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. This paper presents a new approach how to reconstruct a parametric surface from a partially structured 
and noisy cloud of points representing surface that has a centre-line, such that all perpendicular rays to that line 
intersects with a surface not more than once. Presented algorithm analyses partially structured cloud of points, 
generated by point based 3D scanner and calculates parameters to build a non-uniform B-spline 3D mesh.

3D surface reconstruction; Non-uniform B-spline; Parametric surfaces; 3D scanning and visualization; 
Point cloud approximation.

Digital 3D models are widely used in scientific 
data visualization, entertainment industry, orthotics 
and prosthetics (medicine), quality control and 
inspection, industrial design, documentation of 
cultural artefacts and many other areas. There are 
many techniques to create digital 3D models and one 
of those techniques is a 3D model generation from a 
cloud of points, acquired from 3D scanners. An output 
of a point based digital 3D scanner is a set of surface 
coordinates that are used as a raw data either for a 
further pre-processing or a direct synthesis of a 3D 
model. To generate a 3D geometric model from a 
cloud of points most often triangulation algorithms 
like Cocone or Crust are used because of their ability 
to process unstructured cloud of points (acquired 
coordinates from a 3D scanner) [12]. The triangulation 
methods work well when the cloud of points is dense 
enough and is not noisy, because a surface is 
reconstructed by combining neighbour points into 
triangles. The quality of the result surface very much 
depends on the distance between and the position of 
the points in a cloud. Another important thing to note 
about the triangulation algorithms is that additional 
data pre-processing, like triangle mesh simplification 
or refinement, smoothing, reorientation of faces, 
filling of the holes and other repairs is usually needed 
in order to increase the quality and decrease 
complexity of the reconstructed surface.

An alternative to triangulation algorithms are 
algorithms that use parametric curves for the 

reconstruction of a surface from coordinates. Such 
algorithms gained attention for several advantages: 
parametric surfaces are the exact analytical 
representations, have the potential of the three 
dimensional shape editing, parametric models require 
less data to describe an object, have easily adjustable 
level of detail (LOD), and are convertible to 
triangulated one, but not vice versa [14]. 

This paper presents an algorithm for creating a
parametric surface from a partially structured and 
noisy cloud of points. An algorithm calculates 
coefficients of a non-uniform B-spline surface, i.e. fits 
a B-spline surface to a cloud of points. 

In this paper a cloud of points that represents a 
surface of an object is acquired using an experimental 
3D scanner [10]. This 3D scanner rotates an object in 
small steps and measures a distance to its surface at 
different levels (see Figure 1).

. Structure of the scanned data



Measured data are stored in a cylindrical 
coordinate system representation and are converted to 
the Cartesian space during a pre-processing step. 
Conversion is required, because linear interpolation, 
approximation, filtration of flat surface areas in 
cylindrical coordinate system would cause undesired 
curvature (arcs, etc.) on the final surface. Also data 
may be acquired in Cartesian coordinate system if 
other 3D scanners are used.

All points in the same level have common 
coordinate z and form a layer. Distribution of points in 
the same layer and between layers can be arbitrary.  

A presented algorithm is capable of reconstructing 
a 3D surface, which has a centre-line, such that all 
perpendicular rays coming out from that line intersect 
with the surface not more than once. 

Surface points are defined for a scanned surface 
as:

, , , , , , , (1)

, = , , 1 , 1  . 

Here x, y, and z represent point’s coordinates in the 
Cartesian coordinate system, is a number of layers 
and i is a number of points in a single layer i. 
In this paper a presented algorithm converts a cloud of 
points into a parametric non-uniform B-spline surface 
that is defined as:

( , ) = , ( ) , ( ) , (2)

, . 
Here p is a surface degree in u direction; q is a 

surface degree in v direction; = { |0 +
+ 1} is a B-spline’s knot vector in u direction; 
= { |0 + + 1} is a B-spline’s knot 

vector in v direction; , ( ) and , ( ) are B-
spline’s blending functions of degree p and q,
respectively; Pc,d are B-spline’s control (de-Boor) 
points; u and v are parametrization intervals (infinite 
set of points in a predefined range) and should not be 
confused with single values. The parameters U, V,

, ( ), , ( ) and Pc,d are described in more detail 
in the following sections.

This paper describes a new approach how to 
compute unknown parameters U, V, , ( ), , ( )
and , of a parametric B-spline surface P(u,v),
described in (2) so that it approximates a cloud of 
points .

Calculating parameters for a B-Spline surface 
equation directly from a cloud of points is a difficult 
task. In order to perform this task, knot vectors for a 
surface have to be defined. It appears that in a 
generated data cloud there are no two perpendicular 

directions for which selected knot values could meet 
Shoenberg-Whitney conditions [13]. Those conditions 
are necessary and sufficient for the approximation of 
cloud of points with a B-spline to be possible.

To overcome the problem, an approach to split a 
cloud of points into several slices was proposed, 
implemented and results presented to demonstrate its 
advantage over the known algorithms.

In the presented approach a cloud of points is split 
into three different matrices X, Y, and Z, where each 
corresponding entry in matrices contains a 
corresponding coordinate of a point. These matrices 
then are used as a data source to calculate B-Spline 
parameters for each coordinate separately from 
equations:

( )( , ) = , ( ) , ( ) ,
( ) (3)

( )( , ) = , ( ) , ( ) ,
( ) (4)

, . 
B-Spline parameters for Z coordinate values are 

derived from the already calculated parameters, as 
described in Subsection 3.5.

A process to calculate unknown parameters of 
equations (3) and (4) is divided into four steps that are 
explained in details in the next subsections (see 
Figure 2).

. The process of parametric surface creation

The first step is a pre-processing step where input 
data are converted from cylindrical to Cartesian 
coordinate system. Then, during the second step, knot 
vectors U and V have to be defined. This is done by 
subdividing pre-processed data into estimated number 
of segments towards two perpendicular directions u
and v, so that Shoenberg-Whitney conditions are met 
[13]. These segments correspond to B-spline local 
segments or knot intervals. Endpoints of segments are 



used to create corresponding knot vectors U and V.
During the third step B-spline blending functions 

, ( ) and , ( ) are calculated from knot vectors 
and data projections in u and v directions, using Cox-
deBoor recurrence [5]. In the last, forth step, B-spline 
control points Pc,d are calculated based on blending 
functions and other calculated data by applying 
optimization in the least square sense.

When parameters for equations (3) and (4) are 
calculated, they are combined to form parameters for a 
parametric surface (2) that approximates input data .
Then a parametric surface can be displayed or saved 
for the further use.

Experimental 3D scanner stores acquired points in 
the cylindrical coordinate system [10]. Pre-processing 
step is necessary to convert those points into the 
Cartesian representation.

Experimental 3D scanner, used for data 
acquisition, operates in a non-ideal environment; it has 
specific mechanical characteristics, limited accuracy 
and is affected by electrical noise. As a result, at 
different levels measurements might occur at different 
positions and if the measurements are stored in a 
matrix C as given below in (5), the matrix will most 
likely contain some number of empty elements rij [10].
To decrease the size of the matrix C, acquired data in 
columns are quantized into 8000 intervals in a range 
of (0° - 360°) with a step size equal to 0,045°. Step 
size value here is a smallest detectable step size of a 
stepper motor, converted into angle and divided by 2.
The number of rows in the matrix C depends on the 
number of stops a laser sensor makes in a vertical 
direction (Figure 1). A distance between layers in this 
case varied in a range [1,25-1,55] mm. An absolute 
vertical position of a layer is stored in a first column 
of the matrix C. The structure of the matrix C is:

=

0 … …
, , … , … ,

, , … , … ,

, , … , … ,

, , … , … ,

(5)

here , , are angle, radius and height respectively, m
is the number of layers and n is the number of 
quantization intervals in every layer i (Figure 3).

. Relationship between cylindrical and Cartesian 
coordinate systems

A conversion from the cylindrical to the Cartesian 
coordinate system is straightforward:

, = , × cos ,
, = , × sin  ,
, = .                   

(6)

After the conversion, object’s surface is 
represented by ×  number of points, including 
empty ones. Conversion results are stored in three 
separate matrices X, Y and Z, where each row 
corresponds to a layer data in a cloud of points: 

= ( , ), = ( , ), = ( , ) (7)

, = , , 1 , 1 . 

Matrices X, Y and Z are sparse because matrix (5) 
consists of empty entries.

The sparseness is the most undesirable property of 
a data set and needs to be corrected to proceed. The 
problem can be solved by inserting data into sparse 
areas using, for example interpolation between 
neighbor data points. If the input data contains a 
considerable amount of noise, it is recommended to 
apply data filtering before performing data correction. 
Otherwise noise can lead to undesirable deformations 
on the reconstructed surface. Recommendations on the 
selection of filters can be found in [4].

Data sparseness can be eliminated using a linear 
interpolation algorithm. In this paper a slightly 
modified algorithm was used:

interpolate(X, Y, )
// in: X – x coordinates of surface points  
// in: Y – y coordinates of surface points
// in:  – position angle from matrix (5)
// out: X, Y

each row i in matrix X
           = index of last non empty element in row i; 
           = index of first non empty element in row i;
          each column j in matrix X
               , is not empty   

p = j;  
r= index of next non empty element in row i; 

r is empty 
          r = index of first non empty element in row i; 

>  = 360;
= ;

>  = 360;
= ;

= ; 

, = , × (1 ) + , × ; 
, = , × (1 ) + , × ;



Further steps in the algorithm will be performed 
with pre-processed matrices X and Y. 

A B-spline surface is defined by a set of curves 
that intersect and form surface patches. To create such 
a structure, matrices X and Y are subdivided into 
estimated number of segments: r number of segments 
in a row direction u and w number of segments in a 
column direction v (Figure 4). 

. Segmentation of matrices. The same schema is 
used to create segments in matrices X and Y

These segments are called B-spline local segments 
or knot intervals. The number of segments and the 
number of data points in them depend on input data 
distribution in coordinate space and a degree of a 
surface in both directions u and v. In B-spline theory, a 
cubic spline  is the most common type, sufficient to 
approximate most types of shapes, so cubic B-spline 
surface i.e. of order 4 (degree = 3) is used through this 
paper too.

Input data spacing in row direction u is directly 
related to z coordinate of each data layer. To maintain 
this information and use it in calculations, a vector H
is defined as:

= ( , , … , , … , ) = ( , , , , … , , ). (8)
To represent input data spacing in column 

direction v a vector A is defined as:

= , , … , , … , = (1,2, … , ). (9)

Because data points in v direction were 
interpolated using linear interpolation, spacing of 
points is considered to be uniform and is encoded as a 
sequence 1,2,...,n in the vector A. Segments of B-
splines are estimated from the vectors H and A rather 
than values in matrices X and Y.

Segments have to be selected according to the 
following requirements:

,
1 , 0 , 1 , (10)

,
1 , 0 , 1 .

(11)

Here  r and w are numbers of segments in 
directions u and v, respectively; p and q are B-spline 
degrees in directions u and v, respectively;  and 
are B-spline knots, which match with position values 
of segment endpoints in corresponding directions u
and v. These requirements ensure that Shoenberg-
Whitney conditions are met i.e. it is possible to create 
a valid parametric surface that approximates a given 
data set [13].

The number of segments r and w depends on a 
priori knowledge about the input data and the desired 
approximation properties, and should be selected 
individually. A common methodology on how to select
r and w was not developed as it was not a scope of this 
research.  In an ideal case, a quantity of segments in 
each direction should be selected so that curves of 
selected degrees p and q are flexible enough to 
accurately approximate data that fall into successive 
segments. In practice, there should be at least one 
segment defined in each direction, but usually the 
number of segments should be greater than one in 
order to create a good surface approximation. On the 
other hand, if too many data points fall into a single 
segment, smoothing effect arise and a final surface 
might be distorted. If noise presents in input data, 
smoothing effect might be desired and it can be 
controlled by changing the number and the size of 
segments. In this paper 100 segments were chosen in 
the row direction u and 100 segments - in the column 
direction v in order to define knot vectors. 

Knots and in corresponding directions u and 
v can be calculated using predefined functions as 
segmentation templates and selected depending on 
variation of values in vectors A and H. Examples of 
such functions can be a linear function, a Gaussian 
function, or other. If distances between values in 
vectors A and H are random, a use of linear function is 
suggested. In the presented algorithm a linear function 
was used to define knots (see algorithm calcKnots 
below).

Knot vectors U and V are created from knots 
and . In order to force B-spline curves to begin at 
the first control point and to end at the last control 
point, knot vectors were modified by duplicating the 
first and the last knots p and q times, respectively. As a 
result, the knot vector U is:

= ( , … , , , , … , , , … , ) (12)
and vector V is:

= ( , … , , , , … , , , … , ). (13)
Knot duplication makes B-spline surface to 

interpolate endpoints of input data. A resulting 
parametric surface becomes non-uniform. Our 
implementation of knot vectors calculation algorithm 
is presented below:



calcKnots(H, A, r, w, p, q)
// in: H – see equation (8)  
// in: A – see equation (9)
// in: r – number of segments in u direction
// in: w – number of segments in v direction 
// out: U, V – knot vectors

m = length(H); 
i = 0 to (r + 2 × p)

i < p
Ui+1 = H1; 

          i > r + p – 2
Ui+1 = Hm; 

          
               Ui+1 = H1 + (i - p) × (Hm – H1) / m – 1;

n = length(A);
j = 0 to (w + 2 × q)

j < p
Vj+1 = A1; 

          j > w + q – 2
Vj+1 = An; 

          
               Vj+1 = A1 + (j - q) × (Am – A1) / n – 1;

The same knot vectors are used to approximate 
data in both matrices X and Y. 

B-spline’s are constructed using basis functions, 
which are blended together and transformed by control 
points in order to achieve a desired shape. These 
functions are named blending functions and according 
to (2)-(4) are encoded in parameters , ( ) and 

, ( ) . At this point relation between 
parametrization intervals u and v in expressions (3)-(4) 
and values hi and aj in expressions (10)-(11) can be 
noticed. As a result, blending functions can be 
calculated using parameters , and and be 
denoted as , ( ) and , ( ). 

B-spline blending functions , ( ) and , ( )
are defined by p+1 and q+1 non-zero coefficients 
respectively. Coefficients must be selected to satisfy 
the following requirements:

, ( ) 0,             , ( ) 0, 

, ( ) = 1, , = 1,  
(14)

, 1 ,
, 1 .  

Here = { |0 + + 1} and 
= { |0 + + 1} are B-spline’s knot 

vectors.

Coefficients of blending functions , ( ) and 
,  in this paper are calculated using Cox-de 

Boor recurrences [5]:

Initialise   , ( ) = 1, ,
0, otherwise      

, 

, = 1, ,

0, otherwise    
,  

, ( ) = ( ) , ( )
+

+ , ( )
,

(15)

, = , +

+ , .

(16)

The same two sets of parameters , ( ) and 
, ( ) are used to approximate data in matrices X

and Y, because the knot vectors U, V and the 
parameters in vectors H, A for both matrices are also 
the same. Matrices X and Y are defined in (7).

The shape of B-spline surface P(u,v) is formed 
using control (de-Boor) points , and blending 
functions , ( ) and , ( ), equation (2). Control 
points normally do not belong to B-Spline surface, but 
this property depends on knot vectors. In the proposed 
algorithm knot vectors are designed so that the control 
points at the edges of a surface match with the surface 
points.

As knot vectors and blending functions are 
calculated using parameters  , , equation 
(2) can be expressed as:

, = , ( ) , , , (17)

, ,

1 , 1 . 
Here = { |0 + + 1} and =

{ |0 + + 1} are B-spline knot vectors.
Since , ( ) in (17) does not depend on the 

index d, the equation can be rewritten as:

, = , ( ) , , . (18)

Then inner sum can be denoted as ,  : 

, = , ( ) , , (19)

, = , , . (20)

Equation (19) hides n over-determined systems of 
linear equations with s×n unknown coefficients , .
Assuming that parameters , ( ) are stored in a 
matrix  , , the unknown coefficients can be 
calculated by minimizing a sum:



= min , , , , , (21)

, =

, , ,

, , ,

, , ,

,

, =

,

,

,

, , =

,

,

,

,

0 , 1 .
Here | | is the length of vector,  ,  stores the 

acquired data coordinates X or Y. 
Equation (20) hides s over-determined systems of 

linear equations with s×t unknown coefficients , .
Assuming that the parameters ,  are stored in 
the matrix  , , the unknown coefficients can be 
calculated by minimizing a sum:

= min , , , , , (22)

, =

, , ,

, , ,

, , ,

,

, =

,

,

,

, , =

,

,

,

,

0 , 0 .
All over-determined systems of linear equations 

can be solved separately using least squares or other 
algorithms. 

Expressions in equations (21) and (22) are 
minimized twice: the first time – to find control points 

,
( ) and to approximate the data in the matrix X, and 

the second time – to find control points ,
( ) and to 

approximate the data in matrix Y. Both matrices are 
defined in (7).

In the experiments described in this paper, a 
minimization problem is solved using QR 
decomposition. In case of large input data (over 
200 000 points), Householder transformations are 
used to perform QR decomposition [7].

A final parametric surface P(u,v) will contain c×d
control points:

, = ,
( ), ,

( ), ,
( ) , (23)

0 , 0 .

The third component ,
( ) can be calculated using 

the following equation:

,
( ) =  . (24)

Here U is the knot vector in u direction, and p is 
the degree of a surface in u direction. 

In order to restore a parametric surface it is enough 
to store the values of two knot vectors in both u and v
directions (Section 3.3) and control points ,
(Section 3.5). Most of the 3D APIs accept those 
parameters in their surface reconstruction functions.

As an alternative, control points ,  and sets of 
parameters  , ( ) and , ( ) can be saved 
(Section 3.4). Then there would not be necessary to 
recalculate coefficients of blending functions when 
loading a surface from a hard disk drive, but this 
approach has several disadvantages: 1) it takes at least 
3 times more storage space on a hard disk drive; 2) 
collocation matrices are usually not accepted in well-
known 3D API’s, such as OpenGL, etc., and 3) GPU 
based visualisation of a parametric surface, including 
generation of collocation matrices from knot’s, is 
usually done faster than providing already predefined 
collocation matrices so saving of parameters of 
blending functions does not add any value.

STEP, IGES and others file formats can be 
considered for saving and describing parametric 
surface in more standardized way. Although today’s 
CAD system’s have their own methods for 
representing and exchanging data. As a result data 
representation and exchange issues may arise. Some 
recommendations how to minimize bad consequences 
of the data exchange using STEP is provided in [11].

The presented surface reconstruction algorithm is 
part of the 3D surface reconstruction system (see 
Figure 5).

. 3D surface reconstruction system

The system consists of a custom built 3D scanner 
and software, consisting of the hardware control, 
surface reconstruction and visualization algorithms. 
C# language was used to write hardware control 
software. The purpose of the software is to send 
commands to the scanner, acquire measurements and 
store them in a single matrix (5) in a comma separated 
values (CSV) format. This file is later used by the 
presented surface reconstruction algorithm as an input 
data. The reconstruction algorithm was implemented 
using MATLAB, writing custom code. For the 
calculation of B-spline control points’ values the 



systems of linear equations has to be solved. 
MATLAB implementation of QR algorithm was used 
(function qr) for this task. qr function in Matlab uses 
the LAPACK [9] routines DGEQP3, DORMQR and
DTRTRS (see MATLAB documentation). The 
presented surface reconstruction algorithm calculates 
B-spline surface parameters and outputs them into a 
text file. This file then is used as an input data in the 
visualization step. Model visualization part was 
implemented using C# language and Tao Framework - 
OpenGL wrapper for .NET.

For the experiments a statue (Figure 6 (a)) was 
scanned using a point based laser scanner [10]. As a 
result, a set of 144 450 data points in 136 layers was 
acquired and saved in a sparse data matrix (5). This set 
of points was used as input data for testing different 
surface reconstruction algorithms. The result of the 
presented surface reconstruction algorithm is shown in 
Figure 6 (g-h) and was compared to the neighbour
triangulation algorithm (f) described in [4] and the 
other three well known 3D surface reconstruction 

algorithms: Delaunay, Crust and Tight Cocone, Figure 
6 (b-e). The performance and other statistical results 
were also compared and provided in a Table 1. 

The processing time in Table 1 includes average 
time required to read the data, to calculate 3D surface 
and to save the results on storage disk using a PC with 
2.4GHz Core 2 Duo CPU and 4GB memory. 3D 
surface was visualized using OpenGL library and 
hardware accelerated graphics enabled. Triangulation 
results were stored in a plain text object file format 
(OFF). This has to be taken into account when 
comparing sizes of output file presented in Table 1.

Figure 6b shows a result of simple Delaunay 
triangulation algorithm. This algorithm gave the worst 
visual result. Data points in a resulting data structure 
were not connected correctly and a large number of 
triangles were positioned incorrectly too. A triangle 
mesh was created using CGAL implementation of 
Delaunay triangulation [2] and a natural neighbor 
approach.

Figures 6c and 6d show the results of the Crust 
triangulation algorithm [1]. The algorithm does a 

a) b) c) d)

e) f) g) h)

. Results of surface reconstruction algorithms: (a) a test object – 18,2 cm height statue , (b) Delaunay triangulation [2],
(c) Crust triangulation [1], (d) Crust triangulation with surface correction, (e) Tight Cocone triangulation [6] with surface 

correction, (f) nearest neighbour triangulation [4], (g) parametric surface, and (h) a frame of parametric surafce



Experimental statistics of methods for surface reconstruction (average values)

Delaunay triangulation (b) 7.8830 58 818 3.7
Crust triangulation (c) 133.2070 772 644 8.66
Tight Cocone (e) 699.506 751 254 11.1
Nearest neighbour triangulation (f) 18.3560 6 474 330 73.0
Parametric surface (g) 13.9620 10 609 0.238

manifold extraction in order to form a regular surface 
and uses a ball pivoting method to extract a manifold
and to return outward’s normal’s orientation. Because 
of the noise and uneven distribution of the input data, 
the resulting surface is not water-tight (there are holes 
on the surface), have errors in manifold structure and 
the orientation of faces. Surface after reorientation of 
triangle faces is shown in figure 6d. The errors are 
best seen at the bottom part and near the ear on the 
head of the statue. Also, small noise covers the entire 
surface. The performance of the algorithm is the worst 
if compared to the other analyzed algorithms.

Figure 6e shows the result of the Tight Cocone 
algorithm. The algorithm is based on the cocone 
algorithm that uses a single Voronoi/Delaunay 
computation. It is supposed to be water-tight and is 
claimed to be scale and density independent [6]. In 
this algorithm, the number of holes is reduced by 
stitching them from existing Delaunay triangles and 
without inserting new points. The result is similar to 
the one produced by the Crust algorithm: the surface 
is not water-tight, has errors in the manifold structure 
and the orientation of faces. The algorithm was tested 
with several parameters. Only the best achieved result 
(after performing face reorientation) is presented in 
figure 6e. The Tight Cocone triangulation algorithm 
takes about 50 times more time and about 46 times 
more storage space for a surface reconstruction than 
using our parametric reconstruction algorithm (see 
Table 1). The code for the Tight Cocone, released for 
academic use, can be downloaded from [3]. 

Figure 6f shows a result of simple nearest 
neighbour triangulation algorithm that creates tight 
triangulated surface and can be used to perform real 
time triangulation with partial data. The algorithm is 
based on RBF, triangle strips and predictable structure 
of cloud of points [4]. The algorithm gives better 
results than the previous triangulation algorithms. The 
recreated surface is water-tight and without noticable 
errors, processing time is relatively small. However, 
the algorithm creates a large number of triangles. This 
might be a problem to render and manipulate such a 
reconstructed surface. Also, the generated output is 
not very smooth if compared to the presented 
algorithm.

The result of the algorithm, presented in this paper, 
(Figure 6g) is constructed from cubic non-uniform 
B-spline curves that lay down horizontally and 
vertically as shown in Figure 6h. The surface contains 
100 B-spline segments in each directions and the total 

of 103x103=10609 control points. 150 approximation 
steps in each direction in B-spline surface were made 
to draw the surface displayed in Figure 6g and 80 
steps - for the surface in Figure 6h. The generated 
surface is watertight (without surface holes) and 
smooth compared to the results of the previously 
analyzed algorithms. Our algorithm needs less 
processing time to calculate surface’s parameters than 
the Crust and the Tight Cocone algorithms and uses 
much less storage space to store output results than the
analyzed triangulation algorithms (Table 1).

In order to evaluate an approximation accuracy of 
the presented algorithm in this experiment, vectors 
connecting input data points and corresponding points 
on the B-spline surface were calculated.  The mean of
vector lengths is 0.1377 mm, the standard deviation is 
0.2385 mm. These numbers are influenced by the 
noise and measurement errors that are present in the 
input data and are filtered out in the B-spline surface.

Experimental results presented in this paper show 
that the proposed algorithm can be successfully used
for the reconstruction of complex geometric surfaces
from a partially structured cloud of points that does 
not fit into a data grid. The algorithm combines well-
known parametric and optimisation algorithms with 
the coordinate-wise surface generation approach to 
create a non-uniform B-spline surface that can be 
described with 15 times less data if compared to 
triangulation surfaces. 

The proposed strategy to split input data into 
separate groups by coordinates and process separately 
was shown to be working and can lead to expected 
results. 

It was demonstrated that QR decomposition and 
Householder reflection algorithms can be effectively 
used for the calculation B-spline surface parameters. 
Linear interpolation, used in the pre-processing step to 
adjust input data is shown to be sufficient to solve 
points-to-surface problem when the input data set is 
unorganized. This technique simplifies the process of 
surface subdivision. It also provides information about 
the distribution of surface points.

It was also experimentally shown that the 
suggested algorithm has a small average processing 
time if compared to the analyzed triangulation 
algorithms, and can generate a high quality surface 
even from the poorly sampled and noisy data.  



The presented algorithm is targeted to the 
reconstruction of surfaces, which have a centre-line 
such that all perpendicular rays to that line intersect 
with the surface not more than once. In general, it is 
possible to use the algorithm with the other types of 
objects. In that case, an object should be subdivided 
into parts, which satisfy Shoenberg-Whitney 
conditions [13]. Then parts of the object should be 
parameterised separately and joined together to form a 
final surface. The join can be performed using a direct 
degree elevation of NURBS curves [8] and an 
integration of curve segments.

In the presented algorithm a linear subdivision of 
acquired data into segments is used, but possibly 
better results could be achieved by performing density 
analysis of the cloud of points and adjusting segments 
accordingly.
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