Monte Carlo simulation, we reach the desired accuracy.
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Introduction
For half a century, differential pulse code modula-
tion (DPCM) has been one of the most effective tech-
niques for signal processing and transmission based 
on the prediction filter. This technique is widely used 
in telecommunications, speech [16, 22] and image 
coding [20, 28], medical research [10, 15, 21], etc.
A prediction (recursive) filter is a central part and the 
basis of each DPCM system. It is located in a negative 
feedback loop. Because of the negative feedback, al-
though basically a telecommunication system, DPCM 
is also suitable for the analysis in control systems 
theory. Some traditional stability analyses of DPCM 
transmission system have been already performed for 
the first [19], second [24], and higher-order predictors 
[25]. The stability of the prediction filter (the linear 
part of DPCM system), is a sufficient condition for 
stability of the whole system. 
Generally, linear prediction is commonly used in vari-
ous areas such as adaptive filtering, system identifica-
tion, spectral estimation, and speech [4]. Linear pre-
diction, where the prediction of the current sample is 
calculated as the linear combination of the previous 
samples, is the basis of the DPCM system. The predic-
tion gain significantly increases up to four-order pre-
dictors when it gets into saturation [16]. On the other 
hand, a sensitivity analysis for the prediction filter is 
performed in [9].
In this paper, we discuss stochastic stability of the 
prediction filter. In practice, each real system is im-
perfect in some way [1, 2, 3, 17]. It means that system 
parameters are stochastic variables, not determinis-
tic. In this case, predictor coefficients have normal 
distribution around nominal value. Previously per-
formed classical methods for stability analysis are 
not applicable for the systems with stochastic param-
eters, because, in this case, we actually estimate only 
which probability allows the system to be stable. For 
these reasons, in previous papers we introduced the 
term “probability of stability” [1, 2, 17]. The great im-
portance of the presented method is in its application 
in practice. The selection of the appropriate parame-
ter values, for which the system has the largest prob-
ability of stability, provides the stability of the system 
and correctness of its work.
We have already used the method of stability esti-
mation for the first- and second-order predictor [8]. 

For the higher-order predictors, it becomes more and 
more difficult to use the classical integration method 
for obtaining desired probability of stability. Despite 
some attempts, only theoretical approach of stability 
analysis for higher-order prediction filters has been 
given till now without adequate numerical results [5, 
23]. In this paper we use the Monte Carlo method [11, 
12] for numerical integration. 
First, we use the Monte Carlo method to verify the re-
sults obtained by the classical method for the proba-
bility of stability estimation. We perform experiments 
for the first- and second-order predictors and compare 
the obtained results with the results already obtained 
by using classical integration. Then, we apply the 
Monte Carlo method to the third- and the fourth-or-
der systems and determined numerical values for the 
probability of stability. In addition, we make a compar-
ison with some alternative approximate methods for 
probability of stability estimation with regard to the 
error and distinctness of the methods.

Theoretical Background of a 
Prediction Filter in the DPCM 
Transmission System
The DPCM system is suitable for digitalization and 
transmission of highly correlated signals. This qual-
ity of the system is provided by a prediction filter in 
the negative feedback loop. The prediction filter esti-
mates the actual sample value based on one or more 
previous samples of input (source) signal. A number 
of previous samples, which are used for prediction, 
determines predictor order k.
Differential pulse code modulation system is shown 
in Fig. 1. A DPCM encoder (Fig. 1a) consists of the 
quantizer, inverse quantizer, and a predictor. Predic-
tion filters in the encoder and decoder are marked 
with dashes.
The difference between input sample xn and its pre-
dicted (estimated) value   nx̂  is led to quantizer input:

 

ˆn n nd x x  .       (1) 

n

ˆn n n n n ny d e x x e     . (2) 
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i
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(1)

If estimation of nx̂  is correct, samples of difference nd  
have significantly less amplitude dynamics in com-
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parison with nx . In this way, quantization of a differ-
ence signal can be performed by a smaller number of 
amplitude levels which provides bit-rate saving, i.e., 
the prediction gain [16].

Figure 1 
Block scheme of a DPCM system, a) Encoder b) Decoder

 

 

 

a

b

The difference (1) is quantized and a quantization er-
ror ne  occurs due to quantization of the difference nd . 
Finally, the quantized difference is encoded and the 
digital value is formed. Reconstructed sample ny  is 
actually a source signal sample with the quantization 
error ne  added:

 

ˆn n nd x x  .       (1) 

ˆn n n n n ny d e x x e     . (2) 

1

ˆ
k

n i n i
i

x a y 


 , (3) 

(2)

For the linear predictor, the predicted (estimated) 
value nx̂  is calculated as a linear combination of the 
previously quantized reconstructed samples n iy − :
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1

ˆ
k

n i n i
i

x a y 


 , (3) (3)

where , 1, 2,...,ia i k=  are predictor coefficients.
From the equations above we can see that estimation 
accuracy of input signal samples value (3) directly 
depends on quality selection of predictor coefficients 
values. This accuracy has a further influence on the 
quantization error and the prediction gain. Low-qual-

ity selection of predictor coefficients could cause 
bigger difference signal nd  than input signal nx , and 
also a bigger quantization error. Afterwards, multipli-
cation of total error through feedback loop may ap-
pear, which finally leads to system failure. Therefore, 
DPCM stability mostly depends on correct selection 
of linear predictor coefficients. 
According to all the remarks above, linear prediction 
filters in the encoder (Fig. 1a) and decoder (Fig. 1b), 
as the main parts of the whole system, are of special 
interest for the stability estimation. 
Relation (3) describes the k -th order linear predictor 
and it can be rewritten in z-domain:
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The transfer function of the predictor is:
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The transfer function of the prediction filter in the 
encoder has the following form:
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The transfer function of the prediction filter in the 
decoder is:
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Stability Analysis of the  
Linear Prediction Filter
The main goal of prediction filter analysis is to deter-
mine the predictor coefficients for which the system 
has the best performance. Our task is to examine the 
prediction filter stability depending on different val-
ues of predictor coefficients.
The stability of the prediction filter is sufficient for 
the stability of the whole system, so prediction filter 
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stability consideration is very important during the 
system design process. The basic requirement is that 
predictor coefficients are located inside the stability 
region in parametric space or very close to this region.
That means that we need to determine predictor pa-
rameter values for which the prediction filter is stable 
or very close to the stability domain.
Prediction filters in the encoder and decoder are sta-
ble if all the poles of the transfer functions (6) and 
(7) lie inside the unit circle, i.e., if the characteristic 
equation (which is the same for the both filters):
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has all its zeroes inside the unit circle. The equation 
(8) can be written as:
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Stability conditions of the system described with 
characteristic equation (9) can be determined with 
several stability criteria. Thus, in [17] we used the 
Routh–Hurwitz stability criterion.
Predictor coefficients are not deterministic in prac-
tice. That is why a DPCM system is not perfect as any 
other real system, too. Sometimes, these imperfec-
tions do not have any visible effect on the system per-
formances, but in many cases this effect cannot be ne-
glected. Some system properties, such as stability or 
dynamical response, are directly dependent on this. 
Mathematically, the imperfections are variations of 
system coefficients around the nominal values of the 
coefficients [1, 2, 17].
In this paper, we consider a type of a real system 
which is stable with a certain probability. That is the 
reason why we need to introduce the term probability 
of stability, instead of traditional stability of the sys-
tem. The probability of stability is defined as [17]:
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where kS  is the stability region and ( ) ( )1 2
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Based on these facts, we can estimate the stability of 
an arbitrary order prediction filter, but some difficul-
ties can occur during calculations. Namely, the shapes 
of the stability regions become too complex and not 
convex for 3k ≥  [5, 7, 26]. Some geometric properties 
of the stability region kS  are given in [23]. The shape 
of kS  was determined for low-order prediction filters, 
and only general properties were given for higher-or-
der filters. Keeping in mind that we perform stochas-
tic stability [13], not deterministic, it is more difficult 
to obtain the desired numerical results. This is the 
reason why we propose a new improved method for 
the probability of stability calculation by using the 
Monte Carlo integration.
However, we will first verify the accuracy of the Mon-
te Carlo method for already performed stability esti-
mation for the first- and second-order predictors.

The Monte Carlo Method
The Monte Carlo method provides approximate nu-
merical solutions to various problems by performing 
statistical sampling experiments on a computer. The 
method is especially useful for mathematical prob-
lems which are too complicated to solve analytically 
[11, 12, 17].
In this paper, we use the Monte Carlo method for nu-
merical estimation of multidimensional definite in-
tegrals which are very difficult to solve by classical 
integration, especially integrals in higher dimensions. 
In some cases, bounds of integration are too complex 
for determination, and some approximations have to 
be introduced. By using the proposed Monte Carlo nu-
merical integration, we can obtain numerical values of 
definite integrals of arbitrary dimension with desired 
accuracy. Let us notice that we have probability density 
of parameters (in this case predictor coefficients).
In this paper, we firstly use the Monte Carlo method to 
confirm the results obtained by the classical method 
for the probability of stability estimation using (10). 
These verification experiments were performed for the 
first- and second-order predictor (normal distribution 
of predictor coefficients). Later, we use the proposed 
method for estimation of probability integrals for the 
third- and fourth-order, where classical integration is 
too complex. The random number generator is used 
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to generate the values of the parameters with normal 
distribution. The experiments are performed over dif-
ferent numbers of samples (trials). The testing of the 
probability of stability using the Monte Carlo method 
is much easier, because there is no need for integration 
over the region of stability [6, 7], but only the limits of 
the stability region are required. The probability of sta-
bility is calculated as the quotient of the number of fa-
vourable samples (samples that belong to the region of 
stability) and the total number of samples.

The probability of Stability 
Estimation by Using Clasical 
Integration and the Monte Carlo 
Method in the case of the First- and 
Second-Order Predictors
In the case of the first-order predictor, the stability 
region is well-known [8] and presented with the fol-
lowing condition:
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Let us denote the stability region described by (11) 
with 1S . The probability of stability is given by:
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where 1a  is the mean value of 1a , and 1σ  is the stan-
dard deviation of parameter 1a .
Now, we will test the Monte Carlo method for the 
probability of stability for the previously calculated 
values using classical integration.
For 1 0.81a =  and 1 0.2σ = , the obtained value for the 
probability of stability using classical integration 
(12) is 0.8289 (82.89%) [8]. In this paper, we apply the 
Monte Carlo method to estimate the probability of 
stability for the same distribution parameters of the 
predictor coefficient. The random number generator 
was used to generate the values of the predictor coeffi-
cients with normal distribution. 
Verification experiment is performed with 10,000 

trials. We counted the number of parameter values 
which satisfy (11) and obtained the probability value 
of 0.8331 (83.31%). As we can see, the deviation from 
the value obtained by the classical method is less than 
0.005. If we need better accuracy, we can get high-
er number of trials. For repeated experiment with 
100000 trials, we obtained the probability of stability 
value of 0.8279 (82.79%). In order to obtain the proba-
bility of stability with desired accuracy, we performed 
two more experiments. With 1,000,000 trials we ob-
tain the value of 0.8281 (82.81%). It means that we 
still did not reach the accuracy to three decimal plac-
es. Finally, after we repeat the experiment, this time 
with 10,000,000 trials, we obtain the value of 0.8290 
(82.90%). Thus we reached the desired accuracy.
The accuracy of the Monte Carlo Method depends on 

the number of trials (~ 1
N

), but also on the standard 
deviation [14]:
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Detailed error analysis is not necessary for the pur-
pose of probability stability estimation of the DPCM 
prediction filter. We can easily achieve satisfied ac-
curacy, but we perform more experiments again for 
the second-order predictor, because we also know the 
exact value of the probability of stability, and further-
more, for higher-order predictors we adopt a num-
ber of trials large enough for our purpose. In order to 
compare accuracy of different methods, we will show 
how the errors occur if we use some alternative ap-
proximate methods [6, 7, 27].
For the second-order predictor, the stability region 

2S , in the parametric space, 1 2,a a , is given with the 
following conditions:
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The probability density function (PDF) for normal 
distribution has the following form [1, 2, 8, 17]:
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where 1σ  and 2σ  are standard deviations, while 1a  and 
2a  are the mean values of predictor coefficients 1a  and 
2a , respectively.

The probability of stability is derived from:

 

11 1a   . (11) 

1

21
1 1

1
111

1 1exp
22S
a aP da
  

  
    
   

 , (12) 

e
N
 . (13) 

1 2 1 2 21 0, 1 0, 1.a a a a a         (14) 

2 1 2
1 2

2 2

1 1 2 2

1 2

1 1( , )
2 2

1 1exp ,
2 2

f a a

a a a a

   

 

 

     
      
     

 
2

2

2 1 2 1 2

2 1 2 1 2

,

( , )

S
S

f a a da da
P

f a a da da
 

 




 
. (16) (16)

Remark 1. The integral in the denominator in (16) 
presents total probability and is equal to 1.
For the obtained values of predictor coefficients a1 
and a2, we calculated the mean value and the stan-
dard deviation for different values of frame length, 
M. In the case when 50M =  and the following 
mean (nominal) values of predictor coefficients: 

1 21.292, 0.410a a= = − , and standard deviations: 
1 20.206, 0.205σ σ= = , respectively, we obtained 

the value of 0.6556 (65.56%) for probability of stabil-
ity of prediction filter, by calculating integral given 
by (16).
Now, we test the Monte Carlo method for the sec-
ond-order predictor. We performed four experiments, 
also (with 10000, 100000, 1000000 and 10000000 
trials). Obtained values for probability of stability are 
given in Table 1. As we can see, after 107 trials, an esti-
mation error is less than 0.001.

Table 1 
Probability of stability using classical integration and the 
Monte Carlo method for mean values 1 21.292, 0.410a a= = − , 
 and standard deviations 1 20.206, 0.205σ σ= =  of the 
second-order predictor coefficients

Methods Classical Monte Carlo

Trials / 104 105 106 107

Probability 
of stability 0.6556 0.6542 0.6545 0.6559 0.6558

Error / 0.0014 0.0011 0.0003 0.0002

According to the previous estimation error analysis, 
for the higher-order predictor, we perform experi-
ments with 107 trials (the accuracy approximately 
to three decimal places). 

As we have already concluded, for higher-order sys-
tems, integration becomes too complicated and the 
Monte Carlo method, which we tested in this section, 
can be very good and reliable alternative for the prob-
ability stability estimation. 

Application of the Monte Carlo 
Method for Stability Estimation of 
the Prediction Filter with Higher-
Order Predictors
Generally, for the k –th order prediction filter  
( 3k ≥ ), the probability of stability could be deter-
mined using the relations (10), too. However, the calcu-
lation is too complex. The limits of the stability region 

kS  are usually complex mathematical expressions and 
it is difficult to determinate the probability of stability 
because it is necessary to perform integration over the 
region of stability [7, 26]. That is the reason why we es-
timate the probability of stability later on.
We will use the Schur–Cohn stability criterion [18]. 
We adapted it to the form of characteristic equation 
(9) and built appropriate determinants:

      

   

 

 

1 1

1 2

2 1 3

1 2

1 1

1 2

2 1

1 2

0 0 1

0 0 1

0 0 0

0 0 1

1 0 0

1 0 0

0 0 0

1 0 0

k i

k k i

k k i

kk i k i

i

k k k i

k k i

i i k

a a a

a a a

a a a

a a a

a a a

a a a

a a

a a a



 

  

   

  

 

 

   

   

   



   

         
   

   

  



   

 

 

 

       

 

 

 

  

       

 

(17) 

3
1

3

3 1

2 3
2

3 2

1 3

3 1 2

2 3 1

1 2 3
3

3 2 1

1 3 2

2 1 3

1
0,

1

0 1
0 1

0,
1 0

1 0

0 0 1
0 0 1

0 0 1
0.

1 0 0
1 0 0

1 0 0

a
a

a a
a a

a a
a a

a a a
a a a
a a a

a a a
a a a
a a a


  



 
 

  
 

 

  
  
  

  
  

  
    (18) 

The stability region 3S  is shown in Fig. 2.  
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in which determinant order 1,2,3,...,i k= .
The system is stable if and only if 0i∆ ≤  for even val-
ues of i , and 0i∆ ≥  for odd values of i .
In the case of the third-order predictor ( 3k = ), the 
stability region 3S  is described by the following con-
ditions:
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The probability density function is:
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Hence, we can see that already for the third order, cal-
culation of the probability of stability becomes very 
complex. This is the reason why we use the Monte 
Carlo method for this purpose.
An experiment for obtaining predictor coefficients 
values was performed for recorded speech signal of 
10200 samples with sampling frequency of 8KHz and 
resolution 16 bit/sample. The available signal was di-
vided into frames of length M , and for each frame, op-
timal values of predictor coefficients were calculated 
using the adaptive differential pulse code modulation 
(ADPCM) method [16]. The experiment was repeated 
for each frame length and the PDF of predictor coeffi-
cients ia , mean values ia , and standard deviations iσ  
( 1,2,3i = ), were calculated.
Now, we can perform stability estimation of the 
third-order prediction filter. According to the results 
in the previous section (related to the accuracy of the 
Monte Carlo method), we perform all Monte Carlo 
simulation experiments with 7

3 10N =  trials. We gen-
erated a simple code in the Matlab software package 
for Monte Carlo 3D numerical integration. We calcu-
late the ratio between favourable cases (the predictor 
coefficients values which satisfy (18)) and the total 
number of trials, in order to obtain the desired values. 
These values of the probability of stability for five dif-
ferent frame lengths are given in Table 2.

Table 2 
Probabilities of stability of the third-order prediction filter 
for different values of frame length M 

M [samples] 10 20 50 100 150

ā1 0.983 1.138 1.316 1.444 1.510

σ1 0.237 0.246 0.258 0.254 0.260

ā2 -0.191 -0.289 -0.462 -0.635 -0.718

σ2 0.276 0.338 0.385 0.392 0.410

ā3 -0.037 -0.003 0.042 0.103 0.126

σ3 0.156 0.179 0.192 0.199 0.205

P (N3=107) 0.718 0.584 0.477 0.411 0.391
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Distributions of coefficients 1a , 2a , and 3a  for 20M = , 
 are shown in Fig. 3 for the illustrative purpose. Normal 
(Gaussian) distribution with the same mean and stan-
dard deviations is also shown for comparison.

Figure 3 
The probability density function of predictor coefficients 
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Now, in order to demonstrate the effectiveness of the 
proposed method, we perform some experiments with 
approximate method for probability of stability esti-
mation given in [6, 7, 27]. By using two theorems given 
and proven in [7, 27], two stability regions, kS  and kS , 
described with appropriate relations are given. The 
stability region kS  is limited above and below with 
these two regions, i.e. k k kS S S∈ ∈ . It means that we 
can calculate upper and lower limit values of proba-
bility of stability. In this paper, we calculate stochastic 
stability, so application of this approximate method 
can also become complex although the regions which 
bound kS  are much easier for integration. Because of 
that, the following expressions are given in [27]:
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where ( ) ( )2

0

2 exp
z

z z dz
π

Φ = −∫  is the Laplace func-

tion, and 
kSP  and 

kSP  are the probabilities of the upper 
and lower bounds of the stability region kS , respec-
tively, i.e.:

k k kS S SP P P≤ ≤ .
In [6, 7], the value for probability of stability is ap-
proximated with the upper bound, i.e.: 

k kS SP P≈ . Now, 
we can calculate the approximate values for probabil-
ities using these relations. For 20M = , e.g., and giv-
en parameters (see Table 2), we obtain the following 
probabilities: 

3
0.785SP =  and 

3

42 10SP −= ⋅ . Hence, 
using the proposed method [27] we do not have 
enough information about the exact value of proba-
bility, but we only know that it is between 0.0002 and 
0.785. The range is very wide, unfortunately. For oth-
er frame lengths, the proposed approximation is also 
very rough and conclusion is the same.
Remark  2. Despite the fact that there is no need for 
alternative methods in the case of the lower-order 
prediction filters, a comparison can be made, too. In 
the case of the second-order predictor and previously 
given values, we obtain 

2
0.8842SP =  and 

2
0.0001SP <  
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by using approximations (21) and (22). The range is 
too wide again. For the second-order prediction filter 
we have exact value for probability of stability 0.6556. 
If we approximate probability with upper value 0.8842 
as it is proposed in [6, 7], the error is 0.2286, i.e. much 
larger than using the Monte Carlo method (Table 1).
In the case of the prediction filter with the fourth-or-
der predictor, the probability of stability estimation is 
performed in the similar way. The experiments were 
performed for the same signal sample and the same 
frame lengths ( 10, 20, 50, 100, 150M = ).
We also use the Schur–Cohn stability criterion to ob-
tain the stability region for the fourth-order predic-
tor, 4S  (17). 
The probability density function for the fourth-order 
system is:
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Theoretical value for probability of stability is given by:
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By using the Monte Carlo simulation experiment 
with the same number of trials ( 7

4 10N = ), we obtain 
values for the probability of stability given in Table 3.
Table 3 
Probabilities of stability of the fourth-order prediction 
filter for different values of frame length M 

M [sample] 10 20 50 100 150
ā1 0.980 1.140 1.340 1.474 1.540
σ1 0.246 0.257 0.283 0.269 0.275
ā2 -0.203 -0.318 -0.543 -0.763 -0.860
σ2 0.312 0.396 0.506 0.501 0.507
ā3 0.035 0.105 0.233 0.377 0.430
σ3 0.213 0.272 0.374 0.363 0.388
ā4 -0.074 -0.094 -0.142 -0.194 -0.211
σ4 0.133 0.141 0.172 0.170 0.193

P (N4=107) 0.648 0.480 0.301 0.263 0.231

Remark 3. Using approximations (21) and (22), we 
obtain upper and lower bounds for probability (e.g. for 

20M = ) 0.69604 and 0.00003, respectively. 
The proposed method can be easily applicable for any 
higher-order predictor, where classical integration 
cannot be applied and other methods give much big-
ger errors than the Monte Carlo method.

Conclusion
In this paper, we performed the stability analysis of 
DPCM prediction filters with the higher-order pre-
dictors. We calculated the probability of stability 
values. Because of very complex classical numeri-
cal integration, we proposed the Monte Carlo inte-
gration. 
We used the method, which was previously verified 
(for the first and second order), for the probability of 
stability estimation for the third- and fourth-order 
prediction filters. 
The proposed method can be applied in the same way 
to the higher-order predictors, where classical meth-
ods become more and more complex. Experiments 
were performed for different number of trials for bet-
ter accuracy. 
Hence, the Monte Carlo method allows us to easily 
determine the probability of stability of the predic-
tion filter with arbitrary order predictor, even when 
the classical integration method is not applicable. 
A problem with the error which occurs during the 
Monte Carlo integration is solved by increasing the 
number of trials in experiments, depending on the 
required accuracy set in advance. This is not possible 
for already developed methods for higher-order sys-
tems.
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Summary / Santrauka

This paper presents the stability analysis of the linear recursive (prediction) filters with higher-order predic-
tors in a DPCM (differential pulse-code modulation) system, where traditional methods become too difficult 
and complex. Stability conditions for the third- and fourth-order predictor are given by using the Schur-Cohn 
stability criterion. The probability of stability estimation is performed by using the Monte Carlo method. Ve-
rification of the proposed method is performed for lower-order predictors (the first- and second-order). We 
calculated numerical values of the probability of stability for higher-order predictors and previously experi-
mentally obtained parameters. With large enough number of trials (samples) in Monte Carlo simulation, we 
reach the desired accuracy.

Straipsnyje pateikta tiesinių rekursinių (numatymų) filtrų su aukštesnės eilės prediktoriais stabilumo analizė 
diferencinio pulso-kodo moduliacijos (angl. differential pulse-code modulation (DPCM)) sistemoje, kurioje tra-
diciniai metodai yra per daug sudėtingi. Stabilumo sąlygos trečiosios ir ketvirtosios eilės prediktoriui užtikri-
namos taikant Schuro ir Cohno stabilumo kriterijų. Stabilumo įvertinimo tikimybė apskaičiuota taikant Monte 
Karlo metodą. Siūlomo metodo verifikacija atlikta žemesnės (pirmosios ir antrosios) eilės prediktoriams. Ap-
skaičiuotos skaitinės stabilumo tikimybės reikšmės aukštesnės eilės prediktoriams ir anksčiau eksperimen-
tiškai gautų parametrų įverčiai. Atlikus gana daug bandymų (imčių) Monte Karlo simuliacijoje pavyko pasiekti 
norimą tikslumą.




