
5Information Technology and Control 2017/1/46

Proper Augmented
Marked Graphs: Properties,
Characterizations and Applications

ITC 1/46
Journal of Information Technology
and Control
Vol. 46 / No. 1 / 2017
pp. 5-15
DOI 10.5755/j01.itc.46.1.13970
© Kaunas University of Technology

Proper Augmented Marked Graphs: Properties,
Characterizations and Applications

Received 2017/01/13 Accepted after revision 2016/02/17

 http://dx.doi.org/10.5755/j01.itc.46.1.13970

Corresponding author: kscheung@ouhk.edu.hk

King Sing Cheung
The Open University of Hong Kong, 30 Good Shepherd Street, Homantin, Kowloon, Hong Kong

Augmented marked graphs possess a special structure for modelling distributed systems with shared resourc-
es. Not only inheriting the desirable properties of augmented marked graphs such as on liveness and revers-
ibility, proper augmented marked graphs also exhibit other desirable properties, including boundedness and
conservativeness. However, proper augmented marked graphs have a rather complicated definition that inev-
itably undermines the usability in system modelling. In this paper, based on composition of live and bounded
marked graphs, new characterizations for proper augmented marked graphs are devised. Through these char-
acterizations, proper augmented marked graphs can be effectively used in modelling and analyzing conflicting
processes of a distributed system. Applications to distributed transaction processing with shared resources are
discussed.
KEYWORDS: Petri nets, marked graphs, augmented marked graphs, proper augmented marked graphs, distri-
buted systems, shared-resource systems, component based systems, distributed transaction processing, sys-
tems integration.

Introduction
A subclass of Petri nets, augmented marked graph
was first introduced by Chu and Xie for modelling
systems with shared resources [1]. In the literature,
thorough investigation on augmented marked graphs
was mainly conducted by Cheung [2-6]. Having a spe-
cial structure for representing shared resources, aug-

mented marked graphs possess desirable properties
pertaining to liveness and reversibility. According to
Chu and Xie, an augmented marked graph is live and
reversible if and only if every minimal siphon would
never become empty [1]. More siphon-based and cy-
cle-based characterizations were devised by Cheung,

Information Technology and Control 2017/1/466

where a cycle-inclusion property was used for char-
acterizing the liveness and reversibility [2, 3]. Trans-
formation-based characterizations for bounded and
conservative augmented marked graphs were intro-
duced [4, 6]. There are also studies on the composi-
tion of augmented marked graphs and its applications
to system integration [7-11].
Proper augmented marked graphs are a special type
of augmented marked graphs, found by Cheung [6,
12]. Not only inheriting all the properties of augment-
ed marked graphs, proper augmented marked graphs
also possess more properties, including bounded-
ness and conservativeness. However, like augment-
ed marked graphs, proper augmented marked graphs
have a rather complicated definition, thus adding
difficulties in system modelling and analysis. This
dilemma can be resolved by some characterizations
of proper augmented marked graphs. In this paper,
based on the composition of live and bounded marked
graphs, a number of characterizations are proposed.
With these characterizations, the processes or com-
ponents of a system can be readily modelled as
marked graphs, and then composed via their common
resource places. The integrated PT-net so obtained is
a proper augmented marked graph which represents
the integrated whole of the processes or components.
In a distributed system, it is often that two or more
concurrent processes compete for some shared re-
sources. Owing to the existence of these conflicting
processes, erroneous situations such as deadlock and
capacity overflow may occur. In this paper, it is pro-
posed to model the conflicting processes as marked
graphs, and then, to compose them as a proper aug-
mented graph which represents the integrated whole
of the processes for analysis.
The rest of this paper is structured as follows. Sec-
tion 2 states the definitions and properties of proper
augmented marked graphs. New characterizations
are proposed in Section 3. Section 4 then shows the
modelling and analysis of conflicting processes using
proper augmented marked graphs and their proper-
ties and characterizations. Section 5 describes the
application to the analysis of distributed transaction
processing systems with common shared resources,
and illustrates with examples. Section 6 briefly con-
cludes this paper. It is noted that readers are assumed
to have basic knowledge on Petri nets [13-15].

Proper augmented marked
graphs and their properties
Proper augmented marked graphs are a special type of
augmented marked graphs [6, 12]. The definitions and
known properties are summarized below.
Definition 1. An augmented marked graph (N, M0; R)
is a PT-net (N, M0) with a specific subset of places R
(called resource places), satisfying the following con-
ditions: (a) Every place in R is marked by M0. (b) The
PT-net (N‘, M0) obtained from (N, M0; R) by removing
the places in R and their associated arcs is a marked
graph. (c) For each r∈ R, there exist kr > 1 pairs of tran-
sitions Dr = { 〈ts1, th1〉, 〈ts2, th2〉, …, 〈tskr, thkr〉 } such that r• =
{ ts1, ts2, ..., tskr } ⊆ T and •r = { th1, th2, ..., thkr } ⊆ T and that,
for each 〈tsi, thi〉 ∈Dr, there exists in N‘ an elementary
path ρri connecting tsi to thi. (d) In (N‘, M0‘), every cycle
is marked and no ρri is marked.
Definition 2. Let (N, M0; R) be an augmented marked
graph to be transformed into a PT-net (N‘, M0‘) as fol-
lows. For each place r ∈ R, where Dr = { 〈ts1, th1〉, 〈ts2, th2〉,
…, 〈tskr, thkr〉 }, r is replaced by a set of places Q = { q1, q2,
…, qkr }, such that M0‘[qi] = M0[r], qi

• = { tsi } and •qi = { thi
}. (N‘, M0‘) is called the R-transform of (N, M0; R).
Definition 3. Let (N, M0; R) be an augmented marked
graph, and (N‘, M0‘) be the R-transform of (N, M0; R).
(N, M0; R) is a proper augmented marked graph if and
only if every place in (N‘, M0‘) belongs to a cycle.

Figure 1
A proper augmented marked graph

t3

r2 t4

p5

t5

p6

r3

t8

t9

p9

t10

p10

p2 p12

p4

t1

t2

p3

p1

p8

t7

p7 p11 r1

t6

7Information Technology and Control 2017/1/46

Property 1. A proper augmented marked graph (N, M0;
R) is live and reversible if and only if every R-siphon
would never become empty [6, 12]. (Note : A R-siphon is
a minimal siphon which contains at least one place in R.)
Property 2. A proper augmented marked graph is
bounded and conservative [6, 12].
Figure 1 shows a proper augmented marked graph (N,
M0; R), where R = { r1, r2, r3 }. (N, M0; R) is bounded and
conservative. However, it is neither live nor revers-
ible since there exists a R-siphon { r2, r3, p6, p10 }, which
would become empty on firing 〈 t1, t2, t3, t8 〉.

Characterizations for proper
augmented marked graphs
Based on the composition of live and bounded marked
graphs, in the following, a number of new characteri-
zations for proper augmented marked graphs are pro-
posed.
Definition 4. Let (N1, M10), (N2, M20), …, (Nn, Mn0) be
PT-nets. Suppose Q = { p1, p2, …, pk } is a set of places
that are common to the PT-nets, where p1, p2, …, pk are
marked. By fusing p1, p2, …, pk into one single marked
place q, the resulting net (N, M0) is called the integrat-
ed PT-net obtained by composing (N1, M10), (N2, M20),
…, (Nn, Mn0) via the set of common places Q.
Proposition 1. Let (N, M0; R) be a proper augmented
marked graph, and (N’, M0’) be the R-transform of (N,
M0; R). (N’, M0’) is structurally the composite PT-net of
a set of disconnected, live and bounded marked graphs.
Proof. Consider the transformation of (N, M0; R) into
(N’, M0’), as described in Definition 2. Let R = { r1, r2, …,
rn }. Each ri ∈ R is replaced by a set of marked places
Qi, for i = 1, 2, …, n. For any place p in (N’, M0’), | •p | =
| p• | = 1. Let g be a cycle in (N’, M0’). There are two possi-
ble cases for g. In case g contains any place in Q1 ∪ Q2 ∪
… ∪ Qn, g is marked. In case g does not contain any place
in Q1 ∪ Q2 ∪ … ∪ Qn, g also exists in (N, M0; R). According
to Cheung, every cycle in an augmented marked graph
is marked [1, 2, 6]. Hence, g is also marked. Then, for
(N’, M0’), every place belongs to a cycle and every cy-
cle is marked, thus fulfilling the conditions of live and
bounded marked graphs. (N’, M0’) is structurally a live
and bounded marked graph or a composite of a set of
live and bounded marked graphs.
Figure 2 shows three PT-nets, (N1, M10), (N2, M20) and

(N3, M30). Suppose they have some common places,
Q1 = { p11, p21, p31 }, Q2 = { p12, p22 } and Q3 = { p13, q32 }. Fig-
ure 3 shows the integrated PT-net (N, M0) obtained by
composing (N1, M10), (N2, M20) and (N3, M30) via Q1, Q2
and Q3, where q1, q2 and q3 are the fused common plac-
es, respectively.
Proposition 2. A proper augmented marked graph (N,
M0; R) is the integrated PT-net obtained after compos-
ing a set of live and bounded marked graphs via their
common places, where R is the set of fused places.
Proof. It follows from Proposition 1. For any place p

Figure 2
Three PT-nets with common places

t34

t32

t24

p24

t22

p22

t14

p15

t13

p11

t12

p14

t11

p12

p23

t21

t25

p13

p21 t23

p34 p31

p33

t31

t35

p35

p32 t33

p25

(N3, M30)

(N1, M10)

(N2, M20)

Information Technology and Control 2017/1/468

not involved in the fusing, | •p | = | p• | = 1. For any place r
involved in the fusing, | •r | = | r• | = k. R is the set of fused
places.
Proposition 2 offers a more concise definition for
proper augmented marked graphs. It can be effective-
ly used in characterizing the boundedness and con-
servativeness of proper augmented marked graphs, as
well as the property-preserving composition of prop-
er augmented marked graphs.
Lemma 1. Let N = 〈 P, T, F 〉 be a PT-net, N’ = 〈 P’, T’,
F’ 〉 be the PT-net obtained from N after fusing a set of
places Q = { q1, q2, ..., qn } ⊆ P into one single place r ∈ P’.
If there exists a place invariant a of N such that a[q1]
= a[q2] = ... = a[qn] = k ≥ 0, then there also exists a place
invariant a’ of N’ such that a’[r] = k and a’[s] = a[s] for
any s ∈ P’ \ { r } = P \ Q.
Proof. Since N’ is obtained from N by fusing Q = { q1, q2,
..., qn } into r, we have P’ = (P \ Q) ∪ { r }. Let V be the in-
cidence matrix of N. Then, the incidence matrix V’ of N’
satisfies that V’[r] =Σi=1,2,...,n V[qi] and V’[s] = V[s] for any
s ∈ P’ \ { r } = P \ Q. Since a is a place invariant of N, aV
= 0. Let a’ be a place vector of N’ such that a’[r] = a[q1]
= a[q2] = ... = a[qn] = k and a’[s] = a[s] for every s ∈ P’ \ {
r } = P \ Q. Then, a’V’ = a’[r]V’[r] + Σp∈(P’\{r}) a’[p]V’[p] =
Σi=1,2,...,n a[qi]V[qi] + Σp∈(P\Q) a[p]V[p] = aV = 0. Hence, a’ is
a place invariant of N’.
Proposition 3. A proper augmented marked graph is
bounded and conservative.
Proof. According to Proposition 2, a proper augmen-

Figure 3
The integrated PT-net obtained by composing the
PT-nets in Figure 2 via their common places

t23

t34

t32

t24

p24

t22

t14

p15

t13

q1

t12

p14

t11

q2

p23

t25

p25

q3 p34

p33

t31

t35

p35

t33

t21

ted marked graph (N, M0; R) is an integrated PT-net
obtained after composing a set of live and bounded
marked graphs { (N1, M10), (N2, M20), …, (N, Mk0) } by fus-
ing some marked places. Let (N’, M0’) be the composite
PT-net of (N1, M10), (N2, M20), …, (N, Mk0). Since each (Ni,
Mi0) is bounded, there exists a place invariant a’ in (N’,
M0’) such that a’ = k > 0. According to Lemma 1, there
also exists a place invariant a in (N, M0; R) such that a
= k > 0. Hence, (N, M0; R) is bounded and conservative.
Proposition 4. The integrated PT-net obtained by
composing a set of live and bounded marked graphs via
their common places is a proper augmented marked

Figure 4
A set of live and bounded marked graphs

r12

t3

t4

p5

t5

p6

r33

t8

t9

p9

t10

p10

p2

p12

p4

t1

t2

p3

p1

p8

t7

p7 p11

r11

t6

r21

r32

r13

(N1, M10)

(N2, M20)

(N3, M30)

9Information Technology and Control 2017/1/46

graph (N, M0; R), where R is the set of fused places.
Proof. It directly follows from Propositions 2 and 3.
Figure 4 shows a set of live and bounded marked
graphs { (N1, M10), (N2, M20), (N3, M30) }. They are com-
posed by fusing r11 and r21 into one single place r1, r12
and r32 into r2, and r13 and r33 into r3. The resulting PT-
net is a proper augmented marked graph (N, M0; R),
where R = { r1, r2, r3 }, as shown in Figure 1.

Modelling and analysis
of conflicting processes
This section discusses how proper augmented
marked graphs can be effectively used in the model-
ling and analysis of conflicting processes.
Typically in a distributed system, a number of con-
current processes compete for some shared resour-
ces. Erroneous situations occur when two or more
processes are each waiting for the other to finish and
neither ever does. The processes will continue to wait
endlessly, resulting into deadlocks. There are also
erroneous situations where resources exceed their
capacity limits, thus causing capacity overflow. These
processes are called conflicting processes.
In system integration, especially for distributed
systems with concurrent processes competing for
shared resources, one difficult challenge is to identify
any erroneous situations such as deadlock and capac-
ity overflow. This can be approached by using proper
augmented marked graphs and their properties and
characterizations. Consider a set of conflicting pro-
cesses, competing for shared resources R = { r1, r2, ...,
rk }. Steps for modelling and analysis are outlined be-
low.
Step 1. Model each process as a marked graph (Ni,
Mi0), where any shared resource to be used is repre-
sented as a marked place called resource place. For a
total of n processes, we have a set of marked graphs
{ (N1, M10), (N2, M20), ..., (Nn, Mn0) }.

Step 2. Check if each (Ni, Mi0) is live and bounded. (Ni,
Mi0) is live and bounded if and only if every place in
belongs to a cycle and every cycle is marked [16].
Step 3. Suppose (N1, M10), (N2, M20), ..., (Nn, Mn0) are
live and bounded. Compose them via their common

resource places. According to Proposition 2, the in-
tegrated PT-net is a proper augmented marked graph
(N, M0; R), where R = { r1, r2, ...,rk } denotes the shared
resources.

Step 4. Analyze the properties of (N, M0; R), which
represents an integration of the conflicting process-
es. According to Property 2, (N, M0; R) is bounded and
conservative. Based on Property 1, (N, M0; R) is live
and reversible if and only if every R-siphon would nev-
er become empty.
Suppose there is a distributed system with shared
resources r1, r2 and r3, where r1 is shared by process-
es C1 and C2, and r2 and r3 are shared by process-
es C1 and C3. As shown in Figure 4, C1, C2 and C3 are
modelled as live and bounded marked graphs (N1,
M10), (N2, M20) and (N3, M30), respectively. Referring
to the same resource, r11 in (N1, M10) and r12 in (N2,
M20) are fused as one single place r1. Likewise, r12 in
(N1, M10) and r32 in (N3, M30) are fused as r2, and r13 in
(N1, M10) and r33 in (N3, M30) are fused as r3. Accord-
ing to Proposition 4, the integrated PT-net is a prop-
er augmented marked graph (N, M0; R), where R =
{ r1, r2, r3 }, as shown in Figure 1.

Application to distributed
transaction processing
In a distributed transaction processing system,
there involves many concurrent processes which
compete for some shared resources such as com-
mon data objects. Whenever a process needs to ac-
cess a common data object, it would attempt to lock
the data object for exclusive usages, either read or
update. The data object is unlocked after comple-
tion of the read or update transactions. While the
data object is being locked, accesses from other pro-
cesses are prohibited. These processes have to wait
until the data object is unlocked. Deadlocks may oc-
cur, where two or more processes are each waiting
for the other to finish the read or update operations
of common data objects, and thus neither ever does.
It is always important in system design to identify
any possible deadlock situations. In system termi-
nology, liveness is the property where deadlock situ-

Information Technology and Control 2017/1/4610

ations would never occur. Hence, it is one of the de-
sign objectives to verify if a system is live, that is, free
from deadlock situations. Proper augmented marked
graphs can be effectively applied to solve this problem
by following the steps described in Section 4.
Example 1. Consider a typical distributed transac-
tion processing system which involves a number
of concurrent processes, accessing some common
data objects. Among other processes, there are 3
concurrent processes each needs to access 2 common
data objects (namely, O1 and O2) in processing some
transactions. A functional description of the proces-
ses is as follows.
Process 1. At its initial state, the process intends to
access O1. Once O1 is available, it is locked to prevent
accesses from other processes. The process enters to

a state, intending to access O2. Once O2 is available,
it is locked by the process too. Update transactions
on both O1 and O2 are then processed. After finishing
these update transactions, the process releases O2.
There are some further update transactions on O1, af-
ter which O1 is released.
Process 2. At its initial state, the process intends to
access O2. Once O2 is available, it is locked to prevent
accesses from other processes. The process enters to
a state, intending to access O1. Once O1 is available, it
is locked by the process too. Update transactions on
both O1 and O2 are then processed. After finishing these
update transactions, the process releases O1. There are
some further update transactions on O2, after which O2
is released.
Process 3. At its initial state, the process intends to

Figure 5
Modelling

process 1 as a
marked graph

(N1, M10)

List of places

p11 process 1 is at initial state
p12 process 1 holds O1 and waits for O2
p13 process 1 executes transactions with O1 and O2
p14 process 1 executes transactions with O1
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1
t12 process 1 requests O2
t13 process 1 releases O2
t14 process 1 releases O1

p12

t12 t11

t13

r11 p11 r12 p13

p14

p14

List of places

p11 process 1 is at initial state
p12 process 1 holds O1 and waits for O2
p13 process 1 executes transactions with O1 and O2
p14 process 1 executes transactions with O1
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1
t12 process 1 requests O2
t13 process 1 releases O2
t14 process 1 releases O1

p12

t12 t11

t13

r11 p11 r12 p13

p14

p14

List of places

p11 process 1 is at initial state
p12 process 1 holds O1 and waits for O2
p13 process 1 executes transactions with O1 and O2
p14 process 1 executes transactions with O1
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1
t12 process 1 requests O2
t13 process 1 releases O2
t14 process 1 releases O1

p12

t12 t11

t13

r11 p11 r12 p13

p14

p14

Figure 6
Modelling

process 2 as a
marked graph

(N2, M20)

List of places

p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
p24 process 2 executes transactions with O2
r21 O1 is available
r22 O2 is available

List of transitions

t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1
t24 process 2 releases O2

p22

t22 t21

p23

t23

r21 r22 p21

p24

t24

List of places

p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
p24 process 2 executes transactions with O2
r21 O1 is available
r22 O2 is available

List of transitions

t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1
t24 process 2 releases O2

p22

t22 t21

p23

t23

r21 r22 p21

p24

t24

List of places

p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
p24 process 2 executes transactions with O2
r21 O1 is available
r22 O2 is available

List of transitions

t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1
t24 process 2 releases O2

p22

t22 t21

p23

t23

r21 r22 p21

p24

t24

11Information Technology and Control 2017/1/46

Figure 7
Modelling
process 3 as a
marked graph
(N3, M30)

List of places

p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
r31 O1 is available
r32 O2 is available

List of transitions

t31 process 3 requests O1 and O2
t32 process 3 releases O1 and O2

t31

p32 r32 r31 p31

t32

List of places

p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
r31 O1 is available
r32 O2 is available

List of transitions

t31 process 3 requests O1 and O2
t32 process 3 releases O1 and O2

t31

p32 r32 r31 p31

t32

List of places

p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
r31 O1 is available
r32 O2 is available

List of transitions

t31 process 3 requests O1 and O2
t32 process 3 releases O1 and O2

t31

p32 r32 r31 p31

t32

List of places

p11 process 1 is at initial state
p12 process 1 holds O1 and waits for O2
p13 process 1 executes transactions with O1 and O2
p14 process 1 executes transactions with O1
p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
p24 process 2 executes transactions with O2
p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1
t12 process 1 requests O2
t13 process 1 releases O2
t14 process 1 releases O1
t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1
t24 process 2 releases O2
t31 process 3 requests O1 and O2
t32 process 3 releases O1 and O2

p12

t12 t11

t13

r2 p11

p14

p22

t22 t21

p23

t23

r1 p21

p24

t24

p32 p31

t32

p13

t14

t31

List of places

p11 process 1 is at initial state
p12 process 1 holds O1 and waits for O2
p13 process 1 executes transactions with O1 and O2
p14 process 1 executes transactions with O1
p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
p24 process 2 executes transactions with O2
p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1
t12 process 1 requests O2
t13 process 1 releases O2
t14 process 1 releases O1
t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1
t24 process 2 releases O2
t31 process 3 requests O1 and O2
t32 process 3 releases O1 and O2

p12

t12 t11

t13

r2 p11

p14

p22

t22 t21

p23

t23

r1 p21

p24

t24

p32 p31

t32

p13

t14

t31

List of places

p11 process 1 is at initial state
p12 process 1 holds O1 and waits for O2
p13 process 1 executes transactions with O1 and O2
p14 process 1 executes transactions with O1
p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
p24 process 2 executes transactions with O2
p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1
t12 process 1 requests O2
t13 process 1 releases O2
t14 process 1 releases O1
t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1
t24 process 2 releases O2
t31 process 3 requests O1 and O2
t32 process 3 releases O1 and O2

p12

t12 t11

t13

r2 p11

p14

p22

t22 t21

p23

t23

r1 p21

p24

t24

p32 p31

t32

p13

t14

t31

Figure 8
The proper
augmented
marked graph (N,
M0; R) obtained
after composing
(N1, M10), (N2,
M20) and (N3,
M30) in Figures 5,
6 and 7

access both O1 and O2. Once both O1 and O2 are avail-
able, they are locked to prevent accesses from other
processes. Update transactions on both O1 and O2 are
then processed. After finishing the update transac-
tions, the process releases O1 and O2 simultaneously.
Processes 1, 2 and 3 are represented by the marked
graphs (N1, M10), (N2, M20) and (N3, M30), as shown in Figu-
res 5, 6 and 7 respectively. They are live and bounded.

The next step is to compose (N1, M10), (N2, M20) and
(N3, M30) via Q1 and Q2. According to Proposition 4, the
integrated PT-net so obtained is a proper augmented
marked graph.
Figure 8 shows the proper augmented marked graph
(N, M0; R), where R = {r1, r2}, after fusing r11, r21 and r31
as one single place r1, and r21, r22 and r23 as r2. (N, M0;
R) represents the integrated whole of the conflicting

Information Technology and Control 2017/1/4612

processes. As (N, M0; R) is a proper augmented mar-
ked graph, according to Property 2, it is bounded and
conservative. Besides, there exists a R-siphon { r1, r2,
p13, p14, p23, p24, p32 } which would become empty after
firing 〈 t11, t21 〉. According to Property 1, (N, M0; R) is
neither live nor reversible. Deadlock will occur after
firing 〈 t11, t21 〉. From this, it is concluded that deadlock
would occur among the conflicting processes.
It is also shown that, even though the processes are
individually live and reversible, the integrated whole
may not be live nor reversible. However, in some cas-
es, the integrated whole can be live and reversible, as
illustrated in the following example.
Example 2. This example is a revised version of Ex-
ample 1. Processes 1, 2 and 3 are revised as follows.
Revised Process 1. At its initial state, the process in-
tends to access both O1 and O2. Once both O1 and O2 are
available, they are locked to prevent accesses from oth-
er processes. Update transactions on both O1 and O2 are

Figure 9
Modelling the

revised process
1 as a marked

graph (N1’, M10’)

Figure 10
Modelling the

revised process
2 as a marked

graph (N2’, M20’)

then processed. After finishing these update transac-
tions, the process releases O2. There are some further
update transaction on O1, after with O1 is released.
Revised Process 2. At its initial state, the process in-
tends to access O2. Once O2 is available, it is locked to
prevent accesses from other processes. The process
enters to a state, intending to access O1. Once O1 is
available, it is locked by the process too. Update trans-
actions on both O1 and O2 are then processed. After
finishing these update transactions, the process re-
leases O1 and O2 simultaneously.
Revised Process 3. At its initial state, the process
intends to access both O1 and O2. Once both O1 and
O2 are available, they are locked to prevent accesses
from other processes. Update transactions on both O1
and O2 are then processed. After finishing these up-
date transactions, the process releases O1. There are
some further update transactions on O2, after which
O2 is released.

List of places

p11 process 1 is at initial state
p12 process 1 executes transactions with O1 and O2
p13 process 1 executes transaction with O1
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1 and O2
t12 process 1 releases O2
t13 process 1 releases O1

p11

p13

p12 r11 r12

t11

t12 t13

List of places

p11 process 1 is at initial state
p12 process 1 executes transactions with O1 and O2
p13 process 1 executes transaction with O1
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1 and O2
t12 process 1 releases O2
t13 process 1 releases O1

p11

p13

p12 r11 r12

t11

t12 t13

List of places

p11 process 1 is at initial state
p12 process 1 executes transactions with O1 and O2
p13 process 1 executes transaction with O1
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1 and O2
t12 process 1 releases O2
t13 process 1 releases O1

p11

p13

p12 r11 r12

t11

t12 t13

List of places

p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
r21 O1 is available
r22 O2 is available

List of transitions

t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1 and O2

p22

t22 t21

p23

t23

r21 r22 p21

List of places

p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
r21 O1 is available
r22 O2 is available

List of transitions

t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1 and O2

p22

t22 t21

p23

t23

r21 r22 p21

List of places

p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
r21 O1 is available
r22 O2 is available

List of transitions

t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1 and O2

p22

t22 t21

p23

t23

r21 r22 p21

13Information Technology and Control 2017/1/46

Figure 11
Modelling the
revised process
3 as a marked
graph (N3’, M30’)

List of places

p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
p33 process 3 executes transactions with O1
r31 O1 is available
r32 O2 is available

List of transitions

t31 process 3 requests O1 and O2
t32 process 3 releases O2
t33 process 3 releases O1

t31

p32 r32 r31 p31

t32

p33

t33

List of places

p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
p33 process 3 executes transactions with O1
r31 O1 is available
r32 O2 is available

List of transitions

t31 process 3 requests O1 and O2
t32 process 3 releases O2
t33 process 3 releases O1

t31

p32 r32 r31 p31

t32

p33

t33

List of places

p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
p33 process 3 executes transactions with O1
r31 O1 is available
r32 O2 is available

List of transitions

t31 process 3 requests O1 and O2
t32 process 3 releases O2
t33 process 3 releases O1

t31

p32 r32 r31 p31

t32

p33

t33

The revised processes 1, 2 and 3 are represented by the
marked graphs (N1‘, M10‘), (N2‘, M20‘) and (N3‘, M30‘), as
shown in Figures 9, 10 and 11 respectively. They are live
and bounded. (N1‘, M10‘), (N2‘, M20‘) and (N3‘, M30) are now
composed via Q1 and Q2. Figure 12 shows the proper au-
gmented marked graph (N‘, M0‘; R‘) where R‘ = {r1, r2},
after fusing r11, r21 and r31 as one single place r1, and r21, r22
and r23 as r2.

Figure 12
The proper
augmented
marked graph
(N’, M0’; R’)
obtained after
composing (N1’,
M10’), (N2’, M20’)
and (N3’, M30’)
in Figures 9, 10
and 11

(N’, M0’; R’) represents the integrated whole of the
conflicting processes. As (N’, M0’; R’) is a proper aug-
mented marked graph, according to Property 2, it is
bounded and conservative. Besides, every R-siphon
in (N’, M0’; R’) would never become empty. According
to Property 1, (N’, M0’; R’) is live and reversible. From
this, it is concluded that the conflicting processes are
free from deadlock and capacity overflow.

List of places

p11 process 1 is at initial state
p12 process 1 executes transactions with O1 and O2
p13 process 1 executes transaction with O1
p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
p33 process 3 executes transactions with O1
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1 and O2
t12 process 1 releases O2
t13 process 1 releases O1
t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1 and O2
t31 process 3 requests O1 and O2
t32 process 3 releases O2
t33 process 3 releases O1

p33

t11

r2 p11

p13

p22

t22 t21

p23

t32

r1 p21 p32 p31

t23

p12

t13 t33

t31

t12

List of places

p11 process 1 is at initial state
p12 process 1 executes transactions with O1 and O2
p13 process 1 executes transaction with O1
p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
p33 process 3 executes transactions with O1
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1 and O2
t12 process 1 releases O2
t13 process 1 releases O1
t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1 and O2
t31 process 3 requests O1 and O2
t32 process 3 releases O2
t33 process 3 releases O1

p33

t11

r2 p11

p13

p22

t22 t21

p23

t32

r1 p21 p32 p31

t23

p12

t13 t33

t31

t12

List of places

p11 process 1 is at initial state
p12 process 1 executes transactions with O1 and O2
p13 process 1 executes transaction with O1
p21 process 2 is at initial state
p22 process 2 holds O2 and waits for O1
p23 process 2 executes transactions with O1 and O2
p31 process 3 is at initial state
p32 process 3 executes transactions with O1 and O2
p33 process 3 executes transactions with O1
r11 O1 is available
r12 O2 is available

List of transitions

t11 process 1 requests O1 and O2
t12 process 1 releases O2
t13 process 1 releases O1
t21 process 2 requests O2
t22 process 2 requests O1
t23 process 2 releases O1 and O2
t31 process 3 requests O1 and O2
t32 process 3 releases O2
t33 process 3 releases O1

p33

t11

r2 p11

p13

p22

t22 t21

p23

t32

r1 p21 p32 p31

t23

p12

t13 t33

t31

t12

Information Technology and Control 2017/1/4614

Conclusions
Augmented marked graphs and proper augmented
marked graphs possess a special structure as well
as many desirable properties pertaining to liveness,
boundedness, reversibility and conservativeness.
They are useful for modelling and analyzing distrib-
uted systems with shared resources.
Based on composition of live and bounded marked
graphs, new characterizations for proper augmented
marked graphs are proposed. Conflicting processes
of a distributed system can be first modelled as live
and bounded marked graphs, and then composed via
common resource places to form a proper augmented
marked graph which represents the integrated whole.
As proper augmented marked graphs are bounded
and conservative, it is assured that capacity overflow
would never occur. By checking R-siphons, liveness
and reversibility can be effectively analyzed.
 As compared to other well-known subclasses of Pe-
tri nets such as state machines, marked graphs, free
choice nets and asymmetric choice nets, augmented
marked graphs or proper augmented marked graphs
are not widely used in system modelling and analysis

despite possessing many desirable properties per-
taining to liveness, boundedness, conservativeness
and reversibility. This is because of their complicat-
ed definition which is rather difficult to comprehend,
thus undermining the usability. There is also a lack
of simple but formal methodology for modelling, in-
tegrating or analyzing conflicting processes or com-
ponents using augmented marked graphs or proper
augmented marked graphs.
The problems can be resolved by characterizing prop-
er augmented marked graphs by the composition of
live and bounded marked graphs. With the charac-
terizations, conflicting processes of a distributed sys-
tem can be readily modelled, composed and analyzed.
This paper provides a theoretical foundation of these
characterizations, and shows the modelling and anal-
ysis using typical examples of distributed transaction
processing.

Acknowledgments
The author would like to thank the anonymous re-
viewers for their helpful suggestions.

References
1. F. Chu, X. Xie. Deadlock Analysis of Petri Nets using

Siphons and Mathematical Programming. IEEE Trans-
actions on Robotics and Automation, 1997, 13(6), 793-
804. https://doi.org/10.1109/70.650158

2. K. S. Cheung. New Characterization for Live and Re-
versible Augmented Marked Graphs. Information
Processing Letters, 2004, 92(5), 239-243. https://doi.
org/10.1016/j.ipl.2004.05.018

3. K. S. Cheung, K. O. Chow. Cycle-Inclusion Property of
Augmented Marked Graphs. Information Processing
Letters, 2005, 94(6), 271-276. https://doi.org/10.1016/j.
ipl.2005.02.011

4. K. S. Cheung. Boundedness and Conservativeness of
Augmented Marked Graphs. IMA Journal of Mathe-
matical Control and Information, 2007, 24(2), 235-244.
https://doi.org/10.1093/imamci/dnl019

5. C. L. Chen, S. C. Chin, H. C. Yen. Reachability Analysis
of Augmented Marked Graphs via Integer Linear Pro-
gramming. Computer Journal, 2010, 53(6), 623-633.
https://doi.org/10.1093/comjnl/bxp003

6. K. S. Cheung. Augmented Marked Graphs. Springer,
2014.

7. H. J. Huang, L. Jiao, T. Y. Cheung. Property-Preserving
Composition of Augmented Marked Graphs that Share
Common Resources. IEEE Proceedings of the Interna-
tional Conference on Robotics and Automation, 2003,
1446-1451. https://doi.org/10.1109/robot.2003.1241795

8. K. S. Cheung. A Synthesis Method for Designing
Shared-Resource Systems. Computing and Informat-
ics, 2005, 24(6), 629-653.

9. K. S. Cheung. Modelling and Analysis of Manufacturing
Systems Using Augmented Marked Graphs. Informa-
tion Technology and Control, 2006, 35(1), 19-26.

10. K. S. Cheung. Composition of Augmented Marked
Graphs and Its Application to Component-Based Sys-
tem Design. Information Technology and Control, 2007,
36(3), 310-317.

11. K. S. Cheung. A Formal Method for Synthesizing Com-
ponents of Shared Resource Systems. International

15Information Technology and Control 2017/1/46

Journal of Computer Systems Science and Engineer-
ing, 2007, 22(6), 349-358.

12. K. S. Cheung. Component-Based System Integra-
tion using Proper Augmented Marked Graphs. In: X.
Zhang, H. Liu, Z. Chen, N. Wang (eds.), Intelligent Ro-
botics and Applications, Lecture Notes in Artificial
Intelligence, Springer, 2014, 8917, 498-509. https://doi.
org/10.1007/978-3-319-13966-1_49

13. W. Reisig. Petri Nets: An Introduction. Springer, 1985.
https://doi.org/10.1007/978-3-642-69968-9

14. T. Murata. Petri Nets: Properties, Analysis and Appli-
cations. Proceedings of IEEE, 1989, 77(4), 541-580.
https://doi.org/10.1109/5.24143

15. W. Reisig. Understanding Petri Nets. Springer, 2013.
https://doi.org/10.1007/978-3-642-33278-4

16. J. Desel, J. Esparza. Free Choice Petri Nets. Cam-
bridge University Press, 1995. https://doi.org/10.1017/
CBO9780511526558

Summary / Santrauka
Augmented marked graphs possess a special structure for modelling distributed systems with shared resourc-
es. Not only inheriting the desirable properties of augmented marked graphs such as on liveness and revers-
ibility, proper augmented marked graphs also exhibit other desirable properties, including boundedness and
conservativeness. However, proper augmented marked graphs have a rather complicated definition that inev-
itably undermines the usability in system modelling. In this paper, based on composition of live and bounded
marked graphs, new characterizations for proper augmented marked graphs are devised. Through these char-
acterizations, proper augmented marked graphs can be effectively used in modelling and analyzing conflicting
processes of a distributed system. Applications to distributed transaction processing with shared resources are
discussed.

Papildyti žymėtieji grafai turi specialią struktūrą paskirstytųjų sistemų su bendraisiais ištekliais kūrimui.
Be tokių pageidaujamų papildytų žymėtųjų grafų savybių, kaip gyvumas ir grįžtamumas, tinkamai papildyti
žymėtieji grafai taip pat turi kitas trokštamas savybes – tokias, kaip ribotumas ir konservatyvumas. Deja, tinka-
mai papildytųjų žymėtųjų grafų apibūdinimas sudėtingas, ir tai neišvengiamai kenkia jų panaudojimui sistemų
modeliavime. Šiame straipsnyje, pagrįstame gyvųjų ir ribotųjų grafų sudarymu, sukuriamos naujos charakter-
istikos tinkamai papildytiems žymėtiesiems grafams. Per tokį charakterizavimą, tinkamai papildyti žymėtieji
grafai gali būti efektyviai panaudoti paskirstytos sistemos modeliavime ir jos konfliktinių procesų analizėje.
Straipsnyje aptariamas ir paskirstytųjų transakcijų apdorojimo su bendraisiais ištekliais pritaikymas.

