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This paper investigates the problems of robust stochastic stability and stabilization for a general class of contin-
uous-time semi-Markovian jump linear systems (S-MJLSs). The main contribution of the research is to elim-
inate the limitations of the traditional S-MJLSs with precisely available information by introducing a system
with uncertain, time-varying transition rates (TRs) of the jump process, in addition to the imperfect informa-
tion on the system dynamic matrices. The new system is called the general uncertain semi-Markov jump linear
system (GUS-MJLS); it does not contain certain values of the transition rates, but includes nominal time-de-
pendent values in addition to bounded deviations. It is suitable to describe a broader class of dynamical sys-
tems with estimated information and modeling errors and also covers the concepts of Markov jump linear sys-
tem (MJLSs) with time-constant and certain TRs. For this system, the stability is firstly analyzed through the
multiple stochastic Lyapunov function approach. Then, based on the stability results, a robust state-feedback
controller is formulated. To deal with the time-dependent TRs, a sojourn-time fractionizing technique is used
and numerically testable conditions are developed. Finally, discussions on reducing the conservativeness of the
robust theorems are provided. The theoretical results are successfully tested on an industrial continuous stirred
tank reactor (CSTR) subject to stochastically varying environmental conditions. Comparative simulations are
also provided to show the superiority of the presented framework and design method to the existing ones.
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Introduction

In recent years, jump linear systems (JLSs) have re-
ceived increasing attention [1-3] due to their poten-
tials of modeling systems subject to abrupt changes
and variations in their structures or their parameters,
induced by random faults, failures, repairs and un-
expected configuration conversions [1, 3, 4]. A JLS is
characterized by both time-evolving and event-driv-
en mechanisms. The former is described by a set of
linear differential (or difference) equations and the
latter is governed by a stochastic rule. For a JLS the
length of intervals between two consecutive events is
called the sojourn-time, which is an identically inde-
pendently random variable subject to a specific prob-
ability distribution.

A major class of the JLSs is the Markov jump linear
system where the stochastic rule is specifically a Mar-
kov process [1]. Over the past decades, MJLSs have
been studied extensively and large volume of theo-
retical results has been provided for their analysis
and synthesis [1, 5, 6, 7-11]. Additionally, great efforts
of researchers have been dedicated to solve the prob-
lems of practical applications modeled as MJLSs,
such as networked control systems (NCSs) [12], fault
prone systems [9] and economic systems [13]. Al-
though MJLSs are theoretically and practically in-
teresting but, unfortunately, they have one inevitable
constraint which is the inflexible exponential-type
probability distribution function (PDF) of the so-
journ-time of the Markov process. This specification
renders the TRs of the JLS to be time-constant, which
limits the applications of MJLSs and provides con-
servative results in some sense.

From the system modeling point of view, the so-
journ-time may follow any probability distribution
rather than exponential distribution. In this case, a
JLS is termed as a semi-Markov jump linear system
[14, 15]. A S-MJLS relaxes the transition rates of the
jump process from a constant value to a time-vary-
ing variable [16]. It helps to reflect the specifications
of more practical systems rather than the tradition-
al MJLS [14, 16-20]. For example, semi-Markovian
structure is very popular in modeling biological sys-
tems [18, 19], also it is widely used for the reliability
engineering, where a typical transition or failure rate
function is in a bathtub shape instead of a constant
value [21, 22].
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Applications and potentials of systems that include
semi-Markovian jump processes have interested the
researchers to investigate such structures [2]. Sta-
bility analysis of S-MJLSs is reported in [12, 14, 15,
23-28], stabilization concepts are established in [25,
29-31], controllers are designed in [19, 25, 32- 35], and
filtering problems are investigated in [21, 36].

Almost all of the aforementioned studies [12, 15, 21,
23-28, 30, 32, 34-36], deploy a completely and pre-
cisely known S-MJLS. Nevertheless, the assumption
of'the availability of a certainly modeled semi-Marko-
vian JLS is very restrictive. In reality, no system mod-
el could be identified accurately, and the uncertain-
ties are ubiquitous in practical applications. The most
dominant factor of S-MJLS that must be identified
for control purposes is the TRs of the jump process.
Unfortunately, achieving a semi-Markovian model
with precise TRs is very complicated or generally ex-
pensive, especially when there are a limited number
of data samples or when the information is noisy. The
imperfect estimation leads to TR modeling errors
(also referred to as switching probability uncertain-
ties), that generally cause instability or, at least, de-
graded performance of a system. Therefore, rather
than the large complexity to estimate accurate TRs, it
is significant to study more general S-MJLSs with im-
precise or uncertain transition rates from the control
perspectives. Stability and stabilization are the most
important notions for S-MJLSs with incomplete TR
information. Although, the problem is almost solved
for the traditional MJLSs with time-constant transi-
tion rates [5, 7-11, 37], but, to the best of the authors’
knowledge, the problem has not been investigated yet
for semi-Markovian structures with time-dependent
uncertain transition rates and is the main contribu-
tion of the present study.

In this study, a GUS-MJLS is addressed. At this de-
scription, the system is assumed to include TRs with
bounded time-varying uncertainties, which means
that the semi-Markov process does not contain cer-
tain values of the transition rates, but includes nom-
inal time-varying values in addition to bounded devi-
ations. This bounded deviation is a significant type of
uncertainty and represents the imperfection in many
physical cases caused by factors like aging of devices
and identification errors [1]. To provide a more gener-
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al and flexible framework, the system under consid-
eration is also assumed to contain time-dependent
bounded uncertainties in the system dynamics. By
this new GUS-MJLS, lots of system behaviour could
be better captured. As an example, the internet-based
NCSs can be mentioned [12, 17]. In the analysis of in-
ternet-based NCSs, Markov processes are extensively
usedtomodelthetransmission delays and packetloss-
es [6], however, these factors are generally imprecise
and distinct at different periods of time and present-
ing them with an uncertain semi-Markovian process
is a more realistic scenario [12]. For the introduced
GUS-MJLS, sufficient criteria are developed for the
stability and stabilizability based on the stochastic
multiple Lyapunov function approach. The stability
condition is used to design a stabilizing feedback. To
overcome the difficulty of analysing S-MJLSs that is
encountered due to continuously time-varying TRs,
a fractionizing technique is applied to the transition
rates. Based on this technique, the stability and con-
troller design conditions are reformulated to provide
finite dimensional, time-independent and compu-
tationally effective criteria. All the results are in the
form of linear matrix inequalities and equalities that
can be easily solved by the existing optimization tech-
niques. It is worth mentioning that, the proposed the-
orems cover the stability and stabilization concepts
of the MJLSs with time constant jump probabilities
[1]. The obtained theorems are tested on a continuous
stirred tank reactor subject to external environmen-
tal changes. The CSTR is modeled as a JLS including
uncertain time-varying TRs with Weibull distribu-
tion function of sojourn-times, which is considered as
a better representation than its models by traditional
MJLS. Comparing the results with a situation that
does not consider the TR uncertainty in the control-
ler design procedure shows the superiority and the ef-
fectiveness of the results to the previously developed
ones [25].

Problem statement

Consider the following dynamical system defined in a
probability space (Q, F, p) where Q, Fand prepresent,
the sample space, the algebra of events and the proba-
bility measure on F, respectively:
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x(t) = A(r,0)x(t) + B(r,O)u(t)
@
X)) = %0, = |

{r,t>0}isacontinuous-time discrete-value semi-Mar-
kov process on the probability space, which takes val-
uesinafiniteset N = {1, 2,..., N}. It governs the choice
of smooth dynamics for the continuous state and its
initial mode at t = 0 is 7,.2(t) € R™ is the state vector
and x, € [R™ is the initial state vector with the dimen-
sionn, and u(¢) € R" is the controlled input vector with
the dimension m. ﬁ(rt,t) and f?(rt,t) specify system
matrices with appropriate dimensions. They are sup-
posed to be uncertain with the following form:

A(r,, 1) = A(r) + M7, 1),

B(1,,1) = B(r,) + AB(;. 1)

where A(r) and B(r,) are known, mode-dependent
system matrices, and AA(7,t), AB(r,t) are unknown,
mode-dependent matrices representing time-vary-
ing, norm-bounded parameter uncertainty, that are
supposed to have the following form:

AA(r,,t) =D (r,)F,(r,0)E (1),

AB(r,,1) = D, () F, (7, ) E (1,)

in which D,(r), Dy(r), E,(r) and E(r) are known
matrices; and F,(r, t), Fy(r, t) are time-varying, un-
known, Lebesgue measurable matrices satisfying
T T

F,(r,t)F,(r,t)<1 and F, (r,t)F,(r,t) < I, respec-
tively.

The evolution of the semi-Markov process is gov-
erned by the transition rate matrix:

Ay () A, (h) Ay ()
. Lk Ay(h) . A (h
o - :(> :() : :() "
() Ay () oo Ay ()
where
A (Wh+o(h)  i#j
Pr{r,, =jlr,=i}= ®

1+ A (Wh+o(h) i=j
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h > 0,lim;,_(0o(h)/ h) =0, is the sojourn-time or the
time between two consecutive jumps. /iy_(h) 20,i,jeN
denotes the uncertain transition rate from mode i
at time ¢ to mode j at time 7+h with the condition

/'Iii (h) = —ZN p) (). The sojourn-time /4 is a ran-

j=lj#i 7
dom variable following a continuous probability distri-
bution in continuous-time jump linear systems. Clearly,
here 4 () is a time-varying stochastic variable, which
represents the time-dependent property of the TRs of the
S-MILS.

It is assumed that the transition rate matrix has
parametric uncertainty. The uncertain transition
rate matrix is_expressed as I’ (h) =T'(h)+Ar(h),
where AI'(h) = A/Iij (h) |is an unknown matrix such

that A%, (h) = —ZL 1.0 (). Elements of AA(h)

are supposed to be bounded by|A/Il.].(h)| < 7, for all
modes. This description means that the TRs have
norm-bounded uncertainty with a maximum value
Remark 1. The uncertainty bound 7, could be de-
termined empirically by experimental tests or by the
historical data of the system. In this paper, it is as-
sumed that the uncertainty bound is given a priori by
an uncertain transition rate matrix; how to conduct
the TR modeling procedure and how to design tests
and mechanisms to obtain the chain TRs are not dis-
cussed here since their foundations have been pretty
well established by now [22, 38-40].

Remark 2. Hereafter in the whole paper, for simplic-
ity, r,= i will be used for notation and the matrices
will be labeled as A(%), B(), AA(%), AB(?), F,(7), Fy(1),
D, (%), D,(?), E,(7), EL(4). Additionally, without loss of
generality, the initial time is set to be zero, t, = 0. The
initial state vector, x,and the initial mode, 7, are also
supposed to be known.

The main objective of this paper is to derive sufficient
conditions for robust stochastic stability and stabiliz-
ability of the system (1) and then design the controller.
Before proceed, the following definition and lemma
are given which will be used in the rest of the paper:

Definition. [4] For any initial mode r,, and any giv-
en initial state vector x,, the uncertain system (1)
(u(t) = 0) is said to achieve stochastic stability in
second mean if (6) holds for all admissible uncer-
tainties. E{.|.} is the expectation conditioning on
the initial values of x,, and r,.
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oo

[E{l@I ar | x,} <o ©

0

Lemma. [4] Let Y satisfy Y'Y < I, and H, E be
given matrices with the appropriate dimen-
sions, then there exists a scalar € > 0 such that
HYE+E'Y' H' <gHH' +¢& E'E holds.

Main results

In this section, the main results are provided. In
the first upcoming subsection the robust stochastic
stability of a semi-Markovian jump linear systems
subject to dynamic and TR matrix uncertainties is
analyzed. In the second subsection, the stabilizabili-
ty is investigated and the robust controller gains are
designed. Finally, numerically testable results are
achieved through TR approximations.

Stability

Theorem 1. The uncertain S-MJLS of (1) (u(t)=0) is
robustly stochastically stable if there are symmetric,
positive definite mode-dependent matrices P(i) and a
set of positive mode dependent scalars €,(1), £(1), and
&1, such that the following set of LMIs hold for all
possible modes of 1

J (@) P@@D (1) S3)
D (i)Pi) -] @I 0

s’ () 0

<0, (7)

—R(i)

J(i) =A"(i)P(i) + P())A(i) + &, () E | (i) E (i)

1 . ®
+27:1/1,-j(h)1’(j)+zz;v:1 5/1(1,])7%2.1
S(@i) =[PG) - PQ),... P(i)- P(i - 1),
P(i) - P(i +1).... P(i) - P(N)] ©
R(i) = diag| &, (i,)1,....&,(i,i =11,
(10)

€,(i,i+)1,....&, (i, N)I]

Proof. Consider the following stochastic Lyapunov
function with semi-Markovian parameters
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V(x(t),r,)=x" (t)P(r)x(t) - (1)

Eq. (11) is amultiple Lyapunov function [4] where P(7)
denounce symmetric and positive definite matrices.

The infinitesimal generator [4] for the semi-Markovi-
an jump linear system is defined as

LV (x(t),i)=lim(E[V (x(t + A), 7, ) | x(1) = x(2),
A0 12)
v =i]=V(x(t),i)/ A

where lim A_>0(A2 / A) = 0.By applying the law of total
probability and using the property of the conditional
expectation, the infinitesimal generator is written as

LV (x(1),i)= llm(E[V(x(t +A),r )| x(1) =x(),
as)
r=i1-V(x(t),0)/ A

Using the probability distribution function related to
the semi-Markov chain, the infinitesimal generator
becomes as the following:

v 4,(F(h+A)=F(h))
LV (x(t),i —11m
e [{Zm 1= F(h)
X (0 + APt + Ay BT D) aa)
1- £ (h)

x'(t+ A)P@)x(t+ M)} — x()P(D)x(1)]/ A

Using x(t+A) = (A()A + I)x(t) = x(t) + A()A x(1) ,
(14) turns to (15):

v q,(F(h+A)-F(h))

i 1-F (h)

O GOPDATP(IAGDA+ PO+
I=ERFA)
————x ()4 (G, )P)A+ PGE) A, 1A

1= F(h)

+P(i))x(t) } — x(£) P(i)x(1)]

LV (x(1),i) = hm—[{z

Equation (15) can be written in the form of
LV (x(t),i) = x' (£)N(i)x(¢) with N(3) defined as (16):
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F(h+A)-F/(h
N@) = 24 _.4,P(j)lim L’()+
y 0 (1= E(h)A

Ziil 4 limw(ﬁr(i,z‘)P(]’) +
T A= R (A

- . 1-F(h+A) (16)
P(j)A(i,1))A +lim P(i) ———+
s (1=F(h)A

1-F(h+A)

im (47 (i,0)P(i) + P(i)A(i, 1)) A —
20 (1= F (M)A

lim P(j)/ A

A—0

Here g,; is the probability intensity from mode i to
mode j and F; is the cumulative distribution function
(CDF) of the sojourn-time when system remains at
mode i.
Consider the properties of,
F(h+A)-F(h) - 1-F
m—————=4(h), lim——=1
420 (1= F(h)A A0

. F(h+A)-F(h)
and lm———— =
450 1-F (h)
where ﬂ (h) is the uncertain TR of the system jump-
ing from mode . Then the TR function is

£, (k)
0

qijil. (h)= /il.j (h) with f,(h) and F(h) as the PDF and

CDF of the sojourn-time when system switches be-
tween i and j [41]. By simplifying (16), N(?) will be ob-
tained as

= ﬂij(h) and satisfies

N@)=A" (i, 0)P()+ P A0+, A (WP()). (7

J=1

One has LV (x(2),i) <0,if N() < 0. By considering
a similar line in the proof of Theorem 1 of [25], if
N(%) < 0 holds, then the definition (7) is verified and
the closed-loop system is stochastically stable.

In order to achieve the LMIs of the theorem, substi-
tute the uncertain system matrix form (2) and (3) as
well as uncertain transition probabilities form (5),
then V(i) < 0 canbe written as (18):
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(A())+ D ()VF,()E (i) P(i)+ P(i)(AG) +
D, ()F,()E (i)+ Y, A (WP(j)+ 18)

Z AZ, (h)P(j) <0
Simplifications yield:

A" (i)yP(i)+ E,(i)F, (i,t)D] (i) P(i) + P(i) A(i)

+P(i)D,()F,G,0)E () + Y. A (WP(j)+

)
j=1"70

N 1 . . 19)
Zj:,,,.t,.;M,.,(h)(P(n—P(z))+

N 1
Z,:],#EMU (h)(P(j)— P(i)) < 0

Taking the advantage of Lemma and using the bounds
for uncertain TRs, the following inequality is writable
for the uncertain terms in (19):

P(i)D ,(i)F,(i,H)E (i) + E (i)F, (i,t)D’ (i) P(i)
+ZL AA; (P(j) - P(i)) <e¢,()P@E)D,(i)D) (i)
P(iy+ &, ()E"()E, (i) + iZf_l &, (i, N 1 (20)

w2 & @ H(P)-PO)

Using (20), the inequality of (19) turns to the form of
(21):

P(i)D,(i)F,(i,0)E (i) + E (i)F, (i,t)D’ (i) P(i)

+ fl AL (P(j)-P3)) < e,()P()D, (YD’ (i)

R U PYRDR St NP €2
P(i)+¢&, ()E"()E (i) + ZZH &, I

2" & @ (PG - PG

On the basis of Schur complement lemma and by de-
fining J(7), S(i) and Z(i) by (8), (9) and (10), respec-
tively, the inequality (21) can be written in the form of
the LMI (7) of Theorem 1, and the proofis complete.

Remark 3. According to Lemma, the parameter € > 0
can take any values since it specifies the degree of ro-
bustness. But generally, it should be selected through
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a compromise between conservativeness and fea-
sibility of the conditions. One common approach to
deal with such parameter [4], which is also used in the
present paper, is to solve the conditions for a priori
given ¢ value to achieve a prescribed degree of robust-
ness. The main advantage of this approach is provid-
ing the conditions of a fair comparison between the
multiple results.

Controller design

Derivation of the stability condition gives insight to
provide stabilizability condition of the system (1). In
this section, the stabilizability criterion is obtained
and the design problem of a robust state-feedback
controller law in the form of Eq. (22) is discussed:

u(t) = K(r,)x(t). (22)

To achieve the goal, consider the closed-loop system
as the following;

x(1) = A(r, 1)x(t)
(23)
x(t,) = x, ! =
where Z(}; 1) = /Al(rr 0+ l%(lj ,t)K(r,)is the closed-
loop system matrix.

The following theorem provides a sufficient condition
for the existence of a state feedback controller.

Theorem 2. There exist controller gains (22) such that
the closed-loop uncertain S-MJLS is stochastically
stable, if there exists a set of symmetric, positive defi-
nite mode-dependent matrices X(1), P(i) and a set of
mode-dependent matrices Y(3), Z(%), V(3), and a set of
positive mode dependent scalars €,(7), €,(2), and g,(i,)),
such that the following set of constraints hold for all
possible modes of i

J@)  XWE,@®) Y HE,G) X()
E, ()X() -&,()I 0 0
<0 (24
E, (DY (i) 0 —e, (I 0
X @) 0 0 ~Z(i)
16 S(z')}
. <0 (25)
| () -R()
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X@)=P'G), V(i)=2"@) (26)

where

J@i) = X()A () +ADXG) +Y ()B' (i) +
B(i)Y(i)+¢&,()D,(i)D, (i) +¢&,(i)D, (i) D, (i)

0@ =V +D, A(P()+

l o .
ZZFI. 5,1(1,])755-1

J#i

and S(i) and R(i) are given by (9) and (10), respec-
tively.

Thus, the controller is obtained as K(7) = Y(1) X (7).
Proof. Consider the inequality N(i) <0 as the ro-
bust stability result with N(7) defined by (17), replace
A(i,t)by A(i,1) = A(r,,0)+ B(r,,t)K(r,) as the state
matrix of the closed-loop system, also substitute
A; (h) with A;(h) + A4, (h) as the uncertain TR. Using
the terms of Eq. (2) and Eq. (3) related to uncertain-
ties in the system, N (i) <0 can be written as (29)
which is rewritable as Eq. (30) after using Lemma for
uncertain parts:

A" ()P@)+ P()AGi)+ PG)K()B(G) + K (i)

B ()PGi)+ E,()F, (i,0)D’ (i))P(i) + P(i)D (i)
F,(i,0)E (i) + K' ()E,()F, (i,t)D, (i) P(i)
+P(i)D, () E, (i)F,(i,1),, () K (i) + Z}L 2, (h)

P+ MW (PG)=PG)) <0

(29)

A PO+ PH)AG) + P()K()B()+ I'd (9)

B' (i)P(i) + & ,(i)P(i)D’ (i)D (i) P(i) +

e, ()VE,()E (i) +&,()P(i)Dy (1) D, (i) P(i)
e, (VK ()VE, (VE, (DK@ +D, A;(P(j) (30)

1
+=>" e G, )7l
4 j=1 ij

+> e @) (P()-P®)) <0
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Define V(%) = Z''(i) such that

g
PNPNCEUESS WAL
S e iy (PG - PGY) <V ()

By defining Q(7), S(4) and R(%) in the form of Egs. (29),
(9), and (10) and applying the Schur complement lem-
mato Eq. (81), LMI (25) in Theorem 2 is achieved.

Furthermore Eq. (30) can be rewritten to the form of
(82),ifEq. (31) isused:

A" ()P@)+ P(i)AG) + P()K()B(G) + K (i)
B ()P(i)+€,()P{)D’ (I)D,(i)PGi) + €, (i)
EL()E, (i) +&,()P(1)D, () D, (i) P(i) +

&, ()K" ()E,())E,()K(i)+V(i)<0

(32)

The condition of Eq. (382) is nonlinear in P(¢) and K(3).
In order to find controller gains it is desired to trans-
form (32) into an LMI form, so let X(4) = P'(3). Pre-
and post-multiplying Eq. (32) by X(7), gives Eq. (33):

X()A () +ADX )+ XK' ()B' (i) + B(i)
K(@)X(@i)+¢€,()D,(i)D,()+¢&, ()XDE' (i)
E ()X(i)+e&,()D,()D, (i) + €, (DXHOK' (i)

ELG)E,(D)KG)XE)+ XV (E)X(E) <0

The closed-loop system is stabilizable if Eq. (33)
holds. Defining Y(4) = K(i)X(i) and J(i) along with
the Schur complement lemma makes it possible to
arrange Eq. (33) to the form of LMI (24). Finally, the
state feedback gains are derived as K(i) = Y()X'(?)
which ends the proof.

Numerically testable results

Because of the continuously varying TRs, ﬂAI (h)
checking the condition of Theorem 1 involves solv-
ing a set of infinite number of LMIs (one at each time
instant of &), which is numerically impossible. Thus,
in order to achieve testable criteria, the approach
of approximating the continuously time-varying
TR with its bounds is used here. It is assumed that
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A ;<A (h) < Z—j, where 4 ; and 4; specify the prob-
abilistic lower and upper bounds of the nominal TRs.
It is worth mentioning that the choice of bounds
can guarantee the switching happens between &
and h,,. at 99% confidence level, i.e. Pr{the S-MJLS
jumps between h_, and h__, } > 0.99. This means that
the area of the sojourn-time PDF between & ,, and

h... must be larger than 0.99.

The diagram of Figure 11is depicted to show the uncer-
tain TRs of the S-MJLSs and the related parameters.

Figure 1
Time-varying TRs

4y ()

Transition Rates

max

T
P

Sojourn-Time /

The upcoming theorems provide the testable results
for stability and stabilizability of uncertain S-MJLSs
using TR bounds. Clearly, the results are more conser-
vative than the original theorem, but they are much
easier to be solved by the existing tools.

Theorem 3. The GUS-MJLS of (1) (u(t)=0) is robustly
stochastically stable if there exist symmetric, positive
definite mode-dependent matrices P(i) and a set of
positive mode dependent scalars €,(3), €5(1), and &,(i,f),
such that the following set of constraints hold for all
possible modes of 1

J@  P@HD,G) SO

D ()P(i) —&, () 0 |[<o (34)
S" (i) 0 —R(i)
J()  P@HD, () S()

DL ()P() &, () 0 |<o (35)

s" ) 0 ~R(i)
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where

J(i) = A" ()P(i) + P()AG) + €, () E, ()E (i)

v IR L AN S )
+z./‘:]iijp(])+zzj:l e, N1

T()=A"()P(i)+P(i)AG) + €, ()E () E (i)

N ey @7)
* z./:l AP0 +Zz_,-:1 £, ))m;1
S(i) and R(i) are defined as (9) and (10), respectively.

Proof. According to Theorem 1, the system is robustly
stochastically stable if there exists P(7) such that the
inequality (1) holds. On the other hand, 4,(h) can Be
writtenasthelinear combination /Il.j (h)=¢A it gz/lij
where ¢, and g, are positive and &,+ &,= 1.

The conditions (34) and (35) of Theorem 3 can be
written to the form of the following inequalities

A" @ P3E)+ P(i)A(i)+ &£, (D)P(@I)D, (i)D: )

P(i)+&, ()E ()E,(i)+ Y,

AP+

iZL sl(i,j)ﬁijl +
> e @ H(P)-P() <0

A @O P+ P>I)A(@) + €, (DHP@H)D, (i)D: P3G+

e (VE ()E,()+ Y. A.P(j)+
=y (39)

iz‘sl(i, ' %ZE‘U’ N(PG-P@) <0

J=1 Jj=1

Multiplying (38) by ¢, and (39) by ¢, and adding up the
results leads to the following:

A @OP@E)+P(HAG) +¢e, (@P@IE)D, (i)D: @ P3G)+

e VE,()E, )+ (4 +&4)P(j)+

(40)
izg‘ (i, )y +izez (i, ))(P(j)-P@)) <0

J=1 J=1

By tuning ¢ and ¢, all possible values of /,(h) can be
achieved. Therefore, the condition (21) holds, which
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means that the system is robustly stochastically sta-
ble and the proofis complete.

Similar to Theorem 1, testing the conditions of The-
orem 2 involves solving an infinite number of con-
straints, which is not numerically possible. Applying
the same idea of using the lower and upper bounds of
the transition rates, 4 i 7“[;9 helps to obtain the fol-
lowing numerically testable theorem.

Theorem 4. There exist controller gains (22) such
that the closed-loop uncertain S-MJLS is stochasti-
cally stable, if there exists a set of symmetric, positive
definite mode-dependent matrices X(), P(1), a set of
mode-dependent matrices Y(i), Z(i), V(i) and a set of
positive mode dependent scalars €,(3), (1), and &,(i.9),
such that the following set of constraints hold for all
possible modes of 1

J@)  XWE.G) Y (ELG) X()
E,()X(@) -&,()I 0 0
<0 (41
E, ()Y (i) 0 —e, ()T 0
X (i) 0 0 10)
{g(i) S(z‘)}
- < (42)
s"() -RG)
(i) S@) .
< 43
s"() -R@G) @
X@)=P (i), V(i)=2Z(i) (44)

where

J(i)=X()A () + ADHX @)+ Y ()B' (i) + )
B(i)Y(i)+¢,()D,(i)D, (i) + £,(i)D,(i)D, (i) )
0()=-V(i)+ ), A, (WP(j)+

(46)

1 N .. 2
ZZFI»N &3, Hm I

0() =V @)+, A, (WP(j)+
1 Y @
- e, (i, 'l
4 Z;‘:l,_m‘ A (l ]) i
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S (i) and R(i) are defined as (9) and (10), respectively.
Thus, the controller is obtained as K(7) = Y(3) X (7).

Proof. Following the same techniques used in the
proof of Theorem 3, Theorem 4 can be readily proved.
The details are omitted here due to the similarities.

Remark 4. The condition in Corollaries 1 and 2 are
conservative because they use just the upper and the
lower bounds on . To reduce the conservativeness of
the condition, the transition rates are fractioned into
M sections motivated by Huang and Shi [25]. Based
onthe fractionizing approach, the upcoming corollar-
ies are obtained.

Corollary 1. The GUS-MJLS of (1) (u(t)=0) is robust-
ly stochastically stable if there exist symmetric, posi-
tive definite mode-dependent matrices P(i, m) and a
set of positive mode dependent scalars €,(?), and g,(i)),
such that the following set of constraints hold for all
possible modes of i and m.

J(i,m)  P(i,m)D (i) S(i,m)

Dl ()PGi,m) —&,' () 0 |<o 48)
s’ (i, m) 0 ~R(i) |
T(im)  PGm)D (i) S(i,m)]

D ()PG,m) &, () 0 |<o (49)
s (i, m) 0 ~R() |

where
J(@i,m)=A" (l)P(l m)+ P(i, m)A(l) +e, 10

E ()E, (l)+ZiUmP(],m)+—Z€/1(l ])ﬂ'ul (50)
4

j=1 Jj=1

T(G,m)=A" (i)P(i, m)+ P(i, m)A(i) +&,'(i)

E:(i)EA(i)+ZiymP(] m)+— 254(’ j)JZ'UI

Jj=1

(51)

S(@i,m) = | P(i,m) - P(l,m),..., P(i,m) — P(i —1,m),

(52)
]

P(i,m)—P(i+1,m)..., P(i,m)— P(N,m)

R(i) is defined as (10) and /1 , and A ,, are the lower
and upper bounds for the Mh TR sectlon
Proof. By fractionizing the sojourn time into M sec-

tions, the original semi-Markovian jump linear sys-
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tem can be regarded as an individual system with TRs
varying in a narrower range. By applying Theorem 3
for the individual S-MJLS in the m-th section and
substituting 4 ; and Zl/ by, and /T,/m respective-
ly, this corollary can be proved readily.

Based on the given explanations, the following corol-
lary is also obtained for deriving the less conservative
robust controller gains.

Corollary 2. If there exists a set of symmetric, posi-
tive definite mode-dependent matrices X (i, m), P(i, m),
a set of mode-dependent matrices Y(i, m), Z(i, m), V(i,
m) and a set of positive mode dependent scalars €,(7),
&(1), and &,(i, j), such that the following set of con-
straints hold for all possible i and m, then the controller
K(i,m) = Y(i,m)X '(i,m) stabilizes the system:

J(@i,m) X(@i,m)E’ (i)
E ()X(@i,m) —¢ ()
E ()Y (i,m) 0

X (i, m) 0

Y'(i,m)E, (i) X (i,m)

0 0
<0
—&, ()1 0
0 —~Z(i,m)
{Q(i,m) S(i,m):|
T <0 (54)
S (i,m) —R(i)
|:§(i,m) S(i,m)}
T, <0 (55)
S (i,m) -R(i)
X(@i,m)=P "' (i,m), V(i,m)=2Z"(i,m) (56)
where

J(@i,m) = X(i,m)A" (i) + A@)X(i,m)+Y" (i,m)
B' (i) + B(i)Y(i,m)+¢&,(i)D, (i)D" (i) + (57)
£,(i)D,(i)D, (i)

. . N .
QG my==V@i,m)+Y, Ay, P(jm)+
1 N (58)
_Z ..gj,(i’jam)ﬂz-l
4 J=1.j#i v
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_ . o |
0(i,m)=—V(i,m)+ ZH () +
A (59)
) o )

ZZFL]#; E/l(l’]a m)ﬂ'i/_l

S(i,m)and R(i,m) are defined as (52) and (10), re-
spectively.

Proof. Following the same techniques used in the
proofof Corollary 1, Corollary 2 can be readily proved.
The details are omitted here due to the similarities.

Remark 5. Evidently the sojourn-time fractionizing
technique and the number of sections play an im-
portant role in the stochastic stability analysis and
the corresponding robust controller design for the
GUS-MJLS. However, it is evident that larger M is
more likely to yield feasible controllers and less con-
servative results, but, the effect of using different so-
journ-time fractionizing strategies on the stability
analysis and controller design has not been fully in-
vestigated yet, and deserves further exploration.

Remark 6. The stability conditions of Theorems land
3 and Corollary 1 are in the form of linear matrix in-
equalities and are easily solvable by convex optimi-
zation techniques. Unlike the stability criterion, the
stabilizability conditions and the controller design
procedures of Theorems 2 and 4 and Corollary 2 are
no longer LMIs due to the matrix equations. These
conditions can be effectively solved by the cone com-
plementarity linearization (CCL) algorithm proposed
in[42].

lllustrative example

In this section the effectiveness and flexibility of the
proposed technique are tested by solving the stabili-
zation problem for an industrial continuous stirred
tank reactor (CSTR). The system is modeled as an
uncertain semi-Markov jump linear system. First, a
robust state feedback controller is designed for the
system, and then its performance is compared to the
non-robust controller inspired by [25]. The results
show the superiority and potentials of the proposed
method.

Consider a CSTR with a single nonreversible reaction
A = B, where the chemical species A reacts to form
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the species B. The physical structure of the CSTR is
depicted in Figure 2.

Figure 2
Diagram of the non-isothermal CSTR

F4 CA] Tr CA
Cs F j,r
TC
F, g A>B

C,; is the input concentration of the reactant A, F, is
the flow rate of the reactant A, T, is the inlet tempera-
ture, Cyis the input concentration of the solvent, Fis
the flow rate of the solvent, C, is the output concen-
tration of the reactant A, T is the reaction tempera-
ture, T, is the cooling medium temperature and F' is
the cooling medium flow rate.

It is assumed that the tank is non-isothermal, the
tank is well mixed, and the shaft work is negligible. It
is also assumed that the system is subject to abrupt
external environment changes, such as faults, repairs
and unexpected configuration conversions. Thus, the
system parameters will vary stochastically. The effect
of'the unprecedented environment change is modeled
as a semi-Markov process and the whole system is
considered as a semi-Markovian jump linear system.

By selecting the state-variables as

T r 7 T r7
x0=[c,0" 10" ], un)=[c 0" 7.0 ],
and by using the data provided in [43, 44] the two-

mode semi-Markovian CSTR is presented by the fol-
lowing nominal matrices:

1749 0 252 0
Ab = [19.49 —7.84}’B (= [ 0 5.34}’

1629 0 267 0
A(z)z[w 03 —6 64}’3(2){ 0 521}

It is assumed that, due to the imperfect identification
of the system parameters, each mode contains uncer-
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tainties in dynamics. Switched systems’ uncertainty
matrices are as the following

0 07 0.01 0.5
D ()= E ()=
D [o.oz 2.02} D [0.01 1.03}

0 07 0.03 0.02
D ()= E ()=
»() |:0.01 2.02]’ D [1.01 0.02}’ (61)

D ,(2)=D (), E (2)=E (),
D,(2)=D,(), E, (2)=E, (1)

The governing semi-Markov process of the system is
described by the nominal transition rates of 4 (h) = 2h.
The TRs are a result of sojourn-times with Weibull
distribution function f, (h) = 2k exp[-h’], h 20 with
the scale parameter 1 and shape parameter 2.

Weibull distribution is chosen here because it is a
natural generalization to the exponential distribution
function of sojourn-time [45]. Additionally, it is very
popular in mechanical theories [46] and fault-toler-
ant control systems [47]. This model is a more appro-
priate description for the fault prone CSTR than the
traditional Markovin-type model presented in [43,
44], due to the time-dependent nature of external fac-
tors affecting the system.

It is assumed that through inaccurate identification
of the distribution function parameters, a bound-
ed uncertainty AZ (h), that is supposed to satisfy
|A/1,y (h)| £ 0.7 must be considered.

A possible realization of the semi-Markov chain,
7,, is depicted in Figure 3. By the initial conditions
x,(0) = 0.8, x,(0) = 368.25, and initial mode, 7,= 1, un-
controlled states of the GUS-MJLS become as shown
in Figure 4. The states are clearly unstable.

Figure 3
Changing between two modes of the semi-Markov chain
during the simulation of the CSTR

£ 5l
=}
=
£
2
z 1 ]
wn
0 2 4 6 8

Time (Sec)
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Figure 4
Uncontrolled states of the semi-Markovian CSTR

Open-Loop States
N

Time (Sec)

Considering the control synthesis problem and solv-
ing (53) to (56) with prescribed values [4] &,(D) =
£5(1)=0.5,5,(2) =£,(2) =0.1,and ¢, (i, j) = 0.5, the state
feedback gains become as (62):

-15.75 -0.88 -12.93 -0.93
K(,1)=  K(2,1) = ,
-5.82 027 -5.17 0.04

K2 ~15.99 —0.79
T 579 025 |0

(62)
[—13.48 —0.85:|
2)=
-5.18 0.02

For the sojourn-time following the aforementioned
Weibull distribution, ~,,, and h_, are 0.1 and 4.6, re-
spectively. This means that the jump will occur in
the interval A, , h,,..] With probability greater than
0.99. By setting M to 2 the sojourn-time is parti-
tioned by 0.8326 according to subsection 3.3. There-
fore, when h < 0.8326, the state feedback control law
is K(1,1) for mode 1 and K(2,1) for mode 2; when h >
0.8326, the state feedback control law is K(1, 2) for
mode 1and K(2, 2) for mode 2. The average state tra-
jectories of the controlled systems resulted from the
designed controller are illustrated in Figure 5. Also,

the average control signals are shown in Figure 6 for
10000 runs.

The figures clearly demonstrate that in the presence
of time-varying transition rate matrix and despite the
uncertainties in the TRs and dynamics of each mode,
the states tend to the origin. Also, the control signals
are enough smooth. In fact, the effect of variations
and uncertainties of the TRs is not considerable on
either state trajectories or the control signals.
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Figure 5

Average controlled states by the designed controller for
CSTR for 10000 runs
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Figure 6
Average control signals for the CSTR for 10000 runs
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To further illustrate the effectiveness of the proposed
theorems, denote the settling time T, given by:

x|, <1.5%]x)],, t>T. 63)

Statistics of the settling time are summarized in
Figure 7. The average settling time of the controlled
states is 1.1792 seconds and its standard deviation is
0.0114.

To clarify the necessity of considering the uncer-
tainties in TR matrices and in the dynamics of
semi-Markovian switching system and to show the
superiority of the presented robust algorithm, the
results are compared to the controller provided by
[25]. The controller proposed in Huang and Shi [25]
does not consider the effect of TR uncertainties in
design. Such a controller is obtained as (64) for each
operating mode:
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Figure 7

Statistics of the settling time for controlled states for
10000 runs

1500

1000
5
a)
£
z

500

0

1.16 1.17 1.18 1.19 1.2 1.21
Settling Time of ||x(t)|| (Sec)

-7.57 248 -6.64 —2.41
K(,1) = K2, 1) = ;
-248 1.19 -2.41 1.00
(64)
-7.26 -2.48 —6.17 241
k(1,2) = . K(2,2) =
248 134 241 124

Applying this controller to the system with TR and
dynamic uncertainties with the same initial condi-
tions and the same switching times yields a closed-
loop response as Figure 8, with control signal depict-
ed in Figure 9.

Figure 8

Average controlled states by the controller [25] for CSTR
for 10000 runs
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For the proposed robust controller, it takes an aver-
age 1.1729 seconds for the two states to converge to
zero, whereas by the controller designed in [25], the
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Figure ©

Average control signals of the controller by [25] for CSTR
for 10000 runs
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closed-loop state trajectories become unstable. Thus,
the proposed control design technique outperforms
the existing non-robust methodologies.

Remark 7. In the continuous-time semi-Markov pro-
cess, the probability distribution of the sojourn-time
can be any PDF. In the Markovian jump linear sys-
tems, the sojourn time 4 has an exponential distribu-
tion function. Therefore, the celebrated MJLSs [1]
can be regarded as a special case of the GUS-MJLS
discussed in this paper.

Conclusions

In this paper, a general uncertain semi-Markov jump
linear system is introduced. The system under con-
sideration finds extensive applications since it elim-
inates the need to precisely know TRs and perfectly
identified dynamics of S-MJLSs. It also covers the
concepts of the traditional MJLSs. By combining the
multiple stochastic Lyapunov approach with the TR
fractionizing technique, the numerically testable suf-
ficient criteria are provided to check the stability and
stabilizability of the system.

A state-feedback controller with an acceptable degree
of conservativeness is also designed based on the sta-
bility results. Some possible directions to extend the
proposed scheme are filtering and fault-tolerant con-
trol for semi-Markovian systems subject to uncertain
TRs because of their widespread applications in the
practical systems.
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Summary / Santrauka

This paper investigates the problems of robust stochastic stability and stabilization for a general class of contin-
uous-time semi-Markovian jump linear systems (S-MJLSs). The main contribution of the research is to elim-
inate the limitations of the traditional S-MJLSs with precisely available information by introducing a system
with uncertain, time-varying transition rates (TRs) of the jump process, in addition to the imperfect informa-
tion on the system dynamic matrices. The new system is called the general uncertain semi-Markov jump linear
system (GUS-MJLS); it does not contain certain values of the transition rates, but includes nominal time-de-
pendent values in addition to bounded deviations. It is suitable to describe a broader class of dynamical systems
with estimated information and modeling errors and also covers the concepts of Markov jump linear system
(MJLSs) with time-constant and certain TRs. For this system, the stability is firstly analyzed through the multi-
ple stochastic Lyapunov function approach. Then, based on the stability results, a robust state-feedback control-
ler is formulated. To deal with the time-dependent TRs, a sojourn-time fractionizing technique is used and nu-
merically testable conditions are developed. Finally, discussions on reducing the conservativeness of the robust
theorems are provided. The theoretical results are successfully tested on an industrial continuous stirred tank
reactor (CSTR) subject to stochastically varying environmental conditions. Comparative simulations are also
provided to show the superiority of the presented framework and design method to the existing ones.

Sis straipsnis tiria stochastinio stabilumo patikimumo ir bendryjy nepertraukiamo laiko pusiau Markovo
Suolio tiesiniy sistemy stabilizavimo (S-MJLSs) problemas. Svarbiausias tyrimo tikslas — pasalinti tradicin-
io S-MJLSs trikumus su tikslia prieinama informacija, papildomai prie netobulos informacijos dinaminiy
sistemy matricose jdiegiant sistemg su nekonkreciais, skirtingo laiko suolio proceso rodikliais (TRs). Nau-
ja sistema vadinama bendra nekonkreciy pusiau Markovo Suolio tiesine sistema (angl. General Uncertain
Semi-Markov Jump Linear System (GUS-MJLS)). Joje néra konkrec¢iy peréjimo jverciy, taciau be apriboty
deviacijy dar jtraukti nominalts nuo laiko priklausomi jverc¢iai. Tokia sistema tinkama apibtadinti platesne
dinamisky sistemy klase su apskaiciuota informacija ir kirimo klaidomis; ji taip pat dengia Markovo Suolio
tiesinés sistemos (MJLSs) su laiko konstanta ir tam tikrais TRs, sgvokas. Sios sistemos stabilumas pirmiau-
sia yra analizuojamas per daugialypj stochastinj Liapunovo funkcijos metodg. Tuomet, pasirémus stabilumo
rezultatais, formuluojamas tvirtas griztamojo rysio kontroleris. Tam, kad bity galima susidoroti su nuo laiko
priklausanciais TRs, yra panaudojama gyvavimo laiko frakcionavimo technika ir sukuriamos salygos, kuriy
testavimas gali sugeneruoti skaitine iSraisks. Galiausiai, pateikiama diskusija apie konservatyvaus pozitrio j
teoremy patikimuma mazinima. Teoriniai rezultatai sékmingai iSbandyti industriniame nepertraukiamo rysio
reaktoriuje (CSTR), kuriame vyravo stochastiskai besikei¢iancios aplinkos sglygos. Studija taip pat pateikia
lyginamasias simuliacijas, kurios parodo, kad sitiloma sistema ir planavimo metodas yra pranasesni, nei kiti
egzistuojantys metodai.



