
219Information Technology and Control 2017/2/46

An Adaptive Neural Network 
Control Scheme for Stabilizing 
Chaos to the Stable Fixed Point 

ITC 2/46
Journal of Information Technology  
and Control
Vol. 46 / No. 2 / 2017
pp. 219-227
DOI 10.5755/j01.itc.46.2.13962  
© Kaunas University of Technology

An Adaptive Neural Network Control Scheme for Stabilizing 
Chaos to the Stable Fixed Point 

Received  2016/01/12 Accepted after revision  2017/04/18

    http://dx.doi.org/10.5755/j01.itc.46.2.13962

Corresponding author: kursad1258@gmail.com

Kursad Gokce
Tübitak Marmara Research Center, Energy Institute, Automotive Center of Excellence, 41470, Izmit, Turkey,
e-mail: kursad1258@gmail.com
Yilmaz Uyaroglu
Sakarya University, Engineering Faculty, Department of Electrical & Electronics Engineering, 54187, Sakarya, 
Turkey, e-mail: uyaroglu@sakarya.edu.tr

A neural network control scheme with a novel adaptive learning rate is proposed to stabilize the chaotic tra-
jectory of the chaotic system to a stable fixed point. A new approach is proposed to determine the stability of 
the fixed points in which the eigenvalues of the Jacobian matrix of the chaotic system at different values of the 
chaoticity parameter are evaluated and a look-up table is created to find a suitable fixed point that has a nega-
tive Lyapunov exponent. During learning phase of the neural network, weight parameters are adjusted so that 
the chaotic trajectory converges to a stable fixed point and the maximum Lyapunov exponent of the controlled 
system becomes negative. The effectiveness of the proposed method is investigated through simulation studies 
on 2 dimensional Ikeda map, which is produced by a semiconductor laser system.
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Introduction
Today, the electronic systems built up from micro-
electronic circuits can exhibit chaotic behavior un-
der some circumstances. For example, a digital filter 
can produce chaos under a certain condition, and this 
may be useful in crypto systems [27]; or some chaotic 

systems can be used for secure communication appli-
cations [4]. However, if chaos is not controlled, it may 
result in system failure and malfunction.
Thus, controlling chaos via different control schemes 
has received great interest in recent years after it 
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was first introduced by Ott et al. [25]. In OGY–like 
methods [28, 17, 5, 7], a small perturbation is applied 
to some parameter of the system to keep the chaotic 
trajectory in the vicinity of the target periodic orbit, 
when the chaotic trajectory enters a small neighbor-
hood of the corresponding fixed point. However, it is 
not always an easy task to find a suitable control pa-
rameter in the system and a priori knowledge of the 
unstable periodic orbits is required to apply the con-
trol algorithm. Furthermore, these methods are high-
ly sensitive to noise [12]. 
Linear controllers have also been used for chaos con-
trol. A piecewise linear feedback control [6] or a state 
feedback control [13] have been realized to stabilize 
the chaotic Chua’s circuit. These types of controllers 
have a simple structure and can be easily applied in 
engineering problems; however, they are able to con-
trol the system for specific operating conditions.
The control problem of chaotic systems with uncer-
tainty and disturbance has been studied by research-
ers using different robust control techniques. In [1], 
a sliding mode controller has been designed to stabi-
lize the unstable periodic orbits of two-dimensional 
Hénon map with external disturbances. Sliding mode 
controllers have also been used to regulate and syn-
chronize the chaotic systems to their equilibrium 
state [15, 29, 16]. In [20], a fuzzy model based design 
has been developed for trajectory tracking control of 
chaotic systems. However, fuzzy models are generally 
intuitive and require well-tuned control parameters.
Backstepping is one of the most promising Lyapun-
ov based adaptive robust control techniques, which 
has been used for stabilization and tracking control 
of continuous time [31, 23, 24] and discrete time [21] 
chaotic systems as well as of nonlinear chaotic sys-
tems with bounded uncertainties and external dis-
turbances [2, 22]. Adaptive backstepping controllers 
have a good performance for stabilizing the uncertain 
dynamical systems but ignore the parameter estima-
tion errors in updating rules. To overcome these draw-
backs, a flexible modular design has been proposed in 
[30] so that the parameter identifier and the control-
ler modules have been independently designed.
Recently, neural network (NN) based control algo-
rithms have attracted great interest in control and 
synchronization of chaotic systems because of their 
ability to deal with uncertainty and noise. In [19], a 

NN based algorithm has been utilized to stabilize the 
chaotic motion in chaotic Hénon map to a desired 
target trajectory.  In [32], the chaotic motions of the 
Hénon and Logistic maps have been converted to a 
regular periodic motion by using a back propagation 
NN algorithm. In [10], a similar algorithm has been 
developed to control the chaotic trajectory of the Ike-
da system to the equilibrium point.
In the stability analysis of chaotic systems, the Lya-
punov exponent is an important quantitative indica-
tor of chaotic dynamics, which is used to measure the 
convergence or divergence of nearby trajectories [9]. 
In [11], universal learning networks have been used 
to generate and eliminate the chaotic phenomena by 
controlling the maximum Lyapunov exponent of the 
system. In [26], a time delayed feedback controller 
has been proposed to stabilize the unstable periodic 
orbits of chaotic system, where the maximum Lya-
punov exponent becomes negative.
In this paper, a back propagation NN algorithm with 
a novel adaptive learning rate [8] has been proposed 
to stabilize the chaotic trajectory of the discrete cha-
otic Ikeda system to the stable fixed point. First, the 
chaotic behavior of the Ikeda system depending on 
the choice of the chaoticity parameter has been in-
vestigated through bifurcation and the Lyapunov 
exponent analysis. Then, stability of the fixed points 
has been examined and a stability region for the sta-
ble fixed points with negative Lyapunov exponents 
has been defined. Based on the stability region, a look-
up table has been built to determine the target stable 
fixed point for a chosen chaoticity parameter. With 
the improved NN scheme, weight parameters are ad-
justed so that the chaotic trajectory of the controlled 
system converges to a target stable fixed point, where 
the maximum Lyapunov exponent is negative. Time 
series plots and the maximum Lyapunov exponent 
calculations show that the proposed control scheme 
has been successfully applied to the chaotic system 
for controlling the chaotic trajectory.

Discrete time chaotic system
In this paper, Ikeda map, which represents the dy-
namics of a laser pulse in an optical cavity, is studied 
as a two-dimensional chaotic system. The map equa-
tion is given in [14] as:



221Information Technology and Control 2017/2/46

 

2 

).1/(

)),sin()cos()((),()1(
)),sin()cos()((),()1(

22
kk yxkt

tytkxByxGky
tytkxBpyxFkx






-30 -20 -10 0 10 20 30

-20

-10

0

10

20

30

x(k)

y(
k)

 
Figure 1. The attractor of Ikeda map 
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Eq. (1) exhibits a strange attractor with parameters
1=p , 6=α , 4.0=k  and 9.0=B  as shown in Fig. 1 [3]. 

Figure 1 
The attractor of Ikeda map
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For a 2D map, ),( ** yx  is a fixed point if it satisfies
****** ),( ,),( yyxGxyxF == . Let ),( ** yx  be the 

fixed point, then, using Taylor expansions, one can 
obtain the Jacobian matrix as: 
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To understand the stability of a fixed point, one can 
check the eigenvalues of the Jacobian matrix given by 
Eq. (2). If the magnitude of each eigenvalue is small-
er than one, then the fixed point is attracting a stable 
point. If the magnitude of each eigenvalue is bigger 
than one, then the fixed point is repelling an unstable 
point. If at least one eigenvalue is smaller than one 
and at least one eigenvalue is bigger than one, then the 
fixed point is unstable saddle point.
In order to evaluate the chaotic behavior of a dyna- 

mical system, Lyapunov exponents are used to identi-
fy the separation or attraction of initially nearby tra-
jectories. Let M  be the matrix given by the product of 
Jacobians as:

 

2 

).1/(

)),sin()cos()((),()1(
)),sin()cos()((),()1(

22
kk yxkt

tytkxByxGky
tytkxBpyxFkx






-30 -20 -10 0 10 20 30

-20

-10

0

10

20

30

x(k)

y(
k)

 
Figure 1. The attractor of Ikeda map 

**,
       

       
),(

yyxxy
G

x
G

y
F

x
F

yxJ


































 

(2) 

 

.),(
1




N

i
ii yxJM (3) (3)

Then, Lyapunov exponents of two-dimensional map, 
1σ  and 2σ , are calculated by: 
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Figure 2. The variation of maximum Lyapunov exponent 
with respect to the chaoticity parameter 
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where 1λ  and 2λ  are the eigenvalues of M . It is 
well known that the maximum Lyapunov exponent, 

{ }21max ,max σσ=σ , is used to characterize the cha-
otic behavior of the system. If 0max >σ , the system 
behaves chaotically; otherwise, it is stable. 
The chaotic behavior of the Ikeda map given by Eq. (1) 
changes with respect to the chaoticity parameter B . 
Fig. 2 and Fig. 3 show the variation of the maximum 
Lyapunov exponents and the bifurcation diagram of 
the Ikeda map for the parameter B  in the range of 
( ]1,0 , respectively. 
As can be seen from Fig. 2 and Fig. 3, for 4.0>B , the 
maximum Lyapunov exponent is positive and period 

Figure 2 
The variation of maximum Lyapunov exponent with 
respect to the chaoticity parameter
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doubling occurs, which leads to chaotic behavior. In 
order to understand the stability of the fixed points, 
the magnitude of the eigenvalues of the Jacobian 
matrix given by Eq. (2) has been investigated. Fig. 4 
shows the variation of the maximum eigenvalues, 
which correspond to the fixed points, with respect to 
the chaoticity parameter B. 

Figure 3 
Bifurcation diagram
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pairs of fixed points, ),( ** yx , corresponding to the 
B  values greater than “0.4” fall into the instability re-

gion, which means that all fixed points for 4.0>B  are 
unstable. On the other hand, for 4.00 << B , all fixed 
points fall into the stability region. 
From Fig. 4, it is seen that *x  is monotonically de-
creasing in the interval (0.5, 0.91)and *y  is mono-
tonically increasing in the interval (–0.02, 0.27) with 
respect to B . Thus, in order to determine the target 
stable fixed point according to the chaoticity param-
eter B  in the stability region, the following linear in-
terpolations can be utilized as:
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where interp is interpolation function, x , y  are the 
fixed point vectors and B  is the chaoticity parameter 
vector in the range of )1 ,0( . sB  can be chosen free-
ly in the stability region, i.e. )4.0 ,0( . Considering to-
gether with Fig. 2, the maximum Lyapunov exponent 
of any fixed point in the stability region, as shown in 
Fig. 4, is negative. So, in this study, the aim is to keep 
the chaotic trajectory of the Ikeda system in the vicin-
ity of the target stable fixed point that can be deter-
mined by Eq. (5).  

Alternative control scheme
Although there have been many studies in the lit-
erature on the stabilization of the chaotic systems, 
it is still a difficult task to determine a suitable fixed 
point where all the Lyapunov exponents are negative.  
Among these studies, a time-delayed feedback con-
troller developed in [26] is the most effective one. In 
it, the chaotic system is perturbed by small changes 
in control parameters in such a way that the largest 
Lyapunov exponent related to an unstable periodic 
orbit (UPO) becomes negative as shown in Fig. 5, so 
the UPO becomes stable and the chaotic trajectory 
converges to this stable fixed point.
As can be seen from Fig. 5, the largest Lyapunov ex-
ponent evaluated for different values of the control 
parameters, R and K , is negative. Thus, stabiliza-
tion can be achieved for all values of .R Although this 

Figure 4 
The dependence of the fixed points on the chaoticity 
parameter 
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 It is clear that, for 4.0>B , the magnitude of the max-
imum eigenvalues is bigger than one. Therefore, the 
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method is very useful and simple for transforming the 
unstable fixed points to stable ones, it is not always 
possible to find an appropriate control parameter or 
the system can go unstable if the perturbation time is 
long.

Figure 5 
The largest Lyapunov exponent for different control 
parameters
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In this paper, in order to eliminate these drawbacks 
of the existing control methods, the eigenvalues of the 
Jacobian matrix of the chaotic system have been eval-
uated for different values of the chaoticity parameter, 
which leads to chaotic behaviour. The fixed points are 
stable for the chaoticity parameter that makes the 
maximum eigenvalue of the system smaller than “1”. 
Based on the value of the maximum eigenvalues, a set 
of suitable fixed points has been created and the suit-
able one is determined by using a lookup table. Then, 
an adaptive neural network control scheme has been 
applied to chaotic system to force the chaotic trajec-
tory to converge to the stable fixed point. Hence, the 
proposed method is not sensitive to variation in cha-
otic dynamics.

Proposed control scheme
The proposed control scheme is a back propagation 
neural network with a novel adaptive learning rate 
consisting of three layers of neurons (input layer, hid-
den layer and output layer), as shown in Fig. 6 [18].

Here, (x  ,,.....2,1     , ) ,(x Nkykk =  are the input patterns 
generated iteratively from Eq. (1); N  is the finite 
number of input patterns; )  ,( ii yx  are the output pat-
terns that should have to be approximated to the fixed 
points, ) ,( ** yx . The generalized model of the pro-
posed control system is shown in Fig. 7. 
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In the adaptive neural network (ANN) block in Fig. 
7, the error is back-propagated to update the weights, 
and the outputs (perturbed states) are converged to 
the stable fixed point. The learning phase of the ANN 
has two steps. In the first step, the output of the net-
work is calculated based on the structure of the net-
work using previous weights and bias values from the 
first layer to the forward. The following calculations 
are done in the first step.
The input to the k th neuron of the hidden layer is de-
noted by KI  and is given by:
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where
 1Kw  and 2Kw  are the weights between the k th neu-
ron of the hidden layer. Kb  is the bias value of the k
th neuron in the hidden layer. By applying the tangent 
sigmoid activation function F  on KI , the output pKO  pK 
is obtained as: 
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The network outputs are given by:
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In the second step, the weights and bias values 
are updated adaptively based on the error values, 

ix xxE i −= * , iy yyE i −= * , from the last layer to the 
back. The adaptation rules for the weight and bias val-
ues between the output and hidden layers are calcu-
lated by the following equations:

 

5 

  

.
1

22 





  



K

k
KpKi bwOFy

 
(10)

 

  ....2,1 ),1(
,211

222

111

Nkkwww
...N,), k(kwww

KKoldKnew

KKoldKnew




 
(11)

 

).1(
),1(

222

111




kbbb
kbbb

oldnew

oldnew

   
(12)

 

,)1(

,)1(

22

11

pKKyK

pKKxK

Okw

Okw









                         
(13)

 

,)1(
,)1(

22

11

Ky

Kx

kb
kb







 
(14)

 

),1(

),1(

2

1

iiyK

iixK

yyE

xxE

i

i








 
(15)

 

.

N i ,EE ,            

E E , 1 , 

 E E , 1  ,

ty,xy x,

,x,xyx,

,x,x,

,

ii

i11i

i11i





























ii

ii

yy

yyyx

yx

 
(16) 

,...2,1 ),1(
,211

222

111

Nkkwww
...N,), k(kwΔww

KoldKnewK

KoldKnewK




(17) 

.21),1( .....N,kkbbb KKoldKnew   (18) 

,)1( 11 iKzK xkw   (19) 
,)1( 12 iKzK ykw   (20) 

,)1( 1KzK kb   (21) 

),1( )(
c(k), )( 22111

pKpK

KoldKKoldKK

OOkc
ww



 
 (22) 

.

N ifor   EE  ,

 EE EE  ,

EE EE  ,

tx z

yxyxz

yxyx

i

ii1i1i

ii1i1i






















iy

z

z

E







 

(23) 

 

(11)

 

5 

  

.
1

22 





  



K

k
KpKi bwOFy

 
(10)

 

  ....2,1 ),1(
,211

222

111

Nkkwww
...N,), k(kwww

KKoldKnew

KKoldKnew




 
(11)

 

).1(
),1(

222

111




kbbb
kbbb

oldnew

oldnew

   
(12)

 

,)1(

,)1(

22

11

pKKyK

pKKxK

Okw

Okw









                         
(13)

 

,)1(
,)1(

22

11

Ky

Kx

kb
kb







 
(14)

 

),1(

),1(

2

1

iiyK

iixK

yyE

xxE

i

i








 
(15)

 

.

N i ,EE ,            

E E , 1 , 

 E E , 1  ,

ty,xy x,

,x,xyx,

,x,x,

,

ii

i11i

i11i





























ii

ii

yy

yyyx

yx

 
(16) 

,...2,1 ),1(
,211

222

111

Nkkwww
...N,), k(kwΔww

KoldKnewK

KoldKnewK




(17) 

.21),1( .....N,kkbbb KKoldKnew   (18) 

,)1( 11 iKzK xkw   (19) 
,)1( 12 iKzK ykw   (20) 

,)1( 1KzK kb   (21) 

),1( )(
c(k), )( 22111

pKpK

KoldKKoldKK

OOkc
ww



 
 (22) 

.

N ifor   EE  ,

 EE EE  ,

EE EE  ,

tx z

yxyxz

yxyx

i

ii1i1i

ii1i1i






















iy

z

z

E







 

(23) 

 

(12)

In Eqs. (11), (12), second terms are calculated as:
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where xη  and yη  are the adaptive learning rates 
which are varied according to the error functions and 
updated as: 
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This rule is applied until a desired error response, tE , 
is achieved. In a similar way, the adaptation rules for 
the weight and bias values between the hidden and in-
put layers are calculated by the following equations:
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In Eqs. (17), (18), second terms are calculated as:
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where zη  is also changed adaptively as:
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where 1>φ  and 1<ς  are appropriate constants. 
With above updating rules, the output of the network 
converges to the target stable fixed point.

Simulation results and discussion
In this section, numerical simulations are carried out on 
Ikeda system to show the effectiveness of the proposed 
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control method. The objective is to stabilize the chaotic 
trajectory of Ikeda map given by Eq. (1) to a stable target 
fixed point, which has been determined by Eq. (5).
In this study, sB  was chosen as 0.3 in the interval of 

)4.0 ,0( , where the maximum Lyapunov exponent is 
negative. For 3.0Bs = , the stable fixed point has been 
calculated as 038.0  ,772.0 ** == yx . For this target 
point, the proposed neural network has been trained 
using a set of some arbitrary trajectories with random 
initial values, and a training set with 500 input pat-
terns has been constructed for test purpose. 
The ANN training parameters are given in Table 1. 
The optimal values of these parameters are obtained 
based on the simulation trials. 

Table 1 
ANN training parameters

Parameters Values

Transfer function in hidden and 
output layers tansig

Number of hidden neurons 10

Initial weights and bias [0,0]

Learning rates, zyx η=η=η 0.1

φ 2

ς 0.9

Fig. 8 shows the time series plot of the system states, 
when the proposed control scheme is applied.

Figure 8 
Time series plot
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As can be seen from Fig. 8, the state variables reach 
the stable target fixed point immediately after the 
control action has been switched on at 500k .  
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Figure 9. Variation of maximum Lyapunov exponent of the 
controlled system (after k=500). 

 
Fig. 9 shows the variation of the maximum Lyapunov 
exponent, max , of the chaotic system as well as the 
controlled system for this training set. It is clear that 
the positive Lyapunov exponent of the chaotic system 
becomes negative after control action has been taken. 

 

5. Conclusions 
In this paper, the control of chaos, which may occur in 
electronic systems, has been studied. For this purpose, 
a neural network control scheme with an adaptive 
learning rate has been proposed to control the chaotic 
trajectory of the Ikeda type chaotic system in the 
vicinity of the stable fixed point. The stability of the 
fixed points has been examined by calculating the 
eigenvalues of the Jacobian matrix at different values 
of the chaoticity parameter in a certain range that 
affects the chaotic properties of the system. The 
variation of the maximum Lyapunov exponent with 
respect to the chaoticity parameter has been 

investigated, and a relationship between the maximum 
Lyapunov exponent and the stability of the fixed 
points has been presented. Simulation studies showed 
that the proposed method can successfully stabilize 
the chaotic trajectory of the system to the target stable 
fixed point, where the maximum Lyapunov exponent 
is negative. 
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Fig. 9 shows the variation of the maximum Lyapunov 
exponent, maxσ , of the chaotic system as well as the 
controlled system for this training set. It is clear that 
the positive Lyapunov exponent of the chaotic system 
becomes negative after control action has been taken.

Conclusions
In this paper, the control of chaos, which may occur in 
electronic systems, has been studied. For this purpose, 
a neural network control scheme with an adaptive 
learning rate has been proposed to control the chaot-
ic trajectory of the Ikeda type chaotic system in the 
vicinity of the stable fixed point. The stability of the 
fixed points has been examined by calculating the ei-
genvalues of the Jacobian matrix at different values of 
the chaoticity parameter in a certain range that affects 
the chaotic properties of the system. The variation of 
the maximum Lyapunov exponent with respect to the 
chaoticity parameter has been investigated, and a re-
lationship between the maximum Lyapunov exponent 
and the stability of the fixed points has been presented. 
Simulation studies showed that the proposed method 
can successfully stabilize the chaotic trajectory of the 
system to the target stable fixed point, where the maxi-
mum Lyapunov exponent is negative.
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A neural network control scheme with a novel adaptive learning rate is proposed to stabilize the chaotic tra-
jectory of the chaotic system to a stable fixed point. A new approach is proposed to determine the stability of 
the fixed points in which the eigenvalues of the Jacobian matrix of the chaotic system at different values of the 
chaoticity parameter are evaluated and a look-up table is created to find a suitable fixed point that has a nega-
tive Lyapunov exponent. During learning phase of the neural network, weight parameters are adjusted so that 
the chaotic trajectory converges to a stable fixed point and the maximum Lyapunov exponent of the controlled 
system becomes negative. The effectiveness of the proposed method is investigated through simulation studies 
on 2 dimensional Ikeda map, which is produced by a semiconductor laser system.

Straipsnyje siūloma neuroninio tinklo valdymo schema, pasižyminti nauju adaptyviu mokymosi greičiu tam, 
kad būtų galima stabilizuoti chaotiškos sistemos chaotišką trajektoriją iki stabilaus ir pastovaus taško. Siūlo-
mas naujas metodas, leidžiantis nustatyti pastovių taškų, kuriuose vertinamas chaotiškos sistemos Jakobiano 
matricos tikrinių verčių stabilumas skirtinguose chaotiškumo parametrų įverčiuose. Sudaryta lentelė, kurio-
je galima rasti tinkamą pastovų tašką, turintį neigiamą Liapunovo rodiklį. Neuroninio tinklo mokymosi fazės 
metu svorio parametrai sureguliuojami taip, kad chaotiška trajektorija konverguoja į stabilų pastovų tašką, 
maksimalus valdomos sistemos Liapunovo rodiklis tampa neigiamas. Siūlomo metodo efektyvumas tiriamas 
per simuliacinius 2D Ikedos žemėlapio, sukurto puslaidininkio lazerio sistema, tyrimus. 
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