
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.1

Department of Systems Analysis, Vytautas Magnus University
Vileikos st. 8, LT – 44404, Kaunas Lithuania

e-mail: r.liutkevicius@live.vdu.lt, andrius@live.vdu.lt

http://dx.doi.org/10.5755/j01.itc.42.1.1391

. This paper presents a new approach how to reconstruct a parametric surface from a partially structured
and noisy cloud of points representing surface that has a centre-line, such that all perpendicular rays to that line
intersects with a surface not more than once. Presented algorithm analyses partially structured cloud of points,
generated by point based 3D scanner and calculates parameters to build a non-uniform B-spline 3D mesh.

3D surface reconstruction; Non-uniform B-spline; Parametric surfaces; 3D scanning and visualization;
Point cloud approximation.

Digital 3D models are widely used in scientific
data visualization, entertainment industry, orthotics
and prosthetics (medicine), quality control and
inspection, industrial design, documentation of
cultural artefacts and many other areas. There are
many techniques to create digital 3D models and one
of those techniques is a 3D model generation from a
cloud of points, acquired from 3D scanners. An output
of a point based digital 3D scanner is a set of surface
coordinates that are used as a raw data either for a
further pre-processing or a direct synthesis of a 3D
model. To generate a 3D geometric model from a
cloud of points most often triangulation algorithms
like Cocone or Crust are used because of their ability
to process unstructured cloud of points (acquired
coordinates from a 3D scanner) [12]. The triangulation
methods work well when the cloud of points is dense
enough and is not noisy, because a surface is
reconstructed by combining neighbour points into
triangles. The quality of the result surface very much
depends on the distance between and the position of
the points in a cloud. Another important thing to note
about the triangulation algorithms is that additional
data pre-processing, like triangle mesh simplification
or refinement, smoothing, reorientation of faces,
filling of the holes and other repairs is usually needed
in order to increase the quality and decrease
complexity of the reconstructed surface.

An alternative to triangulation algorithms are
algorithms that use parametric curves for the

reconstruction of a surface from coordinates. Such
algorithms gained attention for several advantages:
parametric surfaces are the exact analytical
representations, have the potential of the three
dimensional shape editing, parametric models require
less data to describe an object, have easily adjustable
level of detail (LOD), and are convertible to
triangulated one, but not vice versa [14].

This paper presents an algorithm for creating a
parametric surface from a partially structured and
noisy cloud of points. An algorithm calculates
coefficients of a non-uniform B-spline surface, i.e. fits
a B-spline surface to a cloud of points.

In this paper a cloud of points that represents a
surface of an object is acquired using an experimental
3D scanner [10]. This 3D scanner rotates an object in
small steps and measures a distance to its surface at
different levels (see Figure 1).

. Structure of the scanned data

Measured data are stored in a cylindrical
coordinate system representation and are converted to
the Cartesian space during a pre-processing step.
Conversion is required, because linear interpolation,
approximation, filtration of flat surface areas in
cylindrical coordinate system would cause undesired
curvature (arcs, etc.) on the final surface. Also data
may be acquired in Cartesian coordinate system if
other 3D scanners are used.

All points in the same level have common
coordinate z and form a layer. Distribution of points in
the same layer and between layers can be arbitrary.

A presented algorithm is capable of reconstructing
a 3D surface, which has a centre-line, such that all
perpendicular rays coming out from that line intersect
with the surface not more than once.

Surface points are defined for a scanned surface
as:

, , , , , , , (1)

, = , , 1 , 1 .

Here x, y, and z represent point’s coordinates in the
Cartesian coordinate system, is a number of layers
and i is a number of points in a single layer i.
In this paper a presented algorithm converts a cloud of
points into a parametric non-uniform B-spline surface
that is defined as:

(,) = , () , () , (2)

, .
Here p is a surface degree in u direction; q is a

surface degree in v direction; = { |0 +
+ 1} is a B-spline’s knot vector in u direction;
= { |0 + + 1} is a B-spline’s knot

vector in v direction; , () and , () are B-
spline’s blending functions of degree p and q,
respectively; Pc,d are B-spline’s control (de-Boor)
points; u and v are parametrization intervals (infinite
set of points in a predefined range) and should not be
confused with single values. The parameters U, V,

, (), , () and Pc,d are described in more detail
in the following sections.

This paper describes a new approach how to
compute unknown parameters U, V, , (), , ()
and , of a parametric B-spline surface P(u,v),
described in (2) so that it approximates a cloud of
points .

Calculating parameters for a B-Spline surface
equation directly from a cloud of points is a difficult
task. In order to perform this task, knot vectors for a
surface have to be defined. It appears that in a
generated data cloud there are no two perpendicular

directions for which selected knot values could meet
Shoenberg-Whitney conditions [13]. Those conditions
are necessary and sufficient for the approximation of
cloud of points with a B-spline to be possible.

To overcome the problem, an approach to split a
cloud of points into several slices was proposed,
implemented and results presented to demonstrate its
advantage over the known algorithms.

In the presented approach a cloud of points is split
into three different matrices X, Y, and Z, where each
corresponding entry in matrices contains a
corresponding coordinate of a point. These matrices
then are used as a data source to calculate B-Spline
parameters for each coordinate separately from
equations:

()(,) = , () , () ,
() (3)

()(,) = , () , () ,
() (4)

, .
B-Spline parameters for Z coordinate values are

derived from the already calculated parameters, as
described in Subsection 3.5.

A process to calculate unknown parameters of
equations (3) and (4) is divided into four steps that are
explained in details in the next subsections (see
Figure 2).

. The process of parametric surface creation

The first step is a pre-processing step where input
data are converted from cylindrical to Cartesian
coordinate system. Then, during the second step, knot
vectors U and V have to be defined. This is done by
subdividing pre-processed data into estimated number
of segments towards two perpendicular directions u
and v, so that Shoenberg-Whitney conditions are met
[13]. These segments correspond to B-spline local
segments or knot intervals. Endpoints of segments are

used to create corresponding knot vectors U and V.
During the third step B-spline blending functions

, () and , () are calculated from knot vectors
and data projections in u and v directions, using Cox-
deBoor recurrence [5]. In the last, forth step, B-spline
control points Pc,d are calculated based on blending
functions and other calculated data by applying
optimization in the least square sense.

When parameters for equations (3) and (4) are
calculated, they are combined to form parameters for a
parametric surface (2) that approximates input data .
Then a parametric surface can be displayed or saved
for the further use.

Experimental 3D scanner stores acquired points in
the cylindrical coordinate system [10]. Pre-processing
step is necessary to convert those points into the
Cartesian representation.

Experimental 3D scanner, used for data
acquisition, operates in a non-ideal environment; it has
specific mechanical characteristics, limited accuracy
and is affected by electrical noise. As a result, at
different levels measurements might occur at different
positions and if the measurements are stored in a
matrix C as given below in (5), the matrix will most
likely contain some number of empty elements rij [10].
To decrease the size of the matrix C, acquired data in
columns are quantized into 8000 intervals in a range
of (0° - 360°) with a step size equal to 0,045°. Step
size value here is a smallest detectable step size of a
stepper motor, converted into angle and divided by 2.
The number of rows in the matrix C depends on the
number of stops a laser sensor makes in a vertical
direction (Figure 1). A distance between layers in this
case varied in a range [1,25-1,55] mm. An absolute
vertical position of a layer is stored in a first column
of the matrix C. The structure of the matrix C is:

=

0 … …
, , … , … ,

, , … , … ,

, , … , … ,

, , … , … ,

(5)

here , , are angle, radius and height respectively, m
is the number of layers and n is the number of
quantization intervals in every layer i (Figure 3).

. Relationship between cylindrical and Cartesian
coordinate systems

A conversion from the cylindrical to the Cartesian
coordinate system is straightforward:

, = , × cos ,
, = , × sin ,
, = .

(6)

After the conversion, object’s surface is
represented by × number of points, including
empty ones. Conversion results are stored in three
separate matrices X, Y and Z, where each row
corresponds to a layer data in a cloud of points:

= (,), = (,), = (,) (7)

, = , , 1 , 1 .

Matrices X, Y and Z are sparse because matrix (5)
consists of empty entries.

The sparseness is the most undesirable property of
a data set and needs to be corrected to proceed. The
problem can be solved by inserting data into sparse
areas using, for example interpolation between
neighbor data points. If the input data contains a
considerable amount of noise, it is recommended to
apply data filtering before performing data correction.
Otherwise noise can lead to undesirable deformations
on the reconstructed surface. Recommendations on the
selection of filters can be found in [4].

Data sparseness can be eliminated using a linear
interpolation algorithm. In this paper a slightly
modified algorithm was used:

interpolate(X, Y,)
// in: X – x coordinates of surface points
// in: Y – y coordinates of surface points
// in: – position angle from matrix (5)
// out: X, Y

each row i in matrix X
 = index of last non empty element in row i;
 = index of first non empty element in row i;
 each column j in matrix X
 , is not empty

p = j;
r= index of next non empty element in row i;

r is empty
 r = index of first non empty element in row i;

> = 360;
= ;

> = 360;
= ;

= ;

, = , × (1) + , × ;
, = , × (1) + , × ;

Further steps in the algorithm will be performed
with pre-processed matrices X and Y.

A B-spline surface is defined by a set of curves
that intersect and form surface patches. To create such
a structure, matrices X and Y are subdivided into
estimated number of segments: r number of segments
in a row direction u and w number of segments in a
column direction v (Figure 4).

. Segmentation of matrices. The same schema is
used to create segments in matrices X and Y

These segments are called B-spline local segments
or knot intervals. The number of segments and the
number of data points in them depend on input data
distribution in coordinate space and a degree of a
surface in both directions u and v. In B-spline theory, a
cubic spline is the most common type, sufficient to
approximate most types of shapes, so cubic B-spline
surface i.e. of order 4 (degree = 3) is used through this
paper too.

Input data spacing in row direction u is directly
related to z coordinate of each data layer. To maintain
this information and use it in calculations, a vector H
is defined as:

= (, , … , , … ,) = (, , , , … , ,). (8)
To represent input data spacing in column

direction v a vector A is defined as:

= , , … , , … , = (1,2, … ,). (9)

Because data points in v direction were
interpolated using linear interpolation, spacing of
points is considered to be uniform and is encoded as a
sequence 1,2,...,n in the vector A. Segments of B-
splines are estimated from the vectors H and A rather
than values in matrices X and Y.

Segments have to be selected according to the
following requirements:

,
1 , 0 , 1 , (10)

,
1 , 0 , 1 .

(11)

Here r and w are numbers of segments in
directions u and v, respectively; p and q are B-spline
degrees in directions u and v, respectively; and
are B-spline knots, which match with position values
of segment endpoints in corresponding directions u
and v. These requirements ensure that Shoenberg-
Whitney conditions are met i.e. it is possible to create
a valid parametric surface that approximates a given
data set [13].

The number of segments r and w depends on a
priori knowledge about the input data and the desired
approximation properties, and should be selected
individually. A common methodology on how to select
r and w was not developed as it was not a scope of this
research. In an ideal case, a quantity of segments in
each direction should be selected so that curves of
selected degrees p and q are flexible enough to
accurately approximate data that fall into successive
segments. In practice, there should be at least one
segment defined in each direction, but usually the
number of segments should be greater than one in
order to create a good surface approximation. On the
other hand, if too many data points fall into a single
segment, smoothing effect arise and a final surface
might be distorted. If noise presents in input data,
smoothing effect might be desired and it can be
controlled by changing the number and the size of
segments. In this paper 100 segments were chosen in
the row direction u and 100 segments - in the column
direction v in order to define knot vectors.

Knots and in corresponding directions u and
v can be calculated using predefined functions as
segmentation templates and selected depending on
variation of values in vectors A and H. Examples of
such functions can be a linear function, a Gaussian
function, or other. If distances between values in
vectors A and H are random, a use of linear function is
suggested. In the presented algorithm a linear function
was used to define knots (see algorithm calcKnots
below).

Knot vectors U and V are created from knots
and . In order to force B-spline curves to begin at
the first control point and to end at the last control
point, knot vectors were modified by duplicating the
first and the last knots p and q times, respectively. As a
result, the knot vector U is:

= (, … , , , , … , , , … ,) (12)
and vector V is:

= (, … , , , , … , , , … ,). (13)
Knot duplication makes B-spline surface to

interpolate endpoints of input data. A resulting
parametric surface becomes non-uniform. Our
implementation of knot vectors calculation algorithm
is presented below:

calcKnots(H, A, r, w, p, q)
// in: H – see equation (8)
// in: A – see equation (9)
// in: r – number of segments in u direction
// in: w – number of segments in v direction
// out: U, V – knot vectors

m = length(H);
i = 0 to (r + 2 × p)

i < p
Ui+1 = H1;

 i > r + p – 2
Ui+1 = Hm;

 Ui+1 = H1 + (i - p) × (Hm – H1) / m – 1;

n = length(A);
j = 0 to (w + 2 × q)

j < p
Vj+1 = A1;

 j > w + q – 2
Vj+1 = An;

 Vj+1 = A1 + (j - q) × (Am – A1) / n – 1;

The same knot vectors are used to approximate
data in both matrices X and Y.

B-spline’s are constructed using basis functions,
which are blended together and transformed by control
points in order to achieve a desired shape. These
functions are named blending functions and according
to (2)-(4) are encoded in parameters , () and

, () . At this point relation between
parametrization intervals u and v in expressions (3)-(4)
and values hi and aj in expressions (10)-(11) can be
noticed. As a result, blending functions can be
calculated using parameters , and and be
denoted as , () and , ().

B-spline blending functions , () and , ()
are defined by p+1 and q+1 non-zero coefficients
respectively. Coefficients must be selected to satisfy
the following requirements:

, () 0, , () 0,

, () = 1, , = 1,
(14)

, 1 ,
, 1 .

Here = { |0 + + 1} and
= { |0 + + 1} are B-spline’s knot

vectors.

Coefficients of blending functions , () and
, in this paper are calculated using Cox-de

Boor recurrences [5]:

Initialise , () = 1, ,
0, otherwise

,

, = 1, ,

0, otherwise
,

, () = () , ()
+

+ , ()
,

(15)

, = , +

+ , .

(16)

The same two sets of parameters , () and
, () are used to approximate data in matrices X

and Y, because the knot vectors U, V and the
parameters in vectors H, A for both matrices are also
the same. Matrices X and Y are defined in (7).

The shape of B-spline surface P(u,v) is formed
using control (de-Boor) points , and blending
functions , () and , (), equation (2). Control
points normally do not belong to B-Spline surface, but
this property depends on knot vectors. In the proposed
algorithm knot vectors are designed so that the control
points at the edges of a surface match with the surface
points.

As knot vectors and blending functions are
calculated using parameters , , equation
(2) can be expressed as:

, = , () , , , (17)

, ,

1 , 1 .
Here = { |0 + + 1} and =

{ |0 + + 1} are B-spline knot vectors.
Since , () in (17) does not depend on the

index d, the equation can be rewritten as:

, = , () , , . (18)

Then inner sum can be denoted as , :

, = , () , , (19)

, = , , . (20)

Equation (19) hides n over-determined systems of
linear equations with s×n unknown coefficients , .
Assuming that parameters , () are stored in a
matrix , , the unknown coefficients can be
calculated by minimizing a sum:

= min , , , , , (21)

, =

, , ,

, , ,

, , ,

,

, =

,

,

,

, , =

,

,

,

,

0 , 1 .
Here | | is the length of vector, , stores the

acquired data coordinates X or Y.
Equation (20) hides s over-determined systems of

linear equations with s×t unknown coefficients , .
Assuming that the parameters , are stored in
the matrix , , the unknown coefficients can be
calculated by minimizing a sum:

= min , , , , , (22)

, =

, , ,

, , ,

, , ,

,

, =

,

,

,

, , =

,

,

,

,

0 , 0 .
All over-determined systems of linear equations

can be solved separately using least squares or other
algorithms.

Expressions in equations (21) and (22) are
minimized twice: the first time – to find control points

,
() and to approximate the data in the matrix X, and

the second time – to find control points ,
() and to

approximate the data in matrix Y. Both matrices are
defined in (7).

In the experiments described in this paper, a
minimization problem is solved using QR
decomposition. In case of large input data (over
200 000 points), Householder transformations are
used to perform QR decomposition [7].

A final parametric surface P(u,v) will contain c×d
control points:

, = ,
(), ,

(), ,
() , (23)

0 , 0 .

The third component ,
() can be calculated using

the following equation:

,
() = . (24)

Here U is the knot vector in u direction, and p is
the degree of a surface in u direction.

In order to restore a parametric surface it is enough
to store the values of two knot vectors in both u and v
directions (Section 3.3) and control points ,
(Section 3.5). Most of the 3D APIs accept those
parameters in their surface reconstruction functions.

As an alternative, control points , and sets of
parameters , () and , () can be saved
(Section 3.4). Then there would not be necessary to
recalculate coefficients of blending functions when
loading a surface from a hard disk drive, but this
approach has several disadvantages: 1) it takes at least
3 times more storage space on a hard disk drive; 2)
collocation matrices are usually not accepted in well-
known 3D API’s, such as OpenGL, etc., and 3) GPU
based visualisation of a parametric surface, including
generation of collocation matrices from knot’s, is
usually done faster than providing already predefined
collocation matrices so saving of parameters of
blending functions does not add any value.

STEP, IGES and others file formats can be
considered for saving and describing parametric
surface in more standardized way. Although today’s
CAD system’s have their own methods for
representing and exchanging data. As a result data
representation and exchange issues may arise. Some
recommendations how to minimize bad consequences
of the data exchange using STEP is provided in [11].

The presented surface reconstruction algorithm is
part of the 3D surface reconstruction system (see
Figure 5).

. 3D surface reconstruction system

The system consists of a custom built 3D scanner
and software, consisting of the hardware control,
surface reconstruction and visualization algorithms.
C# language was used to write hardware control
software. The purpose of the software is to send
commands to the scanner, acquire measurements and
store them in a single matrix (5) in a comma separated
values (CSV) format. This file is later used by the
presented surface reconstruction algorithm as an input
data. The reconstruction algorithm was implemented
using MATLAB, writing custom code. For the
calculation of B-spline control points’ values the

systems of linear equations has to be solved.
MATLAB implementation of QR algorithm was used
(function qr) for this task. qr function in Matlab uses
the LAPACK [9] routines DGEQP3, DORMQR and
DTRTRS (see MATLAB documentation). The
presented surface reconstruction algorithm calculates
B-spline surface parameters and outputs them into a
text file. This file then is used as an input data in the
visualization step. Model visualization part was
implemented using C# language and Tao Framework -
OpenGL wrapper for .NET.

For the experiments a statue (Figure 6 (a)) was
scanned using a point based laser scanner [10]. As a
result, a set of 144 450 data points in 136 layers was
acquired and saved in a sparse data matrix (5). This set
of points was used as input data for testing different
surface reconstruction algorithms. The result of the
presented surface reconstruction algorithm is shown in
Figure 6 (g-h) and was compared to the neighbour
triangulation algorithm (f) described in [4] and the
other three well known 3D surface reconstruction

algorithms: Delaunay, Crust and Tight Cocone, Figure
6 (b-e). The performance and other statistical results
were also compared and provided in a Table 1.

The processing time in Table 1 includes average
time required to read the data, to calculate 3D surface
and to save the results on storage disk using a PC with
2.4GHz Core 2 Duo CPU and 4GB memory. 3D
surface was visualized using OpenGL library and
hardware accelerated graphics enabled. Triangulation
results were stored in a plain text object file format
(OFF). This has to be taken into account when
comparing sizes of output file presented in Table 1.

Figure 6b shows a result of simple Delaunay
triangulation algorithm. This algorithm gave the worst
visual result. Data points in a resulting data structure
were not connected correctly and a large number of
triangles were positioned incorrectly too. A triangle
mesh was created using CGAL implementation of
Delaunay triangulation [2] and a natural neighbor
approach.

Figures 6c and 6d show the results of the Crust
triangulation algorithm [1]. The algorithm does a

a) b) c) d)

e) f) g) h)

. Results of surface reconstruction algorithms: (a) a test object – 18,2 cm height statue , (b) Delaunay triangulation [2],
(c) Crust triangulation [1], (d) Crust triangulation with surface correction, (e) Tight Cocone triangulation [6] with surface

correction, (f) nearest neighbour triangulation [4], (g) parametric surface, and (h) a frame of parametric surafce

Experimental statistics of methods for surface reconstruction (average values)

Delaunay triangulation (b) 7.8830 58 818 3.7
Crust triangulation (c) 133.2070 772 644 8.66
Tight Cocone (e) 699.506 751 254 11.1
Nearest neighbour triangulation (f) 18.3560 6 474 330 73.0
Parametric surface (g) 13.9620 10 609 0.238

manifold extraction in order to form a regular surface
and uses a ball pivoting method to extract a manifold
and to return outward’s normal’s orientation. Because
of the noise and uneven distribution of the input data,
the resulting surface is not water-tight (there are holes
on the surface), have errors in manifold structure and
the orientation of faces. Surface after reorientation of
triangle faces is shown in figure 6d. The errors are
best seen at the bottom part and near the ear on the
head of the statue. Also, small noise covers the entire
surface. The performance of the algorithm is the worst
if compared to the other analyzed algorithms.

Figure 6e shows the result of the Tight Cocone
algorithm. The algorithm is based on the cocone
algorithm that uses a single Voronoi/Delaunay
computation. It is supposed to be water-tight and is
claimed to be scale and density independent [6]. In
this algorithm, the number of holes is reduced by
stitching them from existing Delaunay triangles and
without inserting new points. The result is similar to
the one produced by the Crust algorithm: the surface
is not water-tight, has errors in the manifold structure
and the orientation of faces. The algorithm was tested
with several parameters. Only the best achieved result
(after performing face reorientation) is presented in
figure 6e. The Tight Cocone triangulation algorithm
takes about 50 times more time and about 46 times
more storage space for a surface reconstruction than
using our parametric reconstruction algorithm (see
Table 1). The code for the Tight Cocone, released for
academic use, can be downloaded from [3].

Figure 6f shows a result of simple nearest
neighbour triangulation algorithm that creates tight
triangulated surface and can be used to perform real
time triangulation with partial data. The algorithm is
based on RBF, triangle strips and predictable structure
of cloud of points [4]. The algorithm gives better
results than the previous triangulation algorithms. The
recreated surface is water-tight and without noticable
errors, processing time is relatively small. However,
the algorithm creates a large number of triangles. This
might be a problem to render and manipulate such a
reconstructed surface. Also, the generated output is
not very smooth if compared to the presented
algorithm.

The result of the algorithm, presented in this paper,
(Figure 6g) is constructed from cubic non-uniform
B-spline curves that lay down horizontally and
vertically as shown in Figure 6h. The surface contains
100 B-spline segments in each directions and the total

of 103x103=10609 control points. 150 approximation
steps in each direction in B-spline surface were made
to draw the surface displayed in Figure 6g and 80
steps - for the surface in Figure 6h. The generated
surface is watertight (without surface holes) and
smooth compared to the results of the previously
analyzed algorithms. Our algorithm needs less
processing time to calculate surface’s parameters than
the Crust and the Tight Cocone algorithms and uses
much less storage space to store output results than the
analyzed triangulation algorithms (Table 1).

In order to evaluate an approximation accuracy of
the presented algorithm in this experiment, vectors
connecting input data points and corresponding points
on the B-spline surface were calculated. The mean of
vector lengths is 0.1377 mm, the standard deviation is
0.2385 mm. These numbers are influenced by the
noise and measurement errors that are present in the
input data and are filtered out in the B-spline surface.

Experimental results presented in this paper show
that the proposed algorithm can be successfully used
for the reconstruction of complex geometric surfaces
from a partially structured cloud of points that does
not fit into a data grid. The algorithm combines well-
known parametric and optimisation algorithms with
the coordinate-wise surface generation approach to
create a non-uniform B-spline surface that can be
described with 15 times less data if compared to
triangulation surfaces.

The proposed strategy to split input data into
separate groups by coordinates and process separately
was shown to be working and can lead to expected
results.

It was demonstrated that QR decomposition and
Householder reflection algorithms can be effectively
used for the calculation B-spline surface parameters.
Linear interpolation, used in the pre-processing step to
adjust input data is shown to be sufficient to solve
points-to-surface problem when the input data set is
unorganized. This technique simplifies the process of
surface subdivision. It also provides information about
the distribution of surface points.

It was also experimentally shown that the
suggested algorithm has a small average processing
time if compared to the analyzed triangulation
algorithms, and can generate a high quality surface
even from the poorly sampled and noisy data.

The presented algorithm is targeted to the
reconstruction of surfaces, which have a centre-line
such that all perpendicular rays to that line intersect
with the surface not more than once. In general, it is
possible to use the algorithm with the other types of
objects. In that case, an object should be subdivided
into parts, which satisfy Shoenberg-Whitney
conditions [13]. Then parts of the object should be
parameterised separately and joined together to form a
final surface. The join can be performed using a direct
degree elevation of NURBS curves [8] and an
integration of curve segments.

In the presented algorithm a linear subdivision of
acquired data into segments is used, but possibly
better results could be achieved by performing density
analysis of the cloud of points and adjusting segments
accordingly.

and Kazimieras Padvelskis from Vytautas Magnus
University for their valuable remarks and suggestions,
and Tamal K. Dey from the department of CIS at Ohio
State University for providing implementation of
Tight Cocone algorithm.

[1] . A New
Voronoi-Based Surface Reconstruction Algorithm. In:
SIGGRAPH 98, pp. 415-421.

[2] CGAL-Computational Geometry Algorithms Library,
2011. Available at: http://www.cgal.org/.

[3] COCONE Cocone Software for surface reconstruction
and medial axis Available at: http://www.cse.ohio-
state.edu/~tamaldey/cocone.html

[4] A PLC Application
for Data Scanning and Visualization. In: Proceedings
of International Conference “Electrical and Control
Technologies–2008”, Kaunas, 2008, pp. 144-149.

[5] On calculating with B-splines. In: Journal
of Approximation Theory, 6, 1972, pp. 50–62.

[6] Tight Cocone: A water tight
surface reconstructor. In: Proceedings of 8th ACM
Symposium. Solid Modeling Appl., 2003, pp. 127-134.

[7] Matrix Computations
(3rd ed.), Johns Hopkins University Press, 1996.

[8] Direct degree
elevation of NURBS curves. In: Information
Technology and Control, 2010, Vol. 39, No. 4,
pp. 269-283.

[9] LAPACK–Linear Algebra Package. Version 3.3.1,
2011. Available at: http://www.netlib.org/lapack.

[10] Positioning of
stepper motors in graphical data acquisition system. In:
Proceedings of International Conference “Electrical
and Control Technologies – 2009”, Kaunas, 2009,
pp. 70-74.

[11]
Issues with exchange of presentation

data among CAD systems. In: Information Technology
and Control, 2012, Vol. 41, pp. 385-391.

[12]

Survey of Point Cloud Reconstruction Methods. In:
Proceedings of International Conference “Electrical
and Control Technologies – 2008”, Kaunas, 2008,
pp. 150-153.

[13] On Pólya frequency
functions. III. The positivity of translation
determinants with an application to the interpolation
problem by spline curves. Transactions of the
American Mathematical Society, 1953, Vol. 74,
pp. 246-259.

[14] 3D Computer Graphics. Third Edition.
Addison-Wesley Publishing, 2000.

Received March 2012.

