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Creation of the layout for a board given to a player is usually achieved by means of complex algorithm that is 
detailing position of walls, passages, etc. We propose a novel solution based on bio-inspired algorithms adapted 
to easily create and then reorganize layouts of board games. The resulting layout presents a maze that is being 
automatically generated with given entry and exit point. This structures, because of proposed methodology, 
can be recomposed during the game. We show execution time of proposed algorithms and discuss efficiency in 
composition of mazes in various dimensions.
KEYWORDS: computational intelligence, heuristic algorithm, automatic control, board games.

Introduction
Bio-Inspired Methods (BIMs) are algorithms that can 
simulate various real life behaviors for optimization 
and control purposes. The advantage of this type of 
simulation is that the implementation of BIMs gives a 

powerful tool to solve complex problems. Using them 
we can implement a method where potential solu-
tion can be verified by many agents working on the 
problem. In the nature fish, birds and other move and 
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live in schools where the individuals join together to 
increase chances for optimal breeding and life con-
ditions. Therefore similar approach implemented in 
each step of the algorithm gives many responses on 
the problem, among which we can choose the most 
appropriate one. By performing such operations, the 
attempted solutions are improved with each new 
step, similarly to the evolution among populations. 
Real organisms communicate with each other to take 
advantage of the experience of others. In BIMs we im-
plement this communication by devoted modeling of 
implemented algorithms. Generally, all bio-inspired 
aspects of computer algorithms are achieved by an 
appropriate implementation, where with each new 
step BIMs can improve subsequently proposed solu-
tions to precisely fit given criterions and solve com-
plex tasks.
Developments in research on possible applications 
of BIMs have given various algorithms and attempt-
ed solutions. Behavior of various species of animals 
has been modeled to fit optimization and control pur-
poses. Hetmaniok et al. proposed devoted versions of 
BIMs to simulate inverse problem of metal purifica-
tion and casting processes [9], [10]. Similarly Brociek 
and Słota gave an example of application of these type 
of algorithms to fractional heat conduction problem 
[3] and [4]. Cpałka et al. discussed application of evo-
lutionary algorithms to control processes [5], where 
similarly to BIMs an algorithm was inspired by evolu-
tion of real life organisms. Other various techniques 
of Computational Intelligence (CI) are also inspired 
by some features of real life organisms. These tech-
niques enable more efficient data processing, as pro-
posed by Rutkowski [23]. Ant population modeling 
and swarm techniques were presented to optimize 
computation of control systems. Dziwiński et al dis-
cussed fully controllable model of ant colony imple-
mented to cluster text data [7] and identify significant 
operating points of simulated objects [8], while Oku-
lewicz and Mandziuk verified application of BIMs 
into dynamic routing problems [19]. Kapuściński 
et al. proposed devoted application to engineering 
[28]. Napoli et al. have presented the application of 
an CI approach to improve quality of service in dis-
tributed cloud systems constructed for bit torrent 
services [18]. These techniques found very efficient 
implementations for image processing. Damaševiči-
us and Ziberkas gave an example of improved energy 

consumption for image processing [6], what was pre-
sented in devoted for mobile devices form by Toldinas 
et al. [26] and Ignasius and Damaševičius [22], while 
Korytkowski et al. proposed innovative image clas-
sification by application of boosting fuzzy approach 
[13]. As presented due to the development of BIMs 
several alternative solutions to various scientific 
problems have been proposed, where BIMs high pre-
cision and easy implementation influenced efficiency. 
In the following sections of this article, we present an 
application of BIMs approach to automatically build 
game scenarios and game management system.

Related works
Computer games are part of commonly used enter-
tainment, where dedicated technologies help to im-
prove expression and develop several skills like hand-
eye coordination. Playability is one of the important 
aspects for each game. Nonlinearity and complexity 
of levels and action scenarios make the game more 
interesting for larger audiences. To achieve such as-
pects it is necessary to develop a very large scenario 
or implement an intelligent and automatic manage-
ment system. Lucas and Kendall [15] similarly to 
Yannakakis et al. [31] presented various aspects of 
games modeling and implementations by application 
of various CI techniques, while Lucas discussed po-
tential innovations for further development of games 
strategies and scenarios modeled by usage of CI [15]. 
Wooldridge and Dunne discussed one of vary im-
portant aspect of any computer game: computational 
complexity that can significantly influence computer 
resources need for playing [27]. Among all aspects of 
games there are some of paramount importance: gam-
ification and real-time management, since these two 
are conditional for users. Asteriskis and Damaševiči-
us presented gamification patterns in various appli-
cations [1], among them tower games can efficiently 
be improved by CI patterns as discussed by Avery et 
al. [2] and security games as discussed by Karkowski 
and Mańdziuk [12]. Real-time strategies and manage-
ment approaches were presented by Lara-Cabrera et 
al. [14].
This article presents a novel approach to develop a 
system that will actively assist both board game cre-
ation and online management. In general, a very good 
example of 2D board game is maze. We can define it 
as an environment having various paths, where the 
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majority leads to a blind end. Most mazes have one 
entrance and one exit, however it is possible to create 
mazes with several entrances and exits. The solution 
we present here is based on novel ideas proposed by 
Połap et al. application of BIMs for maze construc-
tion [21] and innovative management systems [20]. 
In this article we provide a solution for the automatic 
creation and management for one entrance and one 
exit maze type with improved BIMs devoted to ad-hoc 
maze composition. Maze generators very often apply 
graph theory algorithms like Prim’s as discussed by 
Hirao et al. [11] and Kruskal’s algorithms as discussed 
by Najman et al. [17]. In this article, we propose an 
alternative solution based on tailored BIMs, where 
some similarities can be found in approaches pro-
posed by Świechowski and Mańdziuk for self-adapt-
ing game strategies [24] and automatically personal-
ized contents creation aspects proposed by Togelius 
et al. [25]. The proposed novel BIMs-based automatic 
system is more efficient. The application of swarm in-
telligence made it possible to easily adapt maze shape 
to conditions revealed in real-time. Moreover, a novel 
management of the game is proposed to support re-
mote resources what makes it faster and flexibly ad-
just to various scenarios.

Developed bio-inspired methods for 2D maze 
composition
We can define Bio-Inspired Methods (BIM) as a tai-
lored algorithmic solutions that implement some 
habits common in nature into computer methods 
applicable in modeling and control purposes. In such 
methods, the movements of swarm particles are mod-
eled to optimize particular function. Modeling is 
based on communication, which is unique for each 
one of the species of animals, insects or plants. All 
particles pass information to the others. In this way 
population adapt to natural conditions. We can name 
this behavior a swarm intelligence, since all the parti-
cles exchange information and learn from each other. 
In this article we present developed application of two 
BIMs versions to create 2D mazes in comparison to 
approaches proposed by Połap et al. [20-21] and a ded-
icated model for control agent based on swarm intelli-
gence applied to game processing and recomposition 
of game boards. To solve the maze, players must find 
road from the entrance to the exit, however cannot 
cross any wall. In the developed Game Management 

System (GMS), an intelligent agent can change the 
maze in real-time, while players move from entrance 
to exit. This active control solution makes the game 
more challenging without any special plot engines.
In the following sections, we present a model of game 
management system and dedicated algorithms de-
signed to build 2D mazes, where the maze structure 
is developed by an agent using Flower Pollination 
Algorithm proposed by Yang [29] or Artificial Bat Al-
gorithm also proposed by Yang [30]. Each of them re-
turns an array of values representing maze. For this 
purpose, each value in the array should be evaluated 
in accordance with
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 is constant limit value, which decides on 
placing the wall. 

Artificial Bat Algorithm for maze 
composition
Artificial Bat Algorithm (ABA) is one of the new heu-
ristic algorithms [30]. ABA is inspired by echoloca-
tion used by bats to trace prey and scan surroundings 
while hunting. This algorithm is based on some initial 
assumptions that help to implement bat behavior:
 _ Each bat is able to judge the distance and recognize 

whether an object is an obstacle or prey using 
echolocation.

 _ All bats are flying with fixed velocity vi and 
have sound frequency fmin, which is used in the 
phenomenon of echolocation.

 _ Each bat is able to adapt periodicity of sending 
pulse as r ∈ [0, 1].

Bats use plants not only as food but also as landmarks 
in a field allowing them to find feeding grounds. In 
order to create 2D mazes, we assume that the field 
where the bats move is a forest with two feeding 
grounds (which represent maze exit and entrance). 
Bats are searching for the path between the two feed-
ing grounds. While each bat is looking for a way to 
another feeding ground, the trajectory of its move-
ments is recorded. A field consists of a grid of cells. 
For the developed ABA version, the value of each cell 
is increased when crossed by a bat, i.e. 0.25 is added 
to the array representing the path of each bat. At the 
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beginning of the algorithm, each cell is marked with 
a random value between 0 to 0.2. Then, after the sim-
ulation, if two neighboring cells have value greater or 
equal to 0.5 then the wall between them is removed.
The initial bat population in ABA is created at random 
by assigning position, velocity vi ∈ [0, 1] and sound 
frequency fi ∈ [fmin, fmax]. In each iteration, the position 
of the bat i in iteration t is updated by

xi
t = xi

t-1 + vi
t, (2)

where velocity vi is calculated by

vi
t = vi

t-1 + (xi
t –xfeed)(fmin +β(fmax - fmin)), (3)

where β∈ [0, 1] is a random value and xfeed means one 
of the feeding grounds. In order to adapt the ABA al-
gorithm to create 2D mazes, we introduced a change 
to (2) that

xi
new = xi

old + η Avg(vi
t), (4)

where Avg(vi
t) is the average velocity of all bats in cur-

rent iteration and η value is chosen based on a ran-
dom value of μ according to
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where 𝛾 is constant. As a fitness function, we use the 
distance from the feeding grounds (exits) calculated 
by Cartesian metric
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Formula (7) allows for the assessment of each indi-
vidual in the population - the smaller the metric val-
ue, the output is closer. The more individuals with 
better adaptation means the more convoluted maze 
in final stage.

Algorithm 1: ABA to create 2D mazes
Define coefficients: n - size of bat population, m - number of 
chosen best bats, 
Create position array with random value between (0, 0.2) 
and two different exits,
Create population composed of n bats, initial frequency f 
and velocity v,

While there is no passage through the maze do
Move bats according to (4), 
Update velocity with (3) and position array for each bat,

If rand>ri
t then

Generate a local solution around the selected bat 
by (4),

End If
Take the best m bats ranking them according to how 
close they are to the exit using (7),
To keep the number of bates in population constant 
create for rest new position at random,
If rand>0.8 or f(new position) < f(current position) then

Replace current position with new position,
Change value ri

t using (6),
End If

End While
Recalculate value in position array according to (1),
Return array.

Flower Pollination Algorithm for maze 
composition
Xin-She Yang proposed an algorithm inspired by the 
pollination process of flowers [29]. Modeling of polli-
nation process adopts assumptions:
 _ The phenomenon of biotic and cross-pollination 

is understood as a global pollination. It is a process 
during which, pollinators are transferred by Levy 
flights.

 _ Abiotic pollination and self-pollination are 
interpreted as local pollination.

 _ The process of global and local pollination is 
controlled by value of p ∈ [0, 1]. Controllability is 
understood as various factors, such as wind.

 _ Every plant has exactly one flower, which produce 
only one flower.

At the beginning of the Flower Pollination Algorithm 
(FPA) an array of values representing the maze is cre-
ated. Each cell of the maze is given a random value in 
range (0,0.2). In order to enhance the visibility of exit 
fields, their values are increased up to 0.7. The array is 
interpreted as a meadow on which pollen are sprayed.
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FPA consists of two stages: global and local pollina-
tion. In case of global pollination, pollen is transport-
ed by insects which allow to enlarge the analyzed 
area. This solution allows for the reproduction of the 
fittest flowers and is modeled as

xi
t+1 = xi

t + L(xi
t -g*), (8)

where xi
t is pollen transported by insects in iteration, 

g* means the nearest exit of the maze and L is the 
strength of the pollination represented by Levy flights 
described as
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where μ>0 is minimal step length and 𝛾 is scaling pa-
rameter. Again local pollination occurs by using the 
following equation

xi
t+1 = xi

t +𝜀(xj
t –xk

t), (10)

where xj and xk is a pollen from different flowers of the 
same plant selected in random way and 𝜀 ∈ [0, 1] is a 
step of random walk.

Algorithm 2: FPA to create 2D mazes

Define coefficients: n - size of flower population,  m - num-
ber of chosen best flowers, p – global pollination value, 
Create position array with random value between (0,0.2) 
and two different exits,
Find the best solution g* in initial population (which rep-
resents an exit),

While there is no passage through the maze do
If rand>p then

Perform global pollination by (8) for each flower,
Else

Choose at random two indexes of flowers from 
population,
Perform local pollination by (10),

End If
Evaluate population according to how close they are 
to the exit using (7),
Take best m flowers to next iteration,
Generate at random n-m new flowers,

Evaluate these new flowers according to how close 
they are to the exit using (7),
If L(new flower) < L(old flower) then

Replace old flower with new flower,
For the rest of flowers in the population increase 
value of created new flower by 0.2 and decrease 
value of old flower by 0.05,

End If
Decrease value of each field by 0.05,

End While
Recalculate value in position array according to (1),
Return array.

Game Management System
Proposed Game Management System (GMS) is a 
software module that models actions like create ini-
tial maze, control the game in real-time, and support 
other features. Information, after its retrieval, is sent 
back to the user. Therefore, it is possible to use the 
gaming system even on devices having low process-
ing power. We are considering further improvements 
for energy saving with appropriate modeling of com-
puting systems that can efficiently increase quality of 
service and support front-end interfaces.
Presented ABA and FPA have been implemented to 
create various initial mazes, and their results give a 
maze representation. Besides maze creation, another 
procedures are responsible to transform maze repre-
sentation into a graphical form that can be presented 
to player. When a player starts the game, agents based 
on using dedicated swarm intelligence automatically 
executes to control game progress. An initial popula-
tion of board control agents is placed in maze. After 
each player move these control agents start to change 
the board to make the game more difficult. GMS con-
tinues maze modifications until the player reaches 
the exit or looses the game trapped in the maze. Maze 
real-time recomposition is based on a dedicated ver-
sion of Cuckoo Search Algorithm.

Cuckoo Search Algorithm for real-time 
automatic game management
Cuckoo Search Algorithm (CSA) simulates cuckoos 
while tossing their eggs to nests of other birds. CSA 
for maze recomposition (i.e., changes on the possible 
paths that can be followed by the player) has some as-
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sumptions to increase coherence:
 _ Cuckoos can drop only one egg to randomly chosen 

location in each iteration.
 _ Number of locations remains unchanged.
 _ Dropped eggs can be detected by hosts with 

probability p ∈ [0, 1], for this reason we place new 
cuckoo at random position in the maze.

Cuckoos are moving randomly, since the location of 
the new nest they visit is chosen at random. This situ-
ation was modeled with Levy flights. These are pecu-
liar examples of random walks, which are stochastic 
processes representing movements in random direc-
tions by equation
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where μ is minimum step length and 𝛾 is scaling pa-
rameter. Levy flight (10) is applied to simulate ran-
dom movements according to equation
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where t is the number of iteration. The decision to 
remove it is taken by the host which discovers tossed 
egg. Such a situation is described by
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where p represents hosts random decision.
Cuckoo Search Algorithm (CSA) has been applied to 
automatically manage board games created by ABA 
and FPA. We have developed a dedicated version of 
CSA tailored for being managed in distributed sys-
tems. Cuckoos are made to move over the maze rep-
resented in two-dimensional arrays created by ABA 
or FPA. As before, i.e. during maze creation, a maze 
consists of cells, which are held in memory by means 
of a representation. Each cell is described by five 
values. The first four values represent the walls of 
the cell (north, south, west and east, respectively), if 
there is a wall then we have value 1 on the respective 

position, whereas if there is no wall then we have 0. A 
player who happens to be positioned in the cell is giv-
en by the fifth number. If a player is in the cell, pres-
ence is coded as value 2, whereas if in the cell there is 
a control cuckoo, then the value is 3, otherwise if cell 
is empty then the value is 0. The proposed notation is 
shown in Figure 1.

Figure 1 
Digital representation of a sample cell in a board maze: 
empty cell (at the top), player occupied cell (in the middle), 
cuckoo occupied cell (at the bottom)
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CSA for active game control and management has 
been developed to modify maze construction in re-
al-time. The actions of the control cuckoo depend 
on player position. Decisions of cuckoo depend on 
the distance from the player and some random coef-
ficients, which are modeled with a dedicated fitness 
function
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where S is maze cell value, 𝛼 and 𝜈 ∈ [0, 1] are scal-
ing parameters, Lij

t is Cartesian distance between 
positions xi (cuckoo) and xj (player) calculated by (7). 
Cuckoos move over the maze. Their function is to au-
tomatically change composition of fields. Therefore 
cuckoos control situation in real-time, i.e. while play-
er moves over the maze, cuckoos modify it to make the 
game more challenging. Additionally in our system, if 
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player comes across cuckoo then player must play a 
subplot game, hence cuckoos are given more time to 
change the maze again.

Algorithm 3: CSA to manage game in real-time
Define coefficients: c – size of population, μ – minimum step 
length, 𝛾 – scaling parameter, p – hosts random decision, 
r – number of random alleys, 𝛼 – the maximum value of the 
disposal and created walls,
Create initial population at random positions,

While the game is not finished do
If t>1 then

Generate two random numbers a, b ranging from 
0 to 𝛼 that represent number of walls to be re-
moved,

If adaptation<5 then
Remove a random walls within 5 fields,
Create b random walls within 5 fields,

Else
i=0,
While i<r do
Generate random number rand ∈ [0, 1],

If rand>0.5 then
Remove randomly walls within 
5 fields,

End If
End While

End If
End If

Move cuckoos to inspect maze according to (11) and 
(12), 
Hosts decide about situation according to (13), 
Evaluate positioned cuckoos according to (14),
Best cuckoos go to next round and the rest of cuckoos 
are positioned at random over the maze,
t++,
End While

Real-time game board controlling
An intelligent control procedure is used, which han-
dles special stop conditions to decide if there is still 
need to change paths for the player connected to the 
developed GMS. This procedure is also controlling 
the way from the entrance to the exit. In the GMS af-
ter each iteration we check the passage entrance-ex-
it through the maze. If the passage exists, a board is 
complete and can be presented to the player. Other-
wise, supervising procedure returns the board to CSA 
for additional changes. Stop conditions are based on 
Cartesian metric defined in (7), which show the way 

between next two cells i and j in the maze on the way 
from entrance to exit. If Lij = 1, it means that supervis-
ing agent (and also player) can move from one cell to 
another only horizontally or vertically, excluding di-
agonal passages across the maze board. Control pro-
cedure is presented in Algorithm 4 for which applied 
supervising agents based model to verify the compo-
sition is run as presented in Algorithm 5, while sche-
matic system composition is presented in Figure 2.

Algorithm 4: Control agent decision in real-time
Call algorithms: ABA or FPA to create an array of digital 
numbers representing 2D maze,
Create bitmap to present to the player,

For all values v in array do
If v is 1 then

If r>0 then
If random value is lower than 0.5 then

Create a wall,
End If

Else
Create wall,

End If
Else

For all neighbor of v do
If neighbor is 1 then

Create a wall,
End If

End For
End If

End For

Algorithm 5: Supervisors verification of the passage
For all entrances do

While no movement is possible then
Remove fields in the row that were supervised in 
previous step,

For all neighbor fields do
If Lij = 1 is not true or there is a wall then

Delete a field,
End If

End For
Select randomly a movement,
End While
If last field is entrance then

There is way out,
Else

There is no way out,
End If

End For
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Figure 2
Model of the Game Management System with implemented Bio-Inspired Methods to create mazes and recompose them in 
real-time 
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Experimental results
Proposed GMS was implemented to compose var-
ious mazes with an automatic control procedures. 
In benchmark tests we have compared solutions 
presented in Połap et al. [21] with ABA and FPA. 
The parameters used for the development are as 
follows (their definitions are given in the previous 
sections).
 _ ABA: n=30, m=10, r=25,
 _ FPA: n=30, m=10, p=0.4, r=25,
 _ CSA: n=4, μ = 0.7, 𝛾 = 0.6, 𝜈 = 0.4, p = 0.3.

Developed methods were applied to compose various 
resolutions and combinations of 2D mazes. As part of 
the tests for the proposed method, several mazes were 
generated for different sizes for each of the examined 
algorithms. Results of the timing for examined proce-
dures are presented in Table 1. 
Figure 3 presents comparison of creation times 
benchmark tests for 2D maze boards when using 
ABA and FPA in comparison to AACA and ABCA. 
Analyzing benchmark tests results we can see that 
for board composed of up to 3000 cells ABA is sim-
ilar to AACA and about 100 seconds slower than 
ABCA and FPA, however FPA outperforms all other 
methods. All four of examined solutions are similar-
ly efficient for boards of about 3000 fields. Between 
3000 to 6000 fields AACA composes mazes faster 

Table 1 
Comparison of experimental results for implemented 
methods of maze composition

Fi
el

ds

Artificial Ant  
Colony Algo-

rithm 
(AACA)

Artificial 
Bee  

Colony 
Algorithm 

(ABCA)

Artificial 
Bat 

Algorithm  
(ABA)

Flower Polli-
nation 

Algorithm 
(FPA)

25 12 11 15 10
500 52 50 70 54

1000 139 79 137 93

1500 230 189 292 163

2000 345 258 339 268

2500 420 328 402 373

3000 489 520 492 478

3500 513 598 623 700

4000 521 569 702 729

4500 547 610 743 741

6000 630 663 865 798

6500 689 684 884 800

7000 713 723 940 815

7500 735 745 973 835

8000 756 771 999 879
8500 777 780 1016 939

9000 895 878 1203 985

9500 989 1045 1357 1209

10000 1102 1188 1482 1490

Figure 3 
Comparison 

chart of 
composition 

time for various 
dimensions of 

boards composed 
by ABA and FPA
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than all of the methods (about 200 seconds fast-
er than FPA and ABA), however between 6000 to 
10000 cells AACA and ABCA are the fastest meth-
ods that outperformed FPA, and ABA altogether of 
at least 200 seconds. For very big board of about 
10000 fields we see that AACA is more efficient and 
about 10% faster than ABCA and about 20% faster 
than ABA and FPA. FPA is most efficient for small 
board perfect for portable electronic devices, what 
gives proof to proposed methodology.
Proposed CSA control has been applied to control 
changes of these mazes in real-time due to player 
actions. Management system has been tested em-

Figure 4 
Sample Game Management System work for 30x94 fields maze: in the first row random positioning of cuckoos over 
the maze while players movement, in the second row after maze recomposition cuckoos are approaching player to 
investigate the board, in the third row player came across a cuckoo investigating the maze, in the four row player is 
finishing the maze reaching the exit
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pirically for each of generated solutions. A small 
number of cuckoos (4 control agents) makes the 
GMS perform all ad-hoc changes in composition of 
boards while minimizing changes to current laby-
rinth form. Distance from player is also taken into 
account, i.e. the smaller the distance from the play-
er the more modifications agents do. Two game sce-
narios are presented in Figure 4 for 30x30 fields and 
in Figure 5 for 30x94 fields. The while loops in Algo-
rithms 1 and 2 ensure creation of the maze with full 
passage – however, for a very large size, generation 
time will be correspondingly longer independently 
of applied parameters.
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Figure 5
Sample Game Management System work for 30x30 fields maze: in the first row from left to right 1) random positioning 
of cuckoos over the maze, 2) player movement, 3) cuckoos fly to investigate the maze and an intelligent agent use these 
investigations results to decide on board modifications, in the second row from left to right: 4) player moves over changed 
board, 5) cuckoos fly to investigate the board, 6) the intelligent agent use investigations to modify the maze and the player 
encounters a cuckoo in the move, in the last row from left to right: 7) cuckoos fly to investigate maze, 8) the intelligent 
agent decides on changes and player moves, 9) cuckoos fly to investigate and after modification of the board the player 
reaches exit in final movement

 

 

 

Figure 4 (continuation)
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Figure 5 (continuation)

Conclusions
The presented solution gives opportunity to mod-
ify linearity of the storyline in real-time. Applied 
Bio-Inspired Methods are simple to implement and 
enable easy calculations. Presented GMS has many 
advantages, including ability to dynamically compose 
various quests for players. Because of adaptation of 
intelligent control agents (based on Cuckoo Search 
Algorithm) the system can frequently modify sto-
ryline in real-time, hence realizing ad-hoc interac-
tions with player. 
In two-dimensional situations, where player has an 
opportunity to watch entire game board - the big-
ger the maze, the player’s attention is smaller. This 
solution costs more time to prepare it (see Figure 
3). In contrast, in case of three-dimensional, where 
player sees the board in terms of its position – the 

labyrinth may be suitably small. Game management 
system with a proper calibration can looping path for 
unaware player. What is more, the situation where a 
small maze is copied in real time is also possible, but 
more difficult to manage – the population in man-
agement system must be restarted while the maze is 
copied. The player can repeatedly play the game, and 
each time a new and interactive game can be present-
ed to him/her what is an advantage of the solution. 
From our benchmark tests we can conclude that FPA 
is most efficient for mazes up to 3000 cells, and above 
this limit AACA has shown best results, but for big 
boards ABCA can show similar efficiency as AACA. 
Maze generation is a complex process however pre-
sented methods are efficient and created boards are 
unique. Moreover, application of Bio-Inspired Meth-
ods enable us to implement a more detailed graphics, 
since efficiency of maze composition and control al-
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gorithms keep the processor available for graphical-
ly-related tasks. Since these results are promising 
we hope to develop dedicated versions for 3D mazes, 
however this task is much more demanding. For this 
type of games we need very efficient methods to com-
pose 3D boards.

Final remarks
In this paper we have examined Bio-Inspired Meth-
ods to compose and manage 2D mazes in real-time. 
Implemented algorithms were used to create boards 
of various mazes, where in particular we were inter-
ested in application of Flower Pollination Algorithm 
and Artificial Ant Colony Algorithm in comparison to 
other proposed methods.
In presented system we have developed real-time con-
trol agents. These are also using Bio-Inspired Method 
to control maze and recompose it ad-hoc to make the 
game more demanding for player. Applied Cuckoo 

Search Algorithm helped to implement intelligent 
agents that move over maze board. These agents are 
able to control situation and recompose the structure 
of the maze while player moves from entrance to exit.
While performing dynamic creation of mazes, pro-
posed solution works in real-time. Presented Game 
Management System is using swarm intelligence to 
efficiently process data, which result in simple calcu-
lations. Therefore player can use the system, which is 
ad-hoc reacting to the action. Moreover, simple calcu-
lation means faster response, and hence less process-
ing power is needed.
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Summary / Santrauka
Creation of the layout for a board given to a player is usually achieved by means of complex algorithm that is 
detailing position of walls, passages, etc. We propose a novel solution based on bio-inspired algorithms adapted 
to easily create and then reorganize layouts of board games. The resulting layout presents a maze that is being 
automatically generated with given entry and exit point. This structures, because of proposed methodology, 
can be recomposed during the game. We show execution time of proposed algorithms and discuss efficiency in 
composition of mazes in various dimensions.

Žaidėjų naudojamų stalo žaidimų lentų išplanavimas dažniausiai kuriamas naudojant kompleksinį algoritmą, 
kuris detalizuoja sienų, praėjimų ir kt., poziciją. Mes siūlome naują sprendimą, pagrįstą bio-įkvėptais 
algoritmais, kuriuos pritaikius galima nesunkiai sukurti ir reorganizuoti stalo žaidimų lentų išplanavimą. 
Gaunamas išplanavimas turi automatiškai sugeneruotą labirintą su įėjimu ir išėjimu. Siūlomos metodikos dėka, 
šios struktūros gali būti reorganizuojamos žaidimo metu. Straipsnyje parodome siūlomų algoritmų vykdymo 
laiką ir aptariame įvairių dimensijų labirintų struktūros efektyvumą.


