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In this paper, robust adaptive control for uncertain fractional-order financial chaotic systems with bounded 
unknown external disturbances is studied. By utilizing the fractional-order extension of the classical Lyapun-
ov stability methods, an adaptive controller is presented for controlling the fractional-order financial chaotic 
system. Quadratic Lyapunov functions are employed in the stability analysis, and fractional-order adaptation 
laws are designed to update controller parameters online. The proposed controller can ensure that the system 
states converge to the origin asymptotically and all signals in the closed-loop system remain bounded. Finally, 
simulation results are presented to confirm our theoretical results. 
KEYWORDS: Robust control, fractional-order financial system, fractional-order chaotic system, fraction-
al-order adaptation law. 



247Information Technology and Control 2017/2/46

Introduction
In the last two decades, fractional-order systems have 
received a significant amount physicists’ and engi-
neers’ interest due to their attractive properties and 
potential applications [6, 12, 19, 23, 25, 29, 30, 37, 39]. 
Compared with classical integer-order systems, the 
fractional-order derivation has two advantages. First, 
the traditional integer-order derivative describes a 
certain attribute or variation at a particular time for 
a physical process, yet the fractional-order’s is con-
cerned throughout the whole time domain. Second, 
the traditional integer-order derivative indicates the 
local properties, for example, a certain position, for 
a physical process, while the fractional-order deriv-
ative is related to the whole space. Taking the above 
facts into account, the fractional calculus plays a very 
important role in the modeling and tackling of many 
phenomena and actual systems in various fields, such 
as quantum mechanics, molecular spectroscopy, sto-
chastic diffusion, control theory, and viscoelastic dy-
namics [4, 11, 16, 20, 21, 22, 24, 45, 49]. Therefore, re-
search on theory and applications of fractional-order 
systems is becoming more and more popular.
Recently, research on the complex dynamics of fi-
nancial systems has also become a very prominent 
domain in both micro and macroeconomics [43]. Re-
searchers have attempted to elaborate the primary 
properties of economic data with the help of the dy-
namical behaviors exhibited in the financial systems. 
Some continuous nonlinear system models have been 
established to investigate the complex economic dy-
namics, for example, the forced van der Pol model 
[38], the Goodwin’s accelerate model [26], the IS-LM 
model [15]. In fact, it is feasible for nonlinear systems 
to exhibit chaotic or periodic behaviors. However, if 
chaotic behaviors exist in economic systems, then 
the systems will have inherent indefiniteness which 
makes it hard to provide a reasonable or effective eco-
nomic prediction. Thus, it is indispensable to investi-
gate the chaotic behaviors in financial and economi-
cal systems. Since chaotic behaviors in financial and 
economical systems were firstly investigated in 1985, 
great impact had been put on the prominent econom-
ics. Many interesting results on integer-order finan-
cial chaotic systems were given, for example, sliding 
mode control and passive control methods were em-
ployed to synchronize two chaotic financial systems 

with different initial conditions in [18]; control of hy-
perchaotic finance systems was presented in [48] and 
[42]; chaotic dynamic behavior analysis for a class of 
financial risk systems was studied in [50]; control of 
chaotic financial systems with input time-delay by 
means of H ∞  control was presented in [51]; in [40], 
a novel 3-D nonlinear financial chaotic system was 
introduced and its complex dynamic behavior was in-
vestigated, etc.
Up to now, controlling and synchronizing chaos in 
fractional-order financial systems has also been in-
vestigated, for example, in [1, 10, 13, 14, 27, 32, 41, 
43, 47, 46]. In [14], a sliding mode controller was 
designed to synchronize fractional-order financial 
systems in master-slave structure. In [41], a nec-
essary condition was given to show the existence 
of 1-scroll, 2-scroll even multi-scroll chaotic at-
tractors in fractional-order financial systems. Ac-
tive control method was used in [27, 47]. An active 
controller with multiple conflicting objectives was 
constructed in [32]. It should be highlighted that a 
key assumption in the above literatures is that the 
model of the financial systems should be known. 
However, most of real world systems are subjected 
to system uncertainties and external disturbances, 
especially in financial systems [7, 8, 27, 33, 34, 36, 
44]. On the other hand, in financial systems, sys-
tem uncertainties do exist because of limited siz-
es of weather variables, political events, and other 
human factors. The existence of systems uncer-
tainties and external disturbances could decrease 
the control performance, or even lead to instability 
of the system [35]. It is meaningful to consider the 
control of financial systems with system uncer-
tainties and external disturbances. Thanks to the 
works of Li et al. [20], the Lyapunov direct method 
(also called the Lyapunov second method) has been 
extended to fractional-order nonlinear systems. In 
this paper, a robust adaptive controller is proposed 
to solve the control problem of fractional-order fi-
nancial chaotic systems with both system uncer-
tainties and bounded external disturbances. The 
fractional-order Lyapunov approach is used to an-
alyze the stability of the system. Specifically, the 
main contributions of this study include:
 _ A robust adaptive controller is derided for 

fractional-order financial chaotic systems 
with unknown system dynamics and external 
disturbances; 
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 _ Fractional-order adaptations laws are constructed 
to eliminate the estimation errors, and a fractional 
Lyapunov stability criterion as well as quadratic 
Lyapunov functions are used in the stability 
analysis. 

The remainder of this paper is organized as follows: 
Section 2 lists mathematical model of the fraction-
al-order financial systems and some basic results on 
fractional calculus. In Section 3, an adaptive robust 
controller is designed and stability analysis of the 
closed-loop system is discussed. Simulation studies 
are included in Section 4. Finally, Section 5 concludes 
this work.

Problem Statement and 
Preliminaries

Preliminaries

The fractional order integrodifferential operator is 
the extended concept of the integer-order integro-
differential operator. The commonly used definitions 
in literatures are Grunwald-Letnikov, Riemann-Li-
ouville, and Caputo definitions.  Because the Caputo 
derivative takes on the same form as integer-order 
differential on the initial conditions, which have 
well-understood physical meanings and have more 
applications in engineering, we will use this defini-
tion. The lower limit of the fractional calculus is set 
as 0 in this paper. The fractional-order integral with 
order α  can be expressed as 

1
0 0

1( ) = ( ) ( ) .
( )

t

tD f t t f dα ατ τ τ
α

− −−
Γ ∫ (1)

where ( )Γ ⋅  represents the Euler’s function.
The Caputo fractional derivative is defined as follows: 

1 ( )
0 0

1( ) = ( ) ( ) ,
( )

tC n n
tD f t t f d

n
α ατ τ τ

α
− −−

Γ − ∫ (2)

where α  is the fractional order, and n is an integer 
satisfying 1 <n nα− ≤ .
In nonlinear systems, Lyapunov direct method (also 
called the Lyapunov second method) provides a way 

to analyze the stability of a system without explicitly 
solving the differential equations. Although the Lya-
punov stability theory for integer-order systems was 
proposed in 1892 and it has been studied and modified 
by lots of expert researchers, the Lyapunov stability 
theory for fractional order systems has been devel-
oped until recently [20].
The following lemmas and definition will be used.
Lemma 1. [20]  Let = 0x  be an equilibrium of the frac-
tional-order nonlinear system: 

0 ( ) = ( ).C
tD x t f xα (3)

Suppose there exists a Lyapunov function ( , ( ))V t x t  and 
class- k  functions , = 1,2,3ig i  such that: 

g1(∥x∥) ≤ V (t, x(t)) ≤ g2(∥x∥),
C
0 D

β
t V (t, x(t)) ≤ −g3(∥x∥),

(4)

where 0 < < 1β , then the equilibrium point of system 
(3) is Mittag-Leffler stable. 
Lemma 2. [20]  If the fractional-order nonlinear sys-
tem (3) is Mittag-Leffler stable, then it will be asymp-
totically stable, i.e., ( ) = 0limt x t→∞ . 
Lemma 3. [4, 16, 21]  Let 

integral with order α can be expressed as

0D
−α
t f(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ. (1)

where Γ(·) represents the Euler’s function.

The Caputo fractional derivative is defined as follows:

C
0 D

α
t f(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ, (2)

x(t) ∈ Rn be a continuous 
and derivable function. Then for any > 0t , 

0
0

1 ( ) ( ) ( ) ( ).
2

C
T T C

t tD x t x t x t D x tα α≤ (5)

As it is known, the exponential function, ze , is a very 
important function in the stability analysis of inte-
ger-order systems. Its one-parameter generalization 
function is defined by [31] 

=0
( ) = .

( 1)

k

k

zE z
kα α

∞

Γ +∑ (6)

The two-parameter function of Mittag-Leffler type, 
which plays a very important role in the fractional cal-
culus, was introduced by Agarwal [2]. The Mittag-Lef-
fler function with two parameters can be written as 

,
=0

( ) = ,
( )

k

k

zE z
kα β α β

∞

Γ +∑ (7)

where , > 0α β  and z C∈ . The Mittag-leffler function 
depends on the two parameters α  and β . It is a spe-
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cial function and a complex function. If both α  and β  
are real and positive, the series converges for all val-
ues of the argument z, so the Mittag-Leffler function 
is an entire function. The Laplace transform of Mit-
tag-Leffler function is [37] 

L {tβ−1Eα,β(−atα)} =
sα−β

sα + a
. (8)

Lemma 4. [37] If 1( ) [0, ]x t C T∈  for some > 0T , and 
0 < 1α ≤ , then the following equations hold: 

0 0 ( ) = ( ) (0)C C
t tD D x t x t xα α− − (9)

and

0 0 ( ) = ( ).C C
t tD D x t x tα α− (10)

In this paper, we employ the Caputo version and use 
an algorithm for fractional order differential equa-
tions, which is the generalization of Adams-Bash-
forth-Moulton one. A brief introduction of the algo-
rithm is given as follows.
Let consider the following fractional order differen-
tial equation: 

0

0

( ) = ( , ( )),
(0) = .

C
tD y t f t y t

y y

α



(11)

According to Lemma 4, the above equation (11) is 
equivalent to the Volterra integral equation 

1
0 0

1( ) = ( ) ( , ( )) .
( )

t
y t y t f y dατ τ τ τ

α
−+ −

Γ ∫ (12)

Let = / , , = , = 0,1, , .nh T N N Z t nh n N∈   Then (12) can 
be approximated as [37] 

1 0 1

, 1
=0

( ) = ( 1, ( ))
( 2)

( , ( ))
( 2)

p
h n n h n

n

j n j h j
j

hy t y f t y t

h a f t y t

α

α

α

α

+ +

+

+ +
Γ +

+
Γ + ∑

(13)

where  1
, 1 = ( )( 1)j na n n nα αα+

+ − − +  for = 0j  and  
1 1 1

, 1 = ( 2) ( ) 2( 1)j na n j n j n jα α α+ + +
+ − + + − − − +  for 1 j n≤ ≤ , 

1 0 , 1=0

1( ) = ( , ( ))
( )

np
h n j n j h jj

y t y b f t y t
α+ ++

Γ ∑ , = 1p α + , and 

( ), 1 = ( 1 ) ( )j n
hb n j n j

α
α α

α+ + − − − .

The estimation error is max | ( ) ( ) |= ( )p
j h jy t y t o h−  [37].

Description of fractional-order financial 
chaotic systems
The fractional-order financial chaotic system model 
to be used in this paper can be seen in [10, 13, 32, 46, 
47]. This mathematical model describes a fraction-
al-order financial system by three nonlinear fraction-
al-order differential equations. The model can be ex-
pressed as 

0 1 3 2 1
2

0 2 2 1

0 3 1 3

( ) = ( ) ( ( ) ) ( )
( ) = 1 ( ) ( )
( ) = ( ) ( ),

C
t

C
t

C
t

D x t x t x t a x t
D x t bx t x t
D x t x t cx t

α

α

α

 + −


− −
 − −

(14)

where a represents the saving amount, b denotes the 
cost per investment, c corresponds to the elasticity of 
demand of commercial market, and 0 < < 1α  is the frac-
tional-order derivative. The first state variable 1( )x t , 
which represents the interest rate, can be affected by 
the surplus between investment and savings as well as 
structural adjustments of the prices. The second state 
variable 2 ( )x t  corresponds to the rate of investment, 
and inversely proportional to the cost of investment and 
the interest rate. The third state variable 3 ( )x t  depends 
on the difference between supply and demand in the 
market, and it can also be affected by the inflation rate.
It is easy to know that system (14) has three equilib-
rium points: 

1

2

3

1= 0, ,0 ,

1 1= , , ,

1 1= , , .

E
b

c b abc ac c b abcE
c c c c

c b abc ac c b abcE
c c c c

 
 
 
 − − + − −

−  
 
 − − + − −

−  
 

(15)

The Jacobian matrix, at the equilibrium * * * *
1 2 3= [ , , ]TE x x x* * * *

1 2 3= [ , , ]TE x x x , 
can be given as 

* *
2 1

*
1

1
= 2 0 .

1 0
E

a x x
J x b

c

 − +
 − − 
 − − 

(16)

Let = 1, = 0.1a b  and = 1c . The eigenvalues 
for the fractional-order financial chaotic system 
equilibrium 

1 = (0.000;10.000;0.000)E  are 1 2 3= 8.8990, = 0.8990, = 0.1000λ λ λ− − 
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1 2 3= 8.8990, = 0.8990, = 0.1000λ λ λ− − . Clearly, it is a saddle point. 
For equilibrium points 2 = (0.8944;2.000; 0.8944)E −  
and 

3 = ( 0.8944;2.000;0.8944)E −  they are: 1 = 0.7609λ −  
and 2,3 = 0.3304 1.4112iλ ± . It is a saddle-focus point. 
Since it is an unstable equilibrium, the condition for 
chaos is satisfied We can easily find that the minimal 

Figure 1  
Chaotic behavior of fractional-order financial system (14) with = 0.85α  in (a) 1 2 3( ) ( ) ( )x t x t x t− −  plane, (b) 1 2( ) ( )x t x t−  plane, 
(c) 1 3( ) ( )x t x t−  plane and (d) 1 4( ) ( )x t x t−  plane

Figure 2  
Chaotic behavior of fractional-order financial system (14) with = 0.97α  in (a) 1 2 3( ) ( ) ( )x t x t x t− −  plane, (b) 1 2( ) ( )x t x t−  plane, 
(c) 1 3( ) ( )x t x t−  plane and (d) 1 4( ) ( )x t x t−  plane

Controller Design and Stability 
Analysis
According to (14), the controlled model can be ex-
pressed as

commensurate order of the system is > 0.8537α . Set 
the initial conditions be 1 2 3(0) = 1, (0) = 2, (0) = 0.5x x x − , 
and the fractional order be = 0.91α . The chaotic 
attractor of the fractional-order financial system 
(14) is shown in Figures 1 and 2 when = 0.85α  and 

= 0.97α , respectively.
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2

0 2 2 1 2 2 2

0 3 1 3 3 3 3

( ) = ( ) ( ( ) ) ( ) ( ( )) ( ) ( ),
( ) = 1 ( ) ( ) ( ( )) ( ) ( ),
( ) = ( ) ( ) ( ( )) ( ) ( ),

C
t

C
t

C
t

D x t x t x t a x t f x t d t u t
D x t bx t x t f x t d t u t
D x t x t cx t f x t d t u t

α

α

α

 + − + ∆ + +


− − + ∆ + +
 − − + ∆ + +

(17)
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where ( ( ))if x t∆  and ( )id t , = 1,2,3i  are system uncer-
tainties and unknown external disturbances, re-
spectively, and ( )iu t  is the control input. Denote 

1 3 2 1( ( )) = ( ) ( ( ) ) ( )f x t x t x t a x t+ − , 2
2 2 1( ( )) = 1 ( ) ( )f x t bx t x t− −  

and 3 1 3( ( )) = ( ) ( )f x t x t cx t− − , then system (17) can be re-
written as 

0 ( ) = ( ( )) ( ( )) ( ) ( ), = 1, 2,3.C
t i i i i iD x t f x t f x t d t u t iα + ∆ + + (18)

Let the error state be 

*( ) = ( ) .i i ie t x t x− (19)

The control objective is to design the control input 
( )iu t  so that the error variable ( )ie t  tends to the origin 

asymptotically with all signals in the closed-loop sys-
tem remain bounded. To fulfil this assignment, the 
following assumptions are needed.
Assumption  1. The system uncertainty ( ( ))if x t∆  is 
Lipschitz continuous, and there exist an unknown pos-
itive constant iγ  such that 

|∆fi(x(t))| ≤ γi∥x(t)∥, (20)

|di(t)| ≤ d̄i, (21)

where di is an unknown positive constant.

Remark 1. Assumptions 1 and 2 are not restrictive, and they are also used in
many literatures, such as [22, 27, 28, 47], and so on. It should be pointed out
that in this paper we assume that the exact values of d̄i and γi are unknown. In
fact, these two assumptions enable us to have a simpler analysis of the system
stability.

Note that the Caputo derivative of a constant is zero, from (18) and (19) we

have
C
0 D

α
t ei(t) = fi(x(t)) + ∆fi(x(t)) + di(t) + ui(t). (22)

Multiplying ei(t) to both sides of (22), and using Assumptions 1 and 2, we

have

ei(t)
C
0 D

α
t ei(t) = ei(t)fi(x(t)) + ei(t)∆fi(x(t)) + ei(t)di(t) + ei(t)ui(t),

≤ ei(t)fi(x(t)) + ei(t)ui(t) + γi∥x(t)∥|ei(t)|+ d̄i|ei(t)|.
(23)

Let us design the controller ui(t) as

ui(t) = −fi(x(t)) + sign(ei(t))uri(t), (24)

where uri(t) is a robust controller term which will be constructed later. Substi-

tuting (24) into (23) yields

ei(t)
C
0 D

α
t ei(t) ≤ |ei(t)|

(
uri(t) + γi∥x(t)∥+ d̄i

)
. (25)

Note that both γi and d̄i are unknown. So their values should be estimated

in the controller design. Let γ̂i(t) and ˆ̄di(t) be the estimation of γi and d̄i,

respectively. Then, the robust term uri(t) can be defined as

uri(t) = −ki|ei(t)| − γ̂i(t)∥x(t)∥ − ˆ̄di(t). (26)

9

(20)

where 

The control objective is to design the control input ui(t) so that the error

variable ei(t) tends to the origin asymptotically with all signals in the closed-loop

system remain bounded. To fulfil this assignment, the following assumptions

are needed.

Assumption 1. The system uncertainty ∆fi(x(t)) is Lipschitz continuous, and
there exist an unknown positive constant γi such that

|∆fi(x(t))| ≤ γi∥x(t)∥, (20)

where ∥ · ∥ denotes the Euclid norm.

Assumption 2. The external disturbance di(t) is a bounded continuous func-
tion, i.e., di(t) satisfies the following inequality

|di(t)| ≤ d̄i, (21)

where di is an unknown positive constant.

Remark 1. Assumptions 1 and 2 are not restrictive, and they are also used in
many literatures, such as [22, 27, 28, 47], and so on. It should be pointed out
that in this paper we assume that the exact values of d̄i and γi are unknown. In
fact, these two assumptions enable us to have a simpler analysis of the system
stability.

Note that the Caputo derivative of a constant is zero, from (18) and (19) we

have
C
0 D

α
t ei(t) = fi(x(t)) + ∆fi(x(t)) + di(t) + ui(t). (22)

Multiplying ei(t) to both sides of (22), and using Assumptions 1 and 2, we

have

ei(t)
C
0 D

α
t ei(t) = ei(t)fi(x(t)) + ei(t)∆fi(x(t)) + ei(t)di(t) + ei(t)ui(t),

≤ ei(t)fi(x(t)) + ei(t)ui(t) + γi∥x(t)∥|ei(t)|+ d̄i|ei(t)|.
(23)

Let us design the controller ui(t) as

ui(t) = −fi(x(t)) + sign(ei(t))uri(t), (24)

where uri(t) is a robust controller term which will be constructed later. Substi-

tuting (24) into (23) yields

ei(t)
C
0 D

α
t ei(t) ≤ |ei(t)|

(
uri(t) + γi∥x(t)∥+ d̄i

)
. (25)

Note that both γi and d̄i are unknown. So their values should be estimated

in the controller design. Let γ̂i(t) and ˆ̄di(t) be the estimation of γi and d̄i,

respectively. Then, the robust term uri(t) can be defined as

uri(t) = −ki|ei(t)| − γ̂i(t)∥x(t)∥ − ˆ̄di(t). (26)

9

  denotes the Euclid norm. 
Assumption  2. The external disturbance ( )id t  is a 
bounded continuous function, i.e., ( )id t  satisfies the fol-
lowing inequality 

| ( ) | ,i id t d≤ (21)

where id  is an unknown positive constant. 
Remark  1. Assumptions 1 and 2 are not restrictive, 
and they are also used in many literatures, such as [22, 
27, 28, 47], and so on. It should be pointed out that in 
this paper we assume that the exact values of id  and iγ  
are unknown. In fact, these two assumptions enable us 
to have a simpler analysis of the system stability. 
Note that the Caputo derivative of a constant is zero, 
from (18) and (19) we have 

0 ( ) = ( ( )) ( ( )) ( ) ( ).C
t i i i i iD e t f x t f x t d t u tα + ∆ + + (22)

Multiplying ( )ie t  to both sides of (22), and using As-
sumptions 1 and 2, we have 

 
0( ) ( ) = ( ) ( ( )) ( ) ( ( )) ( ) ( ) ( ) ( ),

( ) ( ( )) ( ) ( ) ( ) | ( ) | | ( ) | .

C
i t i i i i i i i i i

i i i i i i i i

e t D e t e t f x t e t f x t e t d t e t u t
e t f x t e t u t x t e t d e t




   

   

 

∥ ∥

(23)

Let us design the controller ( )iu t  as 

( ) = ( ( )) s ( ( )) ( ),i i i riu t f x t ign e t u t− + (24)

where ( )riu t  is a robust controller term which will be 
constructed later. Substituting (24) into (23) yields 

ei(t)
C
0 D

α
t ei(t) ≤ |ei(t)|

(
uri(t) + γi∥x(t)∥+ d̄i

)
. (25)

Note that both γi and d̄i are unknown. So their values should be estimated

in the controller design. Let γ̂i(t) and ˆ̄di(t) be the estimation of γi and d̄i,

respectively. Then, the robust term uri(t) can be defined as

uri(t) = −ki|ei(t)| − γ̂i(t)∥x(t)∥ − ˆ̄di(t). (26)

9

(25)

Note that both iγ  and id  are unknown. So their values 
should be estimated in the controller design. Let ˆ ( )i tγ  
and ˆ ( )id t  be the estimation of iγ  and id , respectively. 
Then, the robust term ( )riu t  can be defined as 

uri(t) = −ki|ei(t)| − γ̂i(t)∥x(t)∥ − ˆ̄di(t). (26)

9

(26)

where ik  is positive design parameter. Substituting 
(26) into (25), we have 

ei(t)
C
0 D

α
t ei(t)≤−ki|ei(t)|2−|ei(t)|γ̃i(t)∥x(t)∥−|ei(t)| ˜̄di,

(27)

where 

ˆ( ) = ( )i i it tγ γ γ− (28)

and 

ˆ( ) = ( )i i id t d t d− (29)

are the estimation errors of unknown parameters iγ  
and id , respectively.
To proceed, let us give the following results on frac-
tional calculus at first.
Lemma 5.  If 0 ( ) 0C

tD y tα ≤ , then we have ( ) (0)y t y≤  for 
all > 0t , and furthermore, the function ( )y t  is monotone 
decreasing. 
Proof. There exists some nonnegative function ( )h t  
such that 

0 ( ) ( ) = 0.C
tD y t h tα + (30)
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Using the Laplace transform to (30) we have 

(0) ( )( ) = y H sY s
s sα− (31)

where ( )Y s  and ( )H s  are the Laplace transform of ( )y t  
and ( )h t , respectively.
Taking the inverse Laplace transform on (31) yields 

0( ) = (0) ( ).C
ty t y D h tα−− (32)

Noting that ( ) 0h t ≥ , it follows from (1) that 0 ( ) 0C
tD h tα− ≥ . 

As a result we know that ( ) (0)y t y≤  for all > 0t , and 
the function ( )y t  is monotone decreasing.
Lemma 6.  Let 2 2

1
1 1( ) = ( ) ( )
2 2

V t x t y t+ , where Lemma 6. Let V1(t) = 1
2x

2(t) + 1
2y

2(t), where x(t), y(t)∈R
functions. If

C
0 D

α
t V1(t) ≤ −kx2(t), (33)

where k is a positive constant, then we have

x2(t) ≤ 2V1(0)Eα(−2ktα). (34)

Proof. Using the fractional integral operator C
0 D

−α
t to both sides of (33),

it follows from Lemma 4 that

V1(t)− V1(0) ≤ −kC0 D
−α
t x2(t). (35)

10

 
are continuous functions. If 

2
0 1( ) ( ),C

tD V t kx tα ≤ − (33)

where k is a positive constant, then we have 

2
1( ) 2 (0) ( 2 ).x t V E ktα

α≤ − (34)

Proof. Using the fractional integral operator 0
C

tD α−  to 
both sides of (33), it follows from Lemma 4 that 

2
1 1 0( ) (0) ( ).C

tV t V k D x tα−− ≤ − (35)

It follows from (35) that 

2 2
1 0( ) 2 (0) 2 ( ).C

tx t V k D x tα−≤ − (36)

There exists a nonnegative function ( )m t  such that 

2 2
1 0( ) ( ) = 2 (0) 2 ( ).C

tx t m t V k D x tα−+ − (37)

Taking the Laplace transform (Taking the Laplace transform (L {·}) on (37) gives) on (37) gives 

1

2 1( ) = 2 (0) 2 ( )
2 2

s sX s V M s
s k s k

α α

α α

−

−
+ +

(38)

where 2 ( )X s  and ( )M s  are Laplace transform of 2 ( )x t  
and ( )m t , respectively. Using (8), the solution of (38) 
can be given as 

2 1
1 ,0( ) = 2 (0) ( 2 ) 2 ( )*[ ( 2 )]x t V E kt m t t E ktα α

α α
−− − − (39)

where *  represents the convolution operator. Noting 

that both ,0 ( 2 )E ktα
α −  and 1t−  are nonnegative func-

tions, it follows from (39) that (34) holds. This ends 
the proof of Lemma 6.
Based on above discussions, now we are ready to give 
the following results.
Theorem 1. Consider the fractional-order financial 
chaotic system (17) or the equivalent form (18). Sup-
pose that Assumptions 1 and 2 are satisfied. Let the 
control input be (24) and (26). If ˆ ( )i tγ  and ˆ ( )id t  are 
updated by the following fractional-order differential 
equations 

C
0 D

α
t γ̂i(t) = hi|ei(t)|∥x(t)∥ (40)(40)

and 

0
ˆ ( ) = | ( ) |C

t i i iD d t m e tα (41)

respectively, where ih  and im  are positive design pa-
rameters, then the system variable ( )ix t  will tend to 
the origin asymptotically, and all signals in the closed-
loop system will keep bounded. 
Proof. Let us consider the following Lyapunov func-
tion candidate: 

2 2 21 1 1( ) = ( ) ( ) ( ).
2 2 2i i i i

i i

V t e t t d t
h m

γ+ +  (42)

Then by using Lemma 3, we have 

0 0 0 0
1 1( ) ( ) ( ) ( ) ( ) ( ) ( ).C C C C

t i i t i i t i i t i
i i

D V t e t D e t t D t d t D d t
h m

α α α αγ γ≤ + +   

(43)

Noting that the fractional-order derivative of a con-
stant is zero, from (28) and (29) we have 

0 0 ˆ( ) = ( )C C
t i t iD t D tα αγ γ (44)

and 

0 0
ˆ( ) = ( ).C C

t i t iD d t D d tα α (45)

Substituting (27), (44) and (45) into (43), we have 

C
0 D

α
t Vi(t) ≤ −ki|ei(t)|2 − |ei(t)|γ̃i(t)∥x(t)∥ − |ei(t)| ˜̄di

+
1

hi
γ̃i(t)

C
0 D

α
t γ̂i(t) +

1

mi

˜̄di(t)
C
0 D

α
t
ˆ̄di(t).

(46)(46)
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Then substituting (40) and (41) into (46) gives 

2
0 ( ) | ( ) | .C

t i i iD V t k x tα ≤ − (47)

Thus we have 0 ( ) 0C
t iD V tα ≤ . According to Lemma 5, we 

know that all signals in the closed-loop system will 
keep bounded. From Lemma 6 and (47), we can con-
clude that ( )ie t  will converge to the origin asymptot-
ically. This ends the proof of Theorem 1.

Remark 2. In the stability analysis of fractional order 
nonlinear systems, the Lyapunov function candidate 

( ) = 2 ( ) ( )TV t e t e t  is often used. The α th-order of ( )V t  
can be given as 

0 0 0( ) = ( ( )) ( ) ( ) ( ) 2C C T T C
t t tD V t D e t e t e t D e tα α α+ + Λ (48)

where 

0
=1 0

(1 )= ( ) ( ).
(1 ) (1 )

C
i C i
t t

i
D e t D e t

i i
αα

α

∞
−Γ +

Λ
Γ + Γ − +∑ (49)

We can see that it is very hard to use the above com-
plicated infinite series to analyze the stability of 
fractional order systems. However, in this paper, by 
using Lemma 3 and the proposed Lemma 6, we need 
not to tackle the above complicated infinite series. 

Remark 3. To update ˆ ( )i tγ  and ˆ ( )id t , fractional-order 
adaptation laws (40) and (41) are designed. Compared 
with classical integer-order adaptation law, the frac-
tional-order adaptation laws enlarge the parameter 
adaptation performance by heightening one degree of 
freedom. 

Remark 4. It is worth to mention that sliding mode 
control methods are often used to control fractional-or-
der nonlinear systems, for example, in [3, 5, 9, 17] and 
many others. How to control fractional-order financial 
chaotic system by using sliding mode control method is 
one of our research directions. 

Simulation Studies
In the simulation, the system uncertainties are cho-
sen as: 

1 1 2 3

2 1 2 3

3 1 2 3

( ( )) = 0.3sin( ( )) 0.1 ( ) sin( ( )),
( ( )) = 0.1 ( ) 0.2sin( ( )) sin( ( )),
( ( )) = 0.1 ( ) 0.2 ( ) sin( ( )),

f x t x t x t x t
f x t x t x t x t
f x t x t x t x t

∆ + −
∆ + +
∆ − +

(50)

from which we can easily conclude that Assump-
tion 1 is satisfied. Let the external disturbances be 

1 2 3( ) = 0.2sin( ), ( ) = 0.1cos( ), ( ) = 0.1sin( ) 0.1cos( )d t t d t t d t t t+ . 
The controller design parameters are chosen as 

1 2 3 1 2 1 2 3= = = 1, = = 3 = 0.3, = = = 0.2k k k h h h m m m . The 
initial conditions of the fractional  order adap-
tation law are chosen as 1 2 3 1 2 3

ˆ ˆ ˆˆ ˆ ˆ(0) = 0.2, = 0.5, = 2, (0) = 0.2, (0) = 0.5, (0) = 0.7.d d dγ γ γ  
1 2 3 1 2 3

ˆ ˆ ˆˆ ˆ ˆ(0) = 0.2, = 0.5, = 2, (0) = 0.2, (0) = 0.5, (0) = 0.7.d d dγ γ γ  To eliminate the chat-
tering phenomenon, the discontinuous term ( )sign ⋅  is 
replaced by arctan(10 )⋅ .
Let = 0.91α . First, let us consider the condition that 
controlling the fractional-order financial system 

(17) to the equilibrium point 1
1= 0, ,0E
b

 
 
 

. The sim-

ulation results are presented in Figures 3–7. Time 
responses of system variables 1( )x t , 2 ( )x t  and 3 ( )x t  are 
depicted in Figure 3. Time responses of the control 

Figure  3 

Controlling the fractional-order financial chaotic system 
(17) to its equilibrium point E1=(0, 1

b
,0): time responses of 

the state variables. The controller is activated at t = 30

 

 

inputs are included in Figure 5. The estimations of 
the unknown parameters ˆ ( )i tγ  and ˆ ( )id t  are depicted 
in Figures 6 and 7, respectively. From the simula-
tion results, we can see that the good control perfor-
mance has been obtained, and the system variables 
converge to the origin rapidly when the controller is 
activated at = 30t .
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Figure 4  
Controlling the fractional-order financial chaotic system 
(17) to its equilibrium point E1=(0, 1b ,0): time responses of 
the tracking errors ( )ie t . The controller is activated at t = 30

Figure 5 
Controlling the fractional-order financial chaotic system 
(17) to its equilibrium point E1=(0, 1

b
,0): time responses of 

the control inputs. The controller is activated at t = 30

Figure  6  
Controlling the fractional-order financial chaotic system 
(17) to its equilibrium point E1=(0, 1

b
,0): time responses of 

ˆ ( )i tγ . The controller is activated at t = 30

 

 

 

 

 

 

 

   
 

 

 

   
 

 

 

 

 

 

 

 

 

 

Figure 7 
Controlling the fractional-order financial chaotic system 
(17) to its equilibrium point E1=(0, 1

b
,0): time responses of 

ˆ ( )id t . The controller is  activated at t = 30

Figure 8  
Controlling the fractional-order financial chaotic system (17) 

to its equilibrium point 2
1 1= , ,c b abc ac c b abcE

c c c c
 − − + − −

−  
 

. 

The controller is activated at t = 30

Figure  9 
Controlling the fractional-order financial chaotic system (17) 

to its equilibrium point 3
1 1= , ,c b abc ac c b abcE

c c c c
 − − + − −

−  
 

. 
The controller is activated at t = 30
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Then, the simulation results of controlling the frac-
tional-order financial chaotic system (17) to its equi-
librium points

2
1 1= , ,c b abc ac c b abcE

c c c c
 − − + − −

−  
 

 

and 3
1 1= , ,c b abc ac c b abcE

c c c c
 − − + − −

−  
 

 

are presented in Figures 8 and 9, respectively.
It should be stressed that the proposed control meth-
od can be used to control a very large scale of frac-
tional-order chaotic systems. Finally, to confirm the 
effectiveness of the proposed control method, let us 
consider controlling a novel fractional-order finan-
cial chaotic system which can be described by [40] 

0 1 3 2 1 1 1 1

0 2 2 1 2 2 2

0 3 1 3 3 3 3

( ) = ( ) ( ( ) ) ( ) ( ( )) ( ) ( ),
( ) = 1 ( ) | ( ) | ( ( )) ( ) ( ),
( ) = ( ) ( ) ( ( )) ( ) ( ),

C
t

C
t

C
t

D x t x t x t a x t f x t d t u t
D x t bx t x t f x t d t u t
D x t x t cx t f x t d t u t

α

α

α

 + − + ∆ + +


− − +∆ + +
 − − + ∆ + +

(51)

When = = = 0i i if d u∆ , = 1, = 0.15a b , = 1c  and 
(0) = (1.5,2, 1.5)x − ,  system (51) shows chaotic be- 

havior, which is depicted in Figure 10.

In the simulation, the system uncertainties 
are chosen as: 1 1 3 2 2 2( ( )) = 0.3cos( ( )) 0.1 ( ), ( ( )) = 0.1 ( ) 0.2sin( ( )),f x t x t x t f x t x t x t∆ + ∆ + 

1 1 3 2 2 2( ( )) = 0.3cos( ( )) 0.1 ( ), ( ( )) = 0.1 ( ) 0.2sin( ( )),f x t x t x t f x t x t x t∆ + ∆ +  and 3 1 3( ( )) = 0.1 ( ) sin( ( ))f x t x t x t∆ +  

3 1 3( ( )) = 0.1 ( ) sin( ( ))f x t x t x t∆ + . Let the external disturbances be 

1 2 3( ) = 0.2sin( ), ( ) = 0.1cos( ), ( ) = 0.1sin( )d t t d t t d t t 1 2 3( ) = 0.2sin( ), ( ) = 0.1cos( ), ( ) = 0.1sin( )d t t d t t d t t . The 
controller design parameters are chosen as  

1 2 3 1 2 1 2 3= = = 1, = = 3 = 0.3, = = = 0.2k k k h h h m m m .

The initial conditions of the fractional-order adapta-
tion laws are chosen as

1 2 3 1 2 3
ˆ ˆ ˆˆ ˆ ˆ(0) = 0.1, = 0.2, = 0.3, (0) = 0.1, (0) = 0.2, (0) = 0.3.d d dγ γ γ   

1 2 3 1 2 3
ˆ ˆ ˆˆ ˆ ˆ(0) = 0.1, = 0.2, = 0.3, (0) = 0.1, (0) = 0.2, (0) = 0.3.d d dγ γ γ

The simulation results are presented in Figure 11, 
from which we can see that good control performance 
has also been obtained.

Figure 10
Chaotic behavior of fractional-order financial system (51) with = 0.97α  in (a) 1 2 3( ) ( ) ( )x t x t x t− −  plane, (b) 1 2( ) ( )x t x t−  plane, 
(c) 1 3( ) ( )x t x t−  plane and (d) 1 4( ) ( )x t x t−  plane

 

 

 

 

 

 

 

 

(a) (b)

(c) (d)
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Figure 11
Controlling the fractional-order financial chaotic system (51) to its equilibrium point 1 2

1= , ,c b abc ac c b abcE
c c c

− − + − − − 
 

 
in (a) ( )ix t , (b) ( )iu t , (c) ˆ ( )i tγ  and (d) ˆ ( )id t . The controller is activated at = 30t

  

 

Conclusions
The economic systems contain many complex factors 
which are important to governments. So controlling 
the fractional-order chaotic financial systems by using 
effective control method is an interesting yet challeng-
ing work. This paper mainly discusses this problem by 
means of adaptive control. The following three aspects 

are included: (1) the stability analysis for fractional-or-
der financial chaotic systems based on fractional-or-
der Lyapunov second method; (2) fractional-order ad-
aptation law and its application in the stability analysis 
for fractional-order nonlinear systems; (3) the usage 
of quadratic Lyapunov functions in stability analysis 

(a)

(c) (d)

(b)
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of fractional-order systems. The results of our results 
may enrich the control theorem of fractional-order 
systems, and the proposed control method can also be 
extended to other fractional-order systems.
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In this paper, robust adaptive control for uncertain fractional-order financial chaotic systems with bounded 
unknown external disturbances is studied. By utilizing the fractional-order extension of the classical Lyapun-
ov stability methods, an adaptive controller is presented for controlling the fractional-order financial chaotic 
system. Quadratic Lyapunov functions are employed in the stability analysis, and fractional-order adaptation 
laws are designed to update controller parameters online. The proposed controller can ensure that the system 
states converge to the origin asymptotically and all signals in the closed-loop system remain bounded. Finally, 
simulation results are presented to confirm our theoretical results.

Straipsnyje tiriamas stiprus adaptyvus nepastoviųjų frakcinės eilės chaotiškųjų sistemų su apribotais išori-
niais trikdžiais valdymas. Panaudojant klasikinių Liapunovo stabilumo metodų frakcinės eilės papildinį, pri-
statomas adaptyvus valdiklis frakcinės eilės finansinei chaotiškajai sistemai valdyti. Stabilumo analizėje nau-
dojamos kvadratinių Liapunovo lygčių funkcijos, o frakcinės eilės prisitaikymo dėsniai sukurti taip, kad juos 
taikant būtų atnaujinti valdiklio parametrai internete. Siūlomas valdiklis gali užtikrinti, kad sistemos būsenos 
konverguotų į kilmės šaltinį asimptomiškai ir visi signalai uždaro rato sistemoje išliktų apriboti. Autorių teori-
niai rezultatai patvirtinami simuliacijos rezultatais.

Summary / Santrauka




