
Information Technology and Control 2017/1/46150

Application of Bio-Inspired
Methods in Intelligent
Gaming Systems

ITC 1/46
Journal of Information Technology
and Control
Vol. 46 / No. 1 / 2017
pp. 150-164
DOI 10.5755/j01.itc.46.1.13872
© Kaunas University of Technology

Application of Bio-Inspired Methods
in Intelligent Gaming Systems

Received 2016/12/23 Accepted after revision 2017/01/19

 http://dx.doi.org/10.5755/j01.itc.46.1.13872

Marcin Woźniak, Dawid Połap
Silesian University of Technology, Institute of Mathematics, Kaszubska 23. 44-100, Gliwice, Poland
e-mails: marcin.wozniak@polsl.pl, dawid.polap@gmail.com

Christian Napoli, Emiliano Tramontana
Department of Mathematics and Informatics, University of Catania,Viale A. Doria 6, 95125 Catania, Italye-mail:
napoli@dmi.unict.it, tramontana@dmi.unict.it

Corresponding author: marcin.wozniak@polsl.pl

Creation of the layout for a board given to a player is usually achieved by means of complex algorithm that is
detailing position of walls, passages, etc. We propose a novel solution based on bio-inspired algorithms adapted
to easily create and then reorganize layouts of board games. The resulting layout presents a maze that is being
automatically generated with given entry and exit point. This structures, because of proposed methodology,
can be recomposed during the game. We show execution time of proposed algorithms and discuss efficiency in
composition of mazes in various dimensions.
KEYWORDS: computational intelligence, heuristic algorithm, automatic control, board games.

Introduction
Bio-Inspired Methods (BIMs) are algorithms that can
simulate various real life behaviors for optimization
and control purposes. The advantage of this type of
simulation is that the implementation of BIMs gives a

powerful tool to solve complex problems. Using them
we can implement a method where potential solu-
tion can be verified by many agents working on the
problem. In the nature fish, birds and other move and

151Information Technology and Control 2017/1/46

live in schools where the individuals join together to
increase chances for optimal breeding and life con-
ditions. Therefore similar approach implemented in
each step of the algorithm gives many responses on
the problem, among which we can choose the most
appropriate one. By performing such operations, the
attempted solutions are improved with each new
step, similarly to the evolution among populations.
Real organisms communicate with each other to take
advantage of the experience of others. In BIMs we im-
plement this communication by devoted modeling of
implemented algorithms. Generally, all bio-inspired
aspects of computer algorithms are achieved by an
appropriate implementation, where with each new
step BIMs can improve subsequently proposed solu-
tions to precisely fit given criterions and solve com-
plex tasks.
Developments in research on possible applications
of BIMs have given various algorithms and attempt-
ed solutions. Behavior of various species of animals
has been modeled to fit optimization and control pur-
poses. Hetmaniok et al. proposed devoted versions of
BIMs to simulate inverse problem of metal purifica-
tion and casting processes [9], [10]. Similarly Brociek
and Słota gave an example of application of these type
of algorithms to fractional heat conduction problem
[3] and [4]. Cpałka et al. discussed application of evo-
lutionary algorithms to control processes [5], where
similarly to BIMs an algorithm was inspired by evolu-
tion of real life organisms. Other various techniques
of Computational Intelligence (CI) are also inspired
by some features of real life organisms. These tech-
niques enable more efficient data processing, as pro-
posed by Rutkowski [23]. Ant population modeling
and swarm techniques were presented to optimize
computation of control systems. Dziwiński et al dis-
cussed fully controllable model of ant colony imple-
mented to cluster text data [7] and identify significant
operating points of simulated objects [8], while Oku-
lewicz and Mandziuk verified application of BIMs
into dynamic routing problems [19]. Kapuściński
et al. proposed devoted application to engineering
[28]. Napoli et al. have presented the application of
an CI approach to improve quality of service in dis-
tributed cloud systems constructed for bit torrent
services [18]. These techniques found very efficient
implementations for image processing. Damaševiči-
us and Ziberkas gave an example of improved energy

consumption for image processing [6], what was pre-
sented in devoted for mobile devices form by Toldinas
et al. [26] and Ignasius and Damaševičius [22], while
Korytkowski et al. proposed innovative image clas-
sification by application of boosting fuzzy approach
[13]. As presented due to the development of BIMs
several alternative solutions to various scientific
problems have been proposed, where BIMs high pre-
cision and easy implementation influenced efficiency.
In the following sections of this article, we present an
application of BIMs approach to automatically build
game scenarios and game management system.

Related works
Computer games are part of commonly used enter-
tainment, where dedicated technologies help to im-
prove expression and develop several skills like hand-
eye coordination. Playability is one of the important
aspects for each game. Nonlinearity and complexity
of levels and action scenarios make the game more
interesting for larger audiences. To achieve such as-
pects it is necessary to develop a very large scenario
or implement an intelligent and automatic manage-
ment system. Lucas and Kendall [15] similarly to
Yannakakis et al. [31] presented various aspects of
games modeling and implementations by application
of various CI techniques, while Lucas discussed po-
tential innovations for further development of games
strategies and scenarios modeled by usage of CI [15].
Wooldridge and Dunne discussed one of vary im-
portant aspect of any computer game: computational
complexity that can significantly influence computer
resources need for playing [27]. Among all aspects of
games there are some of paramount importance: gam-
ification and real-time management, since these two
are conditional for users. Asteriskis and Damaševiči-
us presented gamification patterns in various appli-
cations [1], among them tower games can efficiently
be improved by CI patterns as discussed by Avery et
al. [2] and security games as discussed by Karkowski
and Mańdziuk [12]. Real-time strategies and manage-
ment approaches were presented by Lara-Cabrera et
al. [14].
This article presents a novel approach to develop a
system that will actively assist both board game cre-
ation and online management. In general, a very good
example of 2D board game is maze. We can define it
as an environment having various paths, where the

Information Technology and Control 2017/1/46152

majority leads to a blind end. Most mazes have one
entrance and one exit, however it is possible to create
mazes with several entrances and exits. The solution
we present here is based on novel ideas proposed by
Połap et al. application of BIMs for maze construc-
tion [21] and innovative management systems [20].
In this article we provide a solution for the automatic
creation and management for one entrance and one
exit maze type with improved BIMs devoted to ad-hoc
maze composition. Maze generators very often apply
graph theory algorithms like Prim’s as discussed by
Hirao et al. [11] and Kruskal’s algorithms as discussed
by Najman et al. [17]. In this article, we propose an
alternative solution based on tailored BIMs, where
some similarities can be found in approaches pro-
posed by Świechowski and Mańdziuk for self-adapt-
ing game strategies [24] and automatically personal-
ized contents creation aspects proposed by Togelius
et al. [25]. The proposed novel BIMs-based automatic
system is more efficient. The application of swarm in-
telligence made it possible to easily adapt maze shape
to conditions revealed in real-time. Moreover, a novel
management of the game is proposed to support re-
mote resources what makes it faster and flexibly ad-
just to various scenarios.

Developed bio-inspired methods for 2D maze
composition
We can define Bio-Inspired Methods (BIM) as a tai-
lored algorithmic solutions that implement some
habits common in nature into computer methods
applicable in modeling and control purposes. In such
methods, the movements of swarm particles are mod-
eled to optimize particular function. Modeling is
based on communication, which is unique for each
one of the species of animals, insects or plants. All
particles pass information to the others. In this way
population adapt to natural conditions. We can name
this behavior a swarm intelligence, since all the parti-
cles exchange information and learn from each other.
In this article we present developed application of two
BIMs versions to create 2D mazes in comparison to
approaches proposed by Połap et al. [20-21] and a ded-
icated model for control agent based on swarm intelli-
gence applied to game processing and recomposition
of game boards. To solve the maze, players must find
road from the entrance to the exit, however cannot
cross any wall. In the developed Game Management

System (GMS), an intelligent agent can change the
maze in real-time, while players move from entrance
to exit. This active control solution makes the game
more challenging without any special plot engines.
In the following sections, we present a model of game
management system and dedicated algorithms de-
signed to build 2D mazes, where the maze structure
is developed by an agent using Flower Pollination
Algorithm proposed by Yang [29] or Artificial Bat Al-
gorithm also proposed by Yang [30]. Each of them re-
turns an array of values representing maze. For this
purpose, each value in the array should be evaluated
in accordance with

]1,(ifwalls
],0[ifspaceempty

)(

y
y

y , (1)

xi
t = xi

t-1 + vi
t, (2)

vi
t = vi

t-1 + (xi
t –xfeed)(fmin +β(fmax - fmin)), (3)

xi
new = xi

old +η Avg(vi
t), (4)

75.0 if 1
)75.0,25.0(if 0

25.0 if 1

. (5)

ri
t = ri

t-1 (1 − �
���), (6)

(1)

where

]1,(ifwalls
],0[ifspaceempty

)(

y
y

y , (1)

xi
t = xi

t-1 + vi
t, (2)

vi
t = vi

t-1 + (xi
t –xfeed)(fmin +β(fmax - fmin)), (3)

xi
new = xi

old +η Avg(vi
t), (4)

75.0 if 1
)75.0,25.0(if 0

25.0 if 1

. (5)

ri
t = ri

t-1 (1 − �
���), (6)

 is constant limit value, which decides on
placing the wall.

Artificial Bat Algorithm for maze
composition
Artificial Bat Algorithm (ABA) is one of the new heu-
ristic algorithms [30]. ABA is inspired by echoloca-
tion used by bats to trace prey and scan surroundings
while hunting. This algorithm is based on some initial
assumptions that help to implement bat behavior:
 _ Each bat is able to judge the distance and recognize

whether an object is an obstacle or prey using
echolocation.

 _ All bats are flying with fixed velocity vi and
have sound frequency fmin, which is used in the
phenomenon of echolocation.

 _ Each bat is able to adapt periodicity of sending
pulse as r ∈ [0, 1].

Bats use plants not only as food but also as landmarks
in a field allowing them to find feeding grounds. In
order to create 2D mazes, we assume that the field
where the bats move is a forest with two feeding
grounds (which represent maze exit and entrance).
Bats are searching for the path between the two feed-
ing grounds. While each bat is looking for a way to
another feeding ground, the trajectory of its move-
ments is recorded. A field consists of a grid of cells.
For the developed ABA version, the value of each cell
is increased when crossed by a bat, i.e. 0.25 is added
to the array representing the path of each bat. At the

153Information Technology and Control 2017/1/46

beginning of the algorithm, each cell is marked with
a random value between 0 to 0.2. Then, after the sim-
ulation, if two neighboring cells have value greater or
equal to 0.5 then the wall between them is removed.
The initial bat population in ABA is created at random
by assigning position, velocity vi ∈ [0, 1] and sound
frequency fi ∈ [fmin, fmax]. In each iteration, the position
of the bat i in iteration t is updated by

xi
t = xi

t-1 + vi
t, (2)

where velocity vi is calculated by

vi
t = vi

t-1 + (xi
t –xfeed)(fmin +β(fmax - fmin)), (3)

where β∈ [0, 1] is a random value and xfeed means one
of the feeding grounds. In order to adapt the ABA al-
gorithm to create 2D mazes, we introduced a change
to (2) that

xi
new = xi

old + η Avg(vi
t), (4)

where Avg(vi
t) is the average velocity of all bats in cur-

rent iteration and η value is chosen based on a ran-
dom value of μ according to

]1,(ifwalls
],0[ifspaceempty

)(

y
y

y , (1)

xi
t = xi

t-1 + vi
t, (2)

vi
t = vi

t-1 + (xi
t –xfeed)(fmin +β(fmax - fmin)), (3)

xi
new = xi

old +η Avg(vi
t), (4)

75.0 if 1
)75.0,25.0(if 0

25.0 if 1

. (5)

ri
t = ri

t-1 (1 − �
���), (6)

(5)

The value of the pulse for each bat ri
t is updated in

each iteration t by

]1,(ifwalls
],0[ifspaceempty

)(

y
y

y , (1)

xi
t = xi

t-1 + vi
t, (2)

vi
t = vi

t-1 + (xi
t –xfeed)(fmin +β(fmax - fmin)), (3)

xi
new = xi

old +η Avg(vi
t), (4)

75.0 if 1
)75.0,25.0(if 0

25.0 if 1

. (5)

ri
t = ri

t-1 (1 − �
���), (6) (6)

where 𝛾 is constant. As a fitness function, we use the
distance from the feeding grounds (exits) calculated
by Cartesian metric

2

1

2
,,)(||||

k

t
ki

exit
kj

t
i

exit
jji xxxxL . (7)

xi
t+1 = xi

t + L(xi
t -g*), (8)

t

(7)

Formula (7) allows for the assessment of each indi-
vidual in the population - the smaller the metric val-
ue, the output is closer. The more individuals with
better adaptation means the more convoluted maze
in final stage.

Algorithm 1: ABA to create 2D mazes
Define coefficients: n - size of bat population, m - number of
chosen best bats,
Create position array with random value between (0, 0.2)
and two different exits,
Create population composed of n bats, initial frequency f
and velocity v,

While there is no passage through the maze do
Move bats according to (4),
Update velocity with (3) and position array for each bat,

If rand>ri
t then

Generate a local solution around the selected bat
by (4),

End If
Take the best m bats ranking them according to how
close they are to the exit using (7),
To keep the number of bates in population constant
create for rest new position at random,
If rand>0.8 or f(new position) < f(current position) then

Replace current position with new position,
Change value ri

t using (6),
End If

End While
Recalculate value in position array according to (1),
Return array.

Flower Pollination Algorithm for maze
composition
Xin-She Yang proposed an algorithm inspired by the
pollination process of flowers [29]. Modeling of polli-
nation process adopts assumptions:
 _ The phenomenon of biotic and cross-pollination

is understood as a global pollination. It is a process
during which, pollinators are transferred by Levy
flights.

 _ Abiotic pollination and self-pollination are
interpreted as local pollination.

 _ The process of global and local pollination is
controlled by value of p ∈ [0, 1]. Controllability is
understood as various factors, such as wind.

 _ Every plant has exactly one flower, which produce
only one flower.

At the beginning of the Flower Pollination Algorithm
(FPA) an array of values representing the maze is cre-
ated. Each cell of the maze is given a random value in
range (0,0.2). In order to enhance the visibility of exit
fields, their values are increased up to 0.7. The array is
interpreted as a meadow on which pollen are sprayed.

Information Technology and Control 2017/1/46154

FPA consists of two stages: global and local pollina-
tion. In case of global pollination, pollen is transport-
ed by insects which allow to enlarge the analyzed
area. This solution allows for the reproduction of the
fittest flowers and is modeled as

xi
t+1 = xi

t + L(xi
t -g*), (8)

where xi
t is pollen transported by insects in iteration,

g* means the nearest exit of the maze and L is the
strength of the pollination represented by Levy flights
described as

5

other,0

0,
)(

]
)(2

exp[

2),,(
2
3

x

x
xL , (9)

xi
t+1 = xi

t + (xj
t -–xk

t), (10)

(9)

where μ>0 is minimal step length and 𝛾 is scaling pa-
rameter. Again local pollination occurs by using the
following equation

xi
t+1 = xi

t +𝜀(xj
t –xk

t), (10)

where xj and xk is a pollen from different flowers of the
same plant selected in random way and 𝜀 ∈ [0, 1] is a
step of random walk.

Algorithm 2: FPA to create 2D mazes

Define coefficients: n - size of flower population, m - num-
ber of chosen best flowers, p – global pollination value,
Create position array with random value between (0,0.2)
and two different exits,
Find the best solution g* in initial population (which rep-
resents an exit),

While there is no passage through the maze do
If rand>p then

Perform global pollination by (8) for each flower,
Else

Choose at random two indexes of flowers from
population,
Perform local pollination by (10),

End If
Evaluate population according to how close they are
to the exit using (7),
Take best m flowers to next iteration,
Generate at random n-m new flowers,

Evaluate these new flowers according to how close
they are to the exit using (7),
If L(new flower) < L(old flower) then

Replace old flower with new flower,
For the rest of flowers in the population increase
value of created new flower by 0.2 and decrease
value of old flower by 0.05,

End If
Decrease value of each field by 0.05,

End While
Recalculate value in position array according to (1),
Return array.

Game Management System
Proposed Game Management System (GMS) is a
software module that models actions like create ini-
tial maze, control the game in real-time, and support
other features. Information, after its retrieval, is sent
back to the user. Therefore, it is possible to use the
gaming system even on devices having low process-
ing power. We are considering further improvements
for energy saving with appropriate modeling of com-
puting systems that can efficiently increase quality of
service and support front-end interfaces.
Presented ABA and FPA have been implemented to
create various initial mazes, and their results give a
maze representation. Besides maze creation, another
procedures are responsible to transform maze repre-
sentation into a graphical form that can be presented
to player. When a player starts the game, agents based
on using dedicated swarm intelligence automatically
executes to control game progress. An initial popula-
tion of board control agents is placed in maze. After
each player move these control agents start to change
the board to make the game more difficult. GMS con-
tinues maze modifications until the player reaches
the exit or looses the game trapped in the maze. Maze
real-time recomposition is based on a dedicated ver-
sion of Cuckoo Search Algorithm.

Cuckoo Search Algorithm for real-time
automatic game management
Cuckoo Search Algorithm (CSA) simulates cuckoos
while tossing their eggs to nests of other birds. CSA
for maze recomposition (i.e., changes on the possible
paths that can be followed by the player) has some as-

155Information Technology and Control 2017/1/46

sumptions to increase coherence:
 _ Cuckoos can drop only one egg to randomly chosen

location in each iteration.
 _ Number of locations remains unchanged.
 _ Dropped eggs can be detected by hosts with

probability p ∈ [0, 1], for this reason we place new
cuckoo at random position in the maze.

Cuckoos are moving randomly, since the location of
the new nest they visit is chosen at random. This situ-
ation was modeled with Levy flights. These are pecu-
liar examples of random walks, which are stochastic
processes representing movements in random direc-
tions by equation

6

other,0

0,
)(

]
)(2

exp[

2),,(
2
3 x

x

x
xL

 , (11)

xi
t+1 = xi

t + μ L(x, , μ), (12)

eggtheleave,

eggtheremove,1
)(

p
p

xH t
i

, (13)

(11)

where μ is minimum step length and 𝛾 is scaling pa-
rameter. Levy flight (10) is applied to simulate ran-
dom movements according to equation

6

other,0

0,
)(

]
)(2

exp[

2),,(
2
3 x

x

x
xL

 , (11)

xi
t+1 = xi

t + μ L(x, , μ), (12)

eggtheleave,

eggtheremove,1
)(

p
p

xH t
i

, (13)

(12)

where t is the number of iteration. The decision to
remove it is taken by the host which discovers tossed
egg. Such a situation is described by

6

other,0

0,
)(

]
)(2

exp[

2),,(
2
3 x

x

x
xL

 , (11)

xi
t+1 = xi

t + μ L(x, , μ), (12)

eggtheleave,

eggtheremove,1
)(

p
p

xH t
i

, (13) (13)

where p represents hosts random decision.
Cuckoo Search Algorithm (CSA) has been applied to
automatically manage board games created by ABA
and FPA. We have developed a dedicated version of
CSA tailored for being managed in distributed sys-
tems. Cuckoos are made to move over the maze rep-
resented in two-dimensional arrays created by ABA
or FPA. As before, i.e. during maze creation, a maze
consists of cells, which are held in memory by means
of a representation. Each cell is described by five
values. The first four values represent the walls of
the cell (north, south, west and east, respectively), if
there is a wall then we have value 1 on the respective

position, whereas if there is no wall then we have 0. A
player who happens to be positioned in the cell is giv-
en by the fifth number. If a player is in the cell, pres-
ence is coded as value 2, whereas if in the cell there is
a control cuckoo, then the value is 3, otherwise if cell
is empty then the value is 0. The proposed notation is
shown in Figure 1.

Figure 1
Digital representation of a sample cell in a board maze:
empty cell (at the top), player occupied cell (in the middle),
cuckoo occupied cell (at the bottom)

SL

SLL
xx

t
ij

t
ij

t
ijt

j
t
i

ife

if
),(

, (14)

CSA for active game control and management has
been developed to modify maze construction in re-
al-time. The actions of the control cuckoo depend
on player position. Decisions of cuckoo depend on
the distance from the player and some random coef-
ficients, which are modeled with a dedicated fitness
function

SL

SLL
xx

t
ij

t
ij

t
ijt

j
t
i

ife

if
),(

, (14)

(14)

where S is maze cell value, 𝛼 and 𝜈 ∈ [0, 1] are scal-
ing parameters, Lij

t is Cartesian distance between
positions xi (cuckoo) and xj (player) calculated by (7).
Cuckoos move over the maze. Their function is to au-
tomatically change composition of fields. Therefore
cuckoos control situation in real-time, i.e. while play-
er moves over the maze, cuckoos modify it to make the
game more challenging. Additionally in our system, if

Information Technology and Control 2017/1/46156

player comes across cuckoo then player must play a
subplot game, hence cuckoos are given more time to
change the maze again.

Algorithm 3: CSA to manage game in real-time
Define coefficients: c – size of population, μ – minimum step
length, 𝛾 – scaling parameter, p – hosts random decision,
r – number of random alleys, 𝛼 – the maximum value of the
disposal and created walls,
Create initial population at random positions,

While the game is not finished do
If t>1 then

Generate two random numbers a, b ranging from
0 to 𝛼 that represent number of walls to be re-
moved,

If adaptation<5 then
Remove a random walls within 5 fields,
Create b random walls within 5 fields,

Else
i=0,
While i<r do
Generate random number rand ∈ [0, 1],

If rand>0.5 then
Remove randomly walls within
5 fields,

End If
End While

End If
End If

Move cuckoos to inspect maze according to (11) and
(12),
Hosts decide about situation according to (13),
Evaluate positioned cuckoos according to (14),
Best cuckoos go to next round and the rest of cuckoos
are positioned at random over the maze,
t++,
End While

Real-time game board controlling
An intelligent control procedure is used, which han-
dles special stop conditions to decide if there is still
need to change paths for the player connected to the
developed GMS. This procedure is also controlling
the way from the entrance to the exit. In the GMS af-
ter each iteration we check the passage entrance-ex-
it through the maze. If the passage exists, a board is
complete and can be presented to the player. Other-
wise, supervising procedure returns the board to CSA
for additional changes. Stop conditions are based on
Cartesian metric defined in (7), which show the way

between next two cells i and j in the maze on the way
from entrance to exit. If Lij = 1, it means that supervis-
ing agent (and also player) can move from one cell to
another only horizontally or vertically, excluding di-
agonal passages across the maze board. Control pro-
cedure is presented in Algorithm 4 for which applied
supervising agents based model to verify the compo-
sition is run as presented in Algorithm 5, while sche-
matic system composition is presented in Figure 2.

Algorithm 4: Control agent decision in real-time
Call algorithms: ABA or FPA to create an array of digital
numbers representing 2D maze,
Create bitmap to present to the player,

For all values v in array do
If v is 1 then

If r>0 then
If random value is lower than 0.5 then

Create a wall,
End If

Else
Create wall,

End If
Else

For all neighbor of v do
If neighbor is 1 then

Create a wall,
End If

End For
End If

End For

Algorithm 5: Supervisors verification of the passage
For all entrances do

While no movement is possible then
Remove fields in the row that were supervised in
previous step,

For all neighbor fields do
If Lij = 1 is not true or there is a wall then

Delete a field,
End If

End For
Select randomly a movement,
End While
If last field is entrance then

There is way out,
Else

There is no way out,
End If

End For

157Information Technology and Control 2017/1/46

Figure 2
Model of the Game Management System with implemented Bio-Inspired Methods to create mazes and recompose them in
real-time

9

GAME MANAGEMENT SYSTEM

GAME MANAGEMENT
SERVER

0101011010
0101011010

0101011010
0101011010

0101011010
0101011010

0101011010
0101011010

0101011010
0101011010

USERS
GAME

REQUESTS

USERS
REQUEST

MANAGEMENT

MAZE BOARDS
COMPOSITION

FOR EACH USER

0101011010
0101011010

0101011010
0101011010

0101011010
0101011010

0101011010
0101011010

0101011010
0101011010

GAME CONTROL

GAMING PROCESS WITH BIO-INSPIERD
REAL-TIME CONTROL

INTELLIGENT
CONTROL AGENT

Cuckoos are placed
on the maze

Player moves and
cuckoos investigate
maze

Cuckoos invetigate maze
After maze
modification
player moves

MAZE RECOMPOSITION

BIO-INSPIRED MAZE COMPOSITION

ARTIFICIAL BAT
ALGORITHM

FLOWER
POLLINATION
ALGORITHM

USERS

CUCKOO SEARCH
ALGORITHM

CUCKOO SEARCH
ALGORITHM

BIO-INSPIRED

Information Technology and Control 2017/1/46158

Experimental results
Proposed GMS was implemented to compose var-
ious mazes with an automatic control procedures.
In benchmark tests we have compared solutions
presented in Połap et al. [21] with ABA and FPA.
The parameters used for the development are as
follows (their definitions are given in the previous
sections).
 _ ABA: n=30, m=10, r=25,
 _ FPA: n=30, m=10, p=0.4, r=25,
 _ CSA: n=4, μ = 0.7, 𝛾 = 0.6, 𝜈 = 0.4, p = 0.3.

Developed methods were applied to compose various
resolutions and combinations of 2D mazes. As part of
the tests for the proposed method, several mazes were
generated for different sizes for each of the examined
algorithms. Results of the timing for examined proce-
dures are presented in Table 1.
Figure 3 presents comparison of creation times
benchmark tests for 2D maze boards when using
ABA and FPA in comparison to AACA and ABCA.
Analyzing benchmark tests results we can see that
for board composed of up to 3000 cells ABA is sim-
ilar to AACA and about 100 seconds slower than
ABCA and FPA, however FPA outperforms all other
methods. All four of examined solutions are similar-
ly efficient for boards of about 3000 fields. Between
3000 to 6000 fields AACA composes mazes faster

Table 1
Comparison of experimental results for implemented
methods of maze composition

Fi
el

ds

Artificial Ant
Colony Algo-

rithm
(AACA)

Artificial
Bee

Colony
Algorithm

(ABCA)

Artificial
Bat

Algorithm
(ABA)

Flower Polli-
nation

Algorithm
(FPA)

25 12 11 15 10
500 52 50 70 54

1000 139 79 137 93

1500 230 189 292 163

2000 345 258 339 268

2500 420 328 402 373

3000 489 520 492 478

3500 513 598 623 700

4000 521 569 702 729

4500 547 610 743 741

6000 630 663 865 798

6500 689 684 884 800

7000 713 723 940 815

7500 735 745 973 835

8000 756 771 999 879
8500 777 780 1016 939

9000 895 878 1203 985

9500 989 1045 1357 1209

10000 1102 1188 1482 1490

Figure 3
Comparison

chart of
composition

time for various
dimensions of

boards composed
by ABA and FPA

12

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TI
M

E
 [s

]

NUMBER OF FIELDS

AACA ABCA

ABA FPA

159Information Technology and Control 2017/1/46

than all of the methods (about 200 seconds fast-
er than FPA and ABA), however between 6000 to
10000 cells AACA and ABCA are the fastest meth-
ods that outperformed FPA, and ABA altogether of
at least 200 seconds. For very big board of about
10000 fields we see that AACA is more efficient and
about 10% faster than ABCA and about 20% faster
than ABA and FPA. FPA is most efficient for small
board perfect for portable electronic devices, what
gives proof to proposed methodology.
Proposed CSA control has been applied to control
changes of these mazes in real-time due to player
actions. Management system has been tested em-

Figure 4
Sample Game Management System work for 30x94 fields maze: in the first row random positioning of cuckoos over
the maze while players movement, in the second row after maze recomposition cuckoos are approaching player to
investigate the board, in the third row player came across a cuckoo investigating the maze, in the four row player is
finishing the maze reaching the exit

12

pirically for each of generated solutions. A small
number of cuckoos (4 control agents) makes the
GMS perform all ad-hoc changes in composition of
boards while minimizing changes to current laby-
rinth form. Distance from player is also taken into
account, i.e. the smaller the distance from the play-
er the more modifications agents do. Two game sce-
narios are presented in Figure 4 for 30x30 fields and
in Figure 5 for 30x94 fields. The while loops in Algo-
rithms 1 and 2 ensure creation of the maze with full
passage – however, for a very large size, generation
time will be correspondingly longer independently
of applied parameters.

Information Technology and Control 2017/1/46160

Figure 5
Sample Game Management System work for 30x30 fields maze: in the first row from left to right 1) random positioning
of cuckoos over the maze, 2) player movement, 3) cuckoos fly to investigate the maze and an intelligent agent use these
investigations results to decide on board modifications, in the second row from left to right: 4) player moves over changed
board, 5) cuckoos fly to investigate the board, 6) the intelligent agent use investigations to modify the maze and the player
encounters a cuckoo in the move, in the last row from left to right: 7) cuckoos fly to investigate maze, 8) the intelligent
agent decides on changes and player moves, 9) cuckoos fly to investigate and after modification of the board the player
reaches exit in final movement

Figure 4 (continuation)

161Information Technology and Control 2017/1/46

Figure 5 (continuation)

Conclusions
The presented solution gives opportunity to mod-
ify linearity of the storyline in real-time. Applied
Bio-Inspired Methods are simple to implement and
enable easy calculations. Presented GMS has many
advantages, including ability to dynamically compose
various quests for players. Because of adaptation of
intelligent control agents (based on Cuckoo Search
Algorithm) the system can frequently modify sto-
ryline in real-time, hence realizing ad-hoc interac-
tions with player.
In two-dimensional situations, where player has an
opportunity to watch entire game board - the big-
ger the maze, the player’s attention is smaller. This
solution costs more time to prepare it (see Figure
3). In contrast, in case of three-dimensional, where
player sees the board in terms of its position – the

labyrinth may be suitably small. Game management
system with a proper calibration can looping path for
unaware player. What is more, the situation where a
small maze is copied in real time is also possible, but
more difficult to manage – the population in man-
agement system must be restarted while the maze is
copied. The player can repeatedly play the game, and
each time a new and interactive game can be present-
ed to him/her what is an advantage of the solution.
From our benchmark tests we can conclude that FPA
is most efficient for mazes up to 3000 cells, and above
this limit AACA has shown best results, but for big
boards ABCA can show similar efficiency as AACA.
Maze generation is a complex process however pre-
sented methods are efficient and created boards are
unique. Moreover, application of Bio-Inspired Meth-
ods enable us to implement a more detailed graphics,
since efficiency of maze composition and control al-

Information Technology and Control 2017/1/46162

gorithms keep the processor available for graphical-
ly-related tasks. Since these results are promising
we hope to develop dedicated versions for 3D mazes,
however this task is much more demanding. For this
type of games we need very efficient methods to com-
pose 3D boards.

Final remarks
In this paper we have examined Bio-Inspired Meth-
ods to compose and manage 2D mazes in real-time.
Implemented algorithms were used to create boards
of various mazes, where in particular we were inter-
ested in application of Flower Pollination Algorithm
and Artificial Ant Colony Algorithm in comparison to
other proposed methods.
In presented system we have developed real-time con-
trol agents. These are also using Bio-Inspired Method
to control maze and recompose it ad-hoc to make the
game more demanding for player. Applied Cuckoo

Search Algorithm helped to implement intelligent
agents that move over maze board. These agents are
able to control situation and recompose the structure
of the maze while player moves from entrance to exit.
While performing dynamic creation of mazes, pro-
posed solution works in real-time. Presented Game
Management System is using swarm intelligence to
efficiently process data, which result in simple calcu-
lations. Therefore player can use the system, which is
ad-hoc reacting to the action. Moreover, simple calcu-
lation means faster response, and hence less process-
ing power is needed.

Acknowledgments
This work has been partially supported by project
PRIME funded by the Italian Ministry of University
and Research within POR FESR Sicilia 2007-2013
framework and Operational Programme: Knowledge
Education Development financed by the European
Social Fund under grant application POWR.03.03.00-
00-P001/15.

References
1. D. Aseriskis, R. Damasevicius. Gamification Pat-

terns for Gamification Applications, International
Conference on Intelligent Human Computer Inter-
action – IHCI’2014, Evry, France, 2014, 83-90, DOI:
10.1016/j.procs.2014.11.013. https://doi.org/10.1016/j.
procs.2014.11.013

2. P. Avery, J. Togelius, E. Alistar, R. van Leeuwen. Com-
putational intelligence and tower defence games. IEEE
Congress of Evolutionary Computation, New Orleans,
USA, 2011, 1084-1091, DOI: 10.1109/CEC.2011.5949738.
https://doi.org/10.1109/CEC.2011.5949738

3. R. Brociek, D. Słota. Application and comparison of intel-
ligent algorithms to solve the fractional heat conduction
inverse problem. Information Technology and Control,
2016, 45(2), 184-194, DOI: 10.5755/j01.itc.45.2.13716.
https://doi.org/10.5755/j01.itc.45.2.13716

4. R. Brociek, D. Słota. Application of intelligent algorithm
to solve the fractional heat conduction inverse problem.
Communications in Computer and Information Science
– ICIST’2016, 2016, 639, 369-379, DOI: 10.1007/978-3-

319-46254-7_29. https://doi.org/10.1007/978-3-319-
46254-7_29

5. K. Cpałka, K. Łapa, A. Przybyl. A new approach to de-
sign of control systems using genetic programming.
Information Technology and Control, 2015, 44(4),
433-442, DOI: 10.5755/j01.itc.44.4.10214. https://doi.
org/10.5755/j01.itc.44.4.10214

6. R. Damaševičius, G. Ziberkas. Energy Consumption
and Quality of Approximate Image Transformation.
Elektronika Ir Elektrotechnika, 2012, 4, 79-82, DOI:
10.5755/j01.eee.120.4.1459. https://doi.org/10.5755/j01.
eee.120.4.1459

7. P. Dziwiński, L. Bartczuk, J. T. Starczewski. Fully Con-
trollable Ant Colony System for Text Data Clustering.
Lecture Notes in Computer Science – ICAISC’2012,
2012, 7269, 199-205, DOI: 10.1007/978-3-642-29353-5.
https://doi.org/10.1007/978-3-642-29353-5

8. P. Dziwiński, L. Bartczuk, A. Przybyl, E. Avedyan. A
New Algorithm for Identification of Significant Operat-

163Information Technology and Control 2017/1/46

ing Points Using Swarm Intelligence. Lecture Notes in
Artificial Intelligence – ICAISC’2014, 2014, 8468, 349-
362, DOI: 10.1007/978-3-319-07176-3_31. https://doi.
org/10.1007/978-3-319-07176-3_31

9. E. Hetmaniok, D. Słota, A. Zielonka. Experimental Veri-
fication of Immune Recruitment Mechanism and Clon-
al Selection Algorithm Applied for Solving the Inverse
Problems of Pure Metal Solidification. Int. Comm. Heat
& Mass Transf., 2013, 47, 7-14, DOI: j.icheatmasstrans-
fer.2013.07.009.

10. E. Hetmaniok, D. Słota, A. Zielonka. Solution of the
Inverse Continuous Casting Problem with the Aid of
Modified Harmony Search Algorithm. Lecture Notes
in Computer Science – PPAM’2014, 2014, 8384, 402-
411, DOI: 10.1007/978-3-642-55224-3_38. https://doi.
org/10.1007/978-3-642-55224-3_38

11. A. Hirao, Y. Nomura, H. Yonezu, H. Takeshita. Prim’s
algorithm based p2mp energy-saving routing design for
midori. IEEE COIN 2012 – IEEE International Confer-
ence on Optical Internet, Yokohama, Kanagawa, 2012,
29-31, 86-93.

12. M. Swiechowski, J. Mandziuk. Fast interpreter for log-
ical reasoning in general game playing. J. Log. Comput.,
2016, 26(5), 1697-1727, DOI 10.1093/logcom/exu058.
https://doi.org/10.1093/logcom/exu058

13. M. Korytkowski, L. Rutkowski, R. Scherer. Fast
image classification by boosting fuzzy classifi-
ers. Information Sciences, 2016, 327, 175-182, DOI:
10.1016/j.ins.2015.08.030. https://doi.org/10.1016/j.
ins.2015.08.030

14. R. Lara-Cabrera, C. Cotta, A. Fernández-Leiva. A re-
view of computational intelligence in RTS games.
IEEE Symposium on Foundations of Computation-
al Intelligence, Singapore, 2013, 16-19, 114-121, DOI:
10.1109/FOCI.2013.6602463. https://doi.org/10.1109/
FOCI.2013.6602463

15. S. Lucas, G. Kendall. Evolutionary computation and
games. IEEE Computational Intelligence Magazine,
2006, 1(1), 10-18, DOI: 10.1109/MCI.2006.1597057.
https://doi.org/10.1109/MCI.2006.1597057

16. S. Lucas. Computational intelligence and games: Chal-
lenges and opportunities. International Journal of
Automation and Computing, 2008, 5(1), 45-57, DOI:
10.1007/s11633-008-0045-8. https://doi.org/10.1007/
s11633-008-0045-8

17. L. Najman, J. Cousty, B. Perret. Playing with kruskal:
algorithms for morphological trees in edge-weighted

graphs. Lecture Notes in Computer Science – MMA-
SIP’2013, 2013, 7883, 135-146.

18. C. Napoli, G. Pappalardo, E. Tramontana. A mathemat-
ical model for file fragment diffusion and a neural pre-
dictor to manage priority queues over BitTorrent. Ap-
plied Mathematics and Computer Science, 2016, 26(1),
147-160, DOI: 10.1515/amcs-2016-0010. https://doi.
org/10.1515/amcs-2016-0010

19. J. Mandziuk, A.Zychowski. A memetic approach to vehicle
routing problem with dynamic requests. Appl. Soft Com-
put., 2016, 48, 522-534, DOI 10.1016/j.asoc.2016.06.032.
https://doi.org/10.1016/j.asoc.2016.06.032

20. D. Połap, M. Woźniak, C. Napoli, E. Tramontana. Re-
al-Time Cloud-based Game Management System via
Cuckoo Search Algorithm. International Journal of
Electronics and Telecommunications, 2015, 61(4),
333-338, DOI: 10.1515/eletel-2015-0043. https://doi.
org/10.1515/eletel-2015-0043

21. D. Połap, M. Woźniak, C. Napoli, E. Tramontana. Is
swarm intelligence able to create mazes? International
Journal of Electronics and Telecommunications, 2015,
61(4), 305-310, DOI: 10.1515/eletel-2015-0039. https://
doi.org/10.1515/eletel-2015-0039

22. I. Martisius, R. Damaševičius. A Prototype SSVEP
Based Real Time BCI Gaming System. Comp. Int. and
Neurosc., 2016, DOI: 10.1155/2016/3861425. https://
doi.org/10.1155/2016/3861425

23. L. Rutkowski, M. Jaworski, L. Pietruczuk, P. Duda. A
New Method for Data Stream Mining Based on the
Misclassification Error. IEEE Trans. Neural Netw.
Learning Syst., 2015, 26(5), 1048-1059, DOI: 10.1109/
TNNLS.2014.2333557. https://doi.org/10.1109/TNN-
LS.2014.2333557

24. M. Swiechowski, J. Mandziuk, Yew Soon Ong: Special-
ization of a UCT-Based General Game Playing Program
to Single-Player Games. IEEE Trans. Comput. Intellig.
and AI in Games, 2016, 8(3), 218-228, DOI 10.1109/
TCIAIG.2015.2391232. https://doi.org/10.1109/TCI-
AIG.2015.2391232

25. J. Togelius, R. Nardi, S. Lucas. Towards automat-
ic personalised content creation for racing games.
IEEE Symposium on Computational Intelligence and
Games, Honolulu, Hawaii, 2007, 1-5, 252-259, DOI:
10.1109/CIG.2007.368106. https://doi.org/10.1109/
CIG.2007.368106

26. J. Toldinas, R. Damaševičius, A. Venckauskas, T.
Blazauskas, J. Ceponis. Energy Consumption of Cryp-

Information Technology and Control 2017/1/46164

tographic Algorithms in Mobile Devices. Elektron-
ika Ir Elektrotechnika, 2014, 20(5), 158-161, DOI:
10.5755/j01.eee.20.5.7118.  https://doi.org/10.5755/j01.
eee.20.5.7118

27. M. Wooldridge, P. Dunne. On the computational complex-
ity of coalitional resource games. Artificial Intelligence,
2006, 170(10), 835–871, DOI: 10.1016/j.artint.2006.03.003.
https://doi.org/10.1016/j.artint.2006.03.003

28. T. Kapuścinski, R. K. Nowicki, C. Napoli: Application of
Genetic Algorithms in the Construction of Invertible
Substitution Boxes. Lecture Notes in Artificial Intelli-
gence – ICAISC’2016, 2016, 380-391, DOI: 10.1007/978-
3-319-39378-0_33. https://doi.org/10.1007/978-3-319-
39378-0_33

29. X-S. Yang. Flower pollination algorithm for global op-
timization. Unconventional computation and natural
computation, Springer, Berlin-Heidelberg, 2012, 240-
249. https://doi.org/10.1007/978-3-642-32894-7_27

30. X-S. Yang. A new metaheuristic bat-inspired algorithm.
Nature inspired cooperative strategies for optimization
(NICSO 2010), Springer Berlin Heidelberg, 2010, 65-74.
https://doi.org/10.1007/978-3-642-12538-6_6

31. G. Yannakakis, J. Togelius. A Panorama of Artificial and
Computational Intelligence in Games. IEEE Trans.
Comput. Intellig. and AI in Games, 2015, 7(4), 317-
335, DOI: 10.1109/TCIAIG.2014.2339221. https://doi.
org/10.1109/TCIAIG.2014.2339221

Summary / Santrauka
Creation of the layout for a board given to a player is usually achieved by means of complex algorithm that is
detailing position of walls, passages, etc. We propose a novel solution based on bio-inspired algorithms adapted
to easily create and then reorganize layouts of board games. The resulting layout presents a maze that is being
automatically generated with given entry and exit point. This structures, because of proposed methodology,
can be recomposed during the game. We show execution time of proposed algorithms and discuss efficiency in
composition of mazes in various dimensions.

Žaidėjų naudojamų stalo žaidimų lentų išplanavimas dažniausiai kuriamas naudojant kompleksinį algoritmą,
kuris detalizuoja sienų, praėjimų ir kt., poziciją. Mes siūlome naują sprendimą, pagrįstą bio-įkvėptais
algoritmais, kuriuos pritaikius galima nesunkiai sukurti ir reorganizuoti stalo žaidimų lentų išplanavimą.
Gaunamas išplanavimas turi automatiškai sugeneruotą labirintą su įėjimu ir išėjimu. Siūlomos metodikos dėka,
šios struktūros gali būti reorganizuojamos žaidimo metu. Straipsnyje parodome siūlomų algoritmų vykdymo
laiką ir aptariame įvairių dimensijų labirintų struktūros efektyvumą.

