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Abstract. This paper describes an application of intelligent algorithms to reconstruct the boundary condition of the 

second kind in the fractional heat conduction equation. For this purpose, a functional defining the error of approximate 

solution must be minimized. To minimize this functional two Ant Colony Optimization (ACO) algorithms were used 

and compared. In order to reduce the computational time, the calculations were performed in a parallel (multi-

threaded) way. The paper presents also some examples to illustrate the accuracy and stability of the presented 

algorithms. 
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1. Introduction 

In many fields of science the inverse problems are 

some of the most important issues. They have found 

the wide applications in various disciplines, for 

example, in physics, control theory or signal 

processing, since the solutions of the inverse problems 

allow to fit properly the input parameters of 

considered model on the basis of the observational 

output results [12-15]. In this paper the inverse 

problem of the fractional heat conduction equation 

[4,5] is investigated in which, basing on the 

temperature measurements, the heat flux occurring in 

boundary condition is reconstructed.  

Recently, in solving various practical and 

theoretical problems the artificial intelligence 

algorithms have been used [1,8,12-15,21,32,36-40]. 

Considering the artificial intelligence algorithms we 

can distinguish, among them, the optimization 

algorithms based on the natural behavior of insects, 

like for example the Artificial Bee Colony algorithm 

[16–18,30], the Ant Colony Optimization algorithm 

[10,11,34] or the firefly algorithm [32]. The main 

advantage of optimization algorithms grounded on the 

artificial intelligence is the fact that they do not need 

any requirements, except the existence of the solution 

of discussed problem. Moreover, in many cases these 

algorithms provide better results than the conventional 

methods and are also easier to implement. 

Many different types of physical and technical 

phenomena is modeled lately with the aid of the 

fractional order derivatives [6,7,9,19,22,29,31]. For 

example, we can find the applications of fractional 

derivative in electrical engineering [23], control 

sciences [6,9] and mechanics [7]. It happens quite 

often that the mathematical models expressed by 

means of the fractional order derivatives describe the 

discussed process better than the conventional models 

derived from the integer order derivatives [27,43]. 

One of the first papers describing the method of 

fractional calculus applied for the classical inverse 

heat conduction problem is paper [2]. Another initial 

works investigating the inverse problem for the heat 

conduction equation of fractional order are the works 

by Murio [24, 25]. Also many other articles dealing 

with the various kinds of problems by using the 

fractional calculus appeared in recent times, see for 

example [4,5,20,28,41,42]. 

The present paper describes an application of the 

parallel versions of two different Ant Colony 

Optimization algorithms to reconstruct the heat flux at 

the boundary of given area where the temperature 

distribution is described with the aid of the heat 

conduction equation of fractional order. For this 

purpose, a functional defining the error of 
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approximate solution is minimized. The inspiration for 

developing the used ant algorithms was taken from the 

behavior of the ant swarms, widely regarded as very 

intelligent communities, especially from their tactics 

in search for the shortest path connecting the anthill 

with the source of food. Both proposed algorithms 

have the same name, however they run differently. In 

order to speed up the solving procedures we used the 

parallelization of the used ant algorithms which 

significantly reduced the computation time. The direct 

problem in the proposed approach was solved by 

applying the implicit finite difference method [3, 26]. 

The paper includes also some examples illustrating the 

accuracy and stability of the presented procedures. 

2. Formulation of the problem 

We consider the following heat conduction 

equation with the fractional derivative with respect to 

time 
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where h  is the heat transfer coefficient and u  

denotes the ambient temperature. 

The fractional derivative occurring in equation (1) 

will be expressed as the Caputo derivative. For 𝛼 ∈
(0, 1) the Caputo derivative is defined by formula 

,)(
),(

)1(

1),(

0

dsst
s

sxu

t

txu
t




















  (5) 

where   is the Gamma function. 

We assume that the function q, occurring in 

boundary condition (3), is in the following form 

𝑞(𝑡) = {

𝑎1, 𝑡 ∈ [0, 𝑡1),

𝑎2, 𝑡 ∈ [𝑡1, 𝑡2),

𝑎3, 𝑡 ∈ [𝑡2, 𝑡∗),

 (6) 

where a1, a2, a3 ∈  R. Thus, the considered inverse 

problem consists in identification of coefficients a1, 

a2, a3 (by this means the boundary condition (3) will 

be reconstructed) basing on the selected values of 

function u in the set of points of domain D. The 

known values of function u (the input data) in selected 

points (xi, tj) of domain D will be denoted as 

,,,2,1,,,2,1,ˆ),( 21 NjNiUtxu ijji    (7) 

where N1 is the number of sensor and N2 means the 

number of measurements at each sensor. 

By solving the direct problem for the fixed values 

of coefficients a1, a2, a3 we obtain the approximate 

values of function u in selected points (xi, tj) ∈ D. 

These values will be denoted by Uij(q). With the aid of 

these values and the input data �̂�𝑖𝑗  we create the 

functional defining the error of approximate solution 
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The above functional expresses the differences 

between the measured values of temperature (the input 

data) and the calculated values obtained from the 

solution of direct problem for the given form of q. 

Minimization of functional (8) enables to reconstruct 

the form of function q so that the retrieved values of 

temperature will be as close as possible to the 

measurements. 

3. Method of solution 

Direct problem, defined by equations (1)-(4) for 

the fixed values of a1, a2 and a3, was solved by using 

the implicit finite difference method [3,26]. 

In order to reconstruct function q (that is the 

boundary condition (3)) we needed to minimize 

functional (8), as it was mentioned before, by applying 

two different Ant Colony Optimization algorithms. 

Both are the heuristic algorithms, therefore the 

calculations in each discussed case were repeated 

certain number of times. In addition, calculations were 

performed in the parallel (multi-threaded) way, thanks 

to which we managed to significantly reduce the 

computation time. Let us present and describe now 

both used algorithms. 

Ant Colony Optimization algorithm I 

Creation of the ACO algorithm was inspired by 

observation of the ant colonies behavior, widely 

regarded as the efficient and intelligent communities. 

The ants searching for the food sources communicate 

with each other by leaving the pheromone trace on the 

ground. Pheromone is a chemical substance produced 

and recognized by the most of ant species. This 

substance is left on the ground by the moving ant and 

then smelled by the other ants which makes them to 

follow the marked trace. The more ants travel the trail, 

the stronger is the pheromone trace. The shorter the 

distance between the anthill and a source of food is, 

the more intense is pheromone trail. For the long 

routes, and thus the rarely frequented ones, the 

pheromone trail is faint and evaporates. 
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Such simple mechanism is imitated in the 

following way. For initializing the procedure we need 

to set up the number M of ants in one population, 

number I of iterations and the initial value 𝛼1 of the 

narrowing parameter. The role of ants is played by the 

vectors 𝒙𝑘, k=1,...,M, for the start randomly dispersed 

in the considered region. And the goal of the 

procedure is to bring them as close as possible to the 

source of food, that is to the sought minimum of 

function F. In each step one of the individuals is 

selected as the best one and denoted as 𝒙𝑏𝑒𝑠𝑡   - the one 

for which the minimized function F takes the lowest 

value, that is the one which is currently the closest to 

the source of food. Next, to vector 𝒙𝑏𝑒𝑠𝑡  M vectors dx 

is added, the elements of which are randomly selected 

from the range [−𝛼𝑗 , 𝛼𝑗]. The new vectors, obtained in 

this way, represent the new locations of ants. Thus, in 

each iteration the vector representing each ant is 

updated I2 times. After each such cycle the ant 

dislocation range 𝛼  is tenfold decreased which 

simulates the process of the pheromone trail 

evaporation, because thanks to this the ants are forced 

to gather more and more densely around the best 

solution. 

The presented approach is based on the algorithm 

presented in [34]. Details of the procedure, used in the 

current paper including the parallelization of ACO 

algorithm, are listed below. Let us recall that thanks to 

this procedure we intend to determine the values a1, 

a2, a3 on the way of minimizing functional (8). 

We assume the following symbols: 

F − minimized function, x = (x1, ..., xn) ∈ D, nT − 

number of threads, M = nT · p − number of ants in one 

population, I − number of iterations (in practice I2 · I ), 

αi − narrowing parameters. 

Steps of the ACO algorithm I are as follows. 

Initialization of the algorithm 

1. Setting parameters of the algorithm nT, M, I and αj 

(j = 1,2, ..., I). 

2. Generating the initial population xk = (x1
k, x2

k, ..., 

xn
k), where xk ∈  D,  k = 1, 2, ..., M. 

3. Dividing the population on nT groups (groups will 

be calculated in parallel way). 

4. Determinating the value of minimized function for 

each ant in population (parallel calculation). 

5. Determinating the best solution xbest (the best ant) 

in population. 

Iterative process 

6. Random selection of vector shifts dxk = (dx1
k, dx2

k, 

..., dxn
k), where –αj ≤ dxi

k ≤ αj, 

7. Generating the new location of ant colonies xk = 

xbest + dxk, k = 1, 2, ..., M. 

8. Dividing the population on nT groups (groups will 

be calculated in parallel way). 

9. Determinating the value of minimized function for 

each ant in population (parallel calculation). 

10. Determining the best solution in current 

population. If this solution is better than xbest, then 

we accept this solution as xbest. 

11. Steps 6 − 10 are repeated I2 times. 

12. Changing the values of narrowing parameters αj:  

αj = 0.1αj. 

13. Steps 6 − 12 are repeated I2 times. 

The control block diagram of the procedure 

serving for the reconstruction of heat flux q by using 

the described above ACO algorithm I is presented in 

Figure 1. 

Ant Colony Optimization algorithm II 

Now we describe the other version of ACO 

algorithm, presented also in [11]. The inspiration for 

developing this algorithm was also taken from the 

natural behavior of the swarm of ants. In this case, the 

solutions are considered as the pheromone spots. At 

the beginning, they are distributed randomly in the 

considered area. Next, the pheromone spots 

(solutions) are ranked in dependence on their quality 

and then to each pheromone spot the probability 

(corresponding to its quality) is assigned. The better is 

the solution, the higher is its probability of selection. 

In this way, we create the archive of solutions. In each 

iteration, M ants construct M new solutions (new 

pheromone spots) by using the probability density 

function (for example, the Gaussian function). Then 

the archive of solutions is updated by ranking the new 

and old solutions and by rejecting the M worst 

solutions. And similarly as in case of the ACO 

algorithm I, the ACO II was also adapted to parallel 

computing.  

In order to describe this algorithm in details, we 

assume the following symbols: F − minimized 

function, x = (x1, ..., xn) ∈ D, nT − number of threads, 

M = nT · p − number of ants in one population, I 

−number of iterations, L – number of pheromone 

spots, q, ξ – parameters of algorithm 

Steps of the ACO algorithm II are as follows. 

Initialization of the algorithm 

1. Setting parameters of the algorithm nT, L, M, I, q 

and ξ. 

2. Generating L pheromone spots (solutions) and 

creating the initial archive T0. 

3. Computing the values of minimized function for 

every pheromone spot and ranking the elements in 

T0, according to their qualities (from the best one 

to the worst one). 

Iterative process 

4. Assigning the probabilities to the pheromone spots 

according to the formula 

𝑝𝑙 =
𝜔𝑙

∑ 𝜔𝑙
𝐿
𝑙=1

      𝑙 = 1,2, … , 𝐿,  

where ωl is the weight associated to the l-th solution 

and expressed by the formula 
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𝜔𝑙 =  
1

𝑞𝐿√2𝜋
𝑒

−(𝑙−1)2

2𝑞2𝐿2 .  

5. The ant chooses the l-th solution according to 

probabilities pl. 

6. The ant transforms the j-th (j=1,2, … , n) 

coordinate of the l-th solution sj
l by sampling the 

neighborhood by using the probability density 

function (Gaussian function): 

𝑔(𝑥, 𝜇, 𝜎) =  
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2 ,  

where 𝜇 =  𝑠𝑗
𝑙 , 𝜎 =  

𝜉

𝐿−1
∑ |𝑠𝑝

𝑙 −  𝑠𝑗
𝑙|𝐿

𝑝=1 . 

7. Steps 5-6 are repeated for each ant. Hence, we 

obtain M new solutions (pheromone spots). 

8. Dividing the population on nT groups (groups will 

be calculated in parallel way). 

9. Determinating the value of minimized function for 

each new solution in population (parallel 

calculation). 

10. Updating the archive Ti. 

11. Steps 4-9 are repeated I times. 

The control block diagram of the procedure 

serving for the reconstruction of heat flux q by using 

the described above ACO algorithm II is presented in 

Figure 2. 

 

Figure 1. Control block diagram of the procedure reconstructing the boundary condition by using ACO I  
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Figure 2. Control block diagram of the procedure reconstructing the boundary condition by using ACO II 

4. Experimental results 

Proposed algorithm were implemented in program 

C# 5.0 on computer with the following parameters: 

CPU: Intel Core i5-3230M 2.60GHz; OS: Microsoft 

Windows 10 Home; RAM: 8.00 GB. Multithreaded 

calculations were performed by using the Task Parallel 

Library.  

We consider eqs. (1)-(4) with the following data 

* 500[ ], 1[ ], 2[ / ],t s L m c J kg K     

32[ / ],kg m   2[ / ],W m K    0[ ],u K   

( ) 0[ ], 0.5f x K  

245 7
( ) 1400exp ln [ / ].

455 4

t
h t W m K

   
   

  

 

The ACO algorithm I was executed for parameters 

nT = 4, M = 12, I = 3, α1 = 1, 

whereas the ACO algorithm II was executed for 

parameters 

nT = 4, M = 12, L = 8, I = 20. 

Basing on the above data, we can calculate the 

number of executions of the minimized function 

during the performation of each procedure. So, in case 
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of ACO algorithm I this number was equal to 336 and 

in case of ACO II algorithm it was equal to 252.  

Function q is sought in the following form 

𝑞(𝑡) = {

𝑎1, 𝑡 ∈ [0, 𝑡1),

𝑎2, 𝑡 ∈ [𝑡1, 𝑡2),

𝑎3, 𝑡 ∈ [𝑡2, 𝑡∗).

  

Exact values of a1, a2, a3 are known and are equal 

to 200, 800 and 1300, respectively.  

Inverse problem consists in reconstruction of the 

values of coefficients a1, a2 and a3 basing on the 

measurement data (input data) �̂�𝑖𝑗 . The grid used to 

generate these data was of the size 300 × 5000. 

We assume only one measurement point xp = 0.1 

(N1 = 1) and the measurements from this point were 

read in three courses, at every 0.5, 1, 2s (N2 = 1000, 

500, 250). In order to investigate the impact of the 

measurement error on the quality of reconstruction 

and the stability of procedures, we perturbed the  

input data by the pseudorandom error of 1, 2 and 5% 

sizes. 

In the process of minimizing functional (8), the 

direct problem must be solved many times. The grid 

used to solve the direct problem was of the size 

100×1000. Let us notice that it is a different density 

than the the density of the grid used to generate the 

input data. 

To determine the minimum of functional (8) the 

ACO I and ACO II algorithms were used. Both are the 

heuristic algorithms, therefore it is required to repeat 

the calculations a certain number of times. In this 

paper, we repeated the calculations ten times for each 

case and the ant population counted twelve individuals 

(M = 12). In order to make the procedures more quick 

working, and therefore more efficient, the ACO 

algorithms were adapted for parallel (multi-threaded) 

computations. 

Tables 1, 2, 3 present the obtained reconstructions 

of coefficients a1, a2, a3 in dependence on the size of 

input data disturbance at the measurement point  

xp = 0.1. 

The results of reconstruction for both algorithms 

are very similar. As we can see by analyzing the 

tables, the coefficients ai (i = 1, 2, 3) are reconstructed 

very well in all cases. In each considered case, the 

relative error of the coefficient restorations does not 

exceed 0.45%. 

Figure 3 and 4 show the comparative convergence 

graphs of algorithms ACO I and ACO II in case of the 

measurements taken at every 1s. It appears that the 

ACO algorithm I converges slightly faster than the 

ACO algorithm II, however the slightly smaller value 

of minimized functional is obtained for the ACO 

algorithm II. 
 

Table 1. Results of computation in case of measurements at every 0.5s in measurement point xp = 0.1 (𝑎𝑖- reconstructed  value of 

𝑎𝑖, 𝛿𝑎𝑖
 - percentage relative error of 𝑎𝑖 reconstruction, 𝜎 - standard deviation of results (i=1,2,3)) 

Noise 
𝒂𝒊 𝜹𝒂𝒊

 [%] 𝝈 

ACO I ACO II ACO I ACO II ACO I ACO II 

0% 

199.67 199.98 0.17 0.01 0.57 0.62 

799.81 799.47 0.03 0.07 0.47 0.58 

1298.80 1299.38 0.10 0.05 0.83 0.30 

1% 

199.15 199.82 0.43 0.09 0.56 0.86 

799.63 799.41 0.05 0.08 0.60 1.35 

1299.34 1300.49 0.06 0.04 0.77 0.94 

2% 

200.29 200.23 0.15 0.12 0.46 2.28 

800.18 799.81 0.03 0.03 0.70 1.20 

1299.74 1299.84 0.02 0.02 0.64 0.72 

 

Table 2. Results of computation in case of measurements at every 1s in measurement point xp = 0.1 (𝑎𝑖- reconstructed  value of 

𝑎𝑖, 𝛿𝑎𝑖
 - percentage relative error of 𝑎𝑖 reconstruction, 𝜎 - standard deviation of results (i=1,2,3)) 

Noise 
𝒂𝒊 𝜹𝒂𝒊

 [%] 𝝈 

ACO I ACO II ACO I ACO II ACO I ACO II 

0% 

199.75 199.85 0.13 0.08 0.20 0.64 

800.01 799.47 0.01 0.07 0.59 0.62 

1299.17 1299.58 0.07 0.04 0.57 0.88 

1% 

199.78 199.72 0.11 0.14 0.36 1.19 

799.26 799.10 0.10 0.12 0.41 1.50 

1300.05 1298.98 0.01 0.08 0.80 0.97 

2% 

200.06 200.08 0.03 0.04 0.45 1.64 

799.58 799.56 0.06 0.06 0.41 1.37 

1300.03 1299.52 0.01 0.04 0.39 1.03 
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Table 3. Results of computation in case of measurements at every 2s in measurement point xp = 0.1 (𝑎𝑖- reconstructed value of 

𝑎𝑖, 𝛿𝑎𝑖
 - percentage relative error of 𝑎𝑖 reconstruction, 𝜎 - standard deviation of results (i=1,2,3)) 

Noise 
𝒂𝒊 𝜹𝒂𝒊

 [%] 𝝈 

ACO I ACO II ACO I ACO II ACO I ACO II 

0% 

199.29 199.39 0.36 0.31 0.38 0.28 

798.69 799.10 0.17 0.12 0.44 0.37 

1298.92 1298.78 0.09 0.10 0.43 0.79 

1% 

199.58 199.47 0.21 0.27 0.45 0.68 

799.58 798.85 0.06 0.15 0.41 0.56 

1299.09 1299.30 0.07 0.06 0.49 0.69 

2% 

199.64 199.19 0.18 0.41 0.30 0.51 

798.69 798.57 0.17 0.18 0.67 0.31 

1297.92 1298.38 0.17 0.13 0.31 1.01 

 

Figure 3 and 4 show the comparative convergence 

graphs of algorithms ACO I and ACO II in case of the 

measurements taken at every 1s. It appears that the 

ACO algorithm I converges slightly faster than the 

ACO algorithm II, however the slightly smaller value 

of minimized functional is obtained for the ACO 

algorithm II. 

One of the main indicators for evaluating the 

results of the temperature reconstructio are the errors 

in measurement point xp = 0.1. Tables 4 and 5 show 

the errors of temperature reconstruction in the control 

point for measurements read at every 0.5, 1 and 2s. 

Hence we can say that, in case of both algorithms, the 

temperature at the measurement point is reconstructed 

very well. In most discussed cases, the slightly better 

results are obtained for ACO II, despite of the smaller 

number of executions of the objective function. The 

maximum relative error of the temperature 

reconstruction in each investigated case does not 

exceed 0.43% for ACO algorithm I and 0.41% for 

ACO algorithm II. 

Figures 5 and 6 present the relative errors of 

reconstructing function q, occurring in the boundary 

condition, for the measurements taken at every 0.5, 

1and 2s. In each considered case the relative error of 

function q restoration is lower than 0.72%. The worst 

results we obtained for the measurements read at 

every 2 seconds, that is for the most rare input data. 
 

 

Figure 3. Comparative convergence graphs of ACO I (red dots) and ACO II (black dots) for measurements at every 1s, 0% 

perturbed input data (left figure) and 1% perturbed input data (right figure) 

 

 

Fig. 4. Comparative convergence graphs of ACO I (red dots) and ACO II (black dots) for measurements at every 1s, 2% 

perturbed input data 
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Table 4. Errors of temperature reconstruction in measurement point xp = 0.1 for measurements at every 0.5 and 1s (∆𝑎𝑣 - average 

absolute error, ∆𝑚𝑎𝑥 - maximal absolute error,  𝛿𝑎𝑣 - average relative error, 𝛿𝑚𝑎𝑥 - maximal average error) 

ACO I 

Noise 0% 1% 2% 0% 1% 2% 

 
0.5s 1s 

[ ]av K  0.1913 0.2696 0.1023 0.1130 0.1673 0.0830 

max [ ]K  0.5206 0.3719 0.1269 0.3590 0.3254 0.1835 

[%]av  0.0940 0.2000 0.0711 0.0816 0.0123 0.0330 

max [%]  0.1651 0.4251 0.1451 0.1251 0.1101 0.0524 

ACO II 

Noise 0% 1% 2% 0% 1% 2% 

 
0.5s 1s 

[ ]av K  0.1478 0.1701 0.0843 0.1541 0.2916 0.1300 

max [ ]K  0.2720 0.2588 0.1007 0.2324 0.4483 0.2106 

[%]av  0.0400 0.0724 0.0576 0.0633 0.1170 0.0452 

max [%]  0.0662 0.1000 0.1151 0.0751 0.1401 0.0548 

 

Table 5. Errors of temperature reconstruction in 

measurement point xp = 0.1 for measurements at every 2s 

( ∆𝑎𝑣  - average absolute error, ∆𝑚𝑎𝑥  - maximal absolute 

error,  𝛿𝑎𝑣 - average relative error, 𝛿𝑚𝑎𝑥 - maximal average 

error) 

ACO I 

Noise 0% 1% 2% 

 
2s 

[ ]av K  0.4441 0.2233 0.4656 

max [ ]K  0.5757 0.3974 0.9095 

[%]av  0.2253 0.1195 0.1696 

max [%]  0.3551 0.2101 0.1801 

ACO II 

Noise 0% 1% 2% 

 
2s 

[ ]av K  0.3665 0.3527 0.5276 

max [ ]K  0.5355 0.5050 0.7128 

[%]av  0.1866 0.1753 0.2596 

max [%]  0.3051 0.2651 0.4051 

 

In Figure 7 and 8 we can see the distributions of 

the temperature reconstruction errors in the control 

point xp = 0.1 in case of measurements read at every 

0.5s. 

We can observe that the error of temperature 

reconstruction slightly decreases comparing the results 

obtained for the exact input data and the 1% perturbed 

input data, but then it increases comparing the results 

obtained for 1% and 2% perturbed input data. These 

differences however are minimal and they are prob-

ably coused by the probabilistic nature of the used 

algorithms. In case of the perturbed input data we 

additionally deal with the disorder randomness. The 

recobstruction errors of the results obtained with the 

aid of ACO algorithm II are a little bit smaller than the 

ones obtained with the aid of ACO I algorithm.  
 

 

Figure 5. Relative errors of function q reconstruction 

obtained for various perturbations of input data and  

for measurements at every 0.5, 1 and 2s (ACO I) 

 

Figure 6. Relative errors of function q reconstruction 

obtained for various perturbations of input data and  

for measurements at every 0.5, 1 and 2s (ACO II) 

An important issue is the calculation time. Both 

algorithms were adapted to parallel computing, which 

allowed to reduce significantly the computation time. 
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Table 6 presents the times of single execution of each 

algorithm in dependence on the different number of 

threads. We terminated our research with four threads, 

since the usage of more than four threads resulted still 

in decreasing computation time, but it was not linear 

nor significant decrease. It may be noticed that the 

computation time of ACO II is smaller than the 

computation time of ACO I. This is due to the smaller 

number of executions of the minimized function 

needed by the second algorithm. 
 

 

Figure 7. Distribution of the temperature reconstruction 

errors in measurement point xp = 0.1 for measurements  

at every 0.5s and for various perturbations of input data  

(0% – solid line, 1% – dashed line, 2% – dotted line)  

(ACO I) 

 

Figure 8. Distribution of the temperature reconstruction 

errors in measurement point xp = 0.1 for  

measurements at every 0.5s and for various  

perturbations of input data (0% – solid line,  

1% – dashed line, 2% – dotted line) (ACO II) 

 

Table 6. Times of single execution of the algorithms in 

dependence on the number of threads 

number of 

threads 

time [s] 

ACO I ACO II 

1 2394 1734 

2 1388 1037 

4 731 645 

 

5. Conclusions 

In this paper we considered the inverse problem 

for the heat conduction equation of fractional order. 

Goal of the inverse problem lied in the reconstruction 

of the second kind boundary condition. The direct 

problem was solved by using the implicit finite 

difference method and to minimize the proper 

functional two different Ant Colony Optimization 

algorithms (ACO I and ACO II) were used. In both 

cases, the obtained results were very good, by using 

these two algorithms we have received the satisfactory 

approximate solution. 

The function q, defining the boundary condition of 

the second kind, was reconstructed very well. The 

reconstruction errors did not exceed 0.75% and did 

not exceed the input errors. The relative errors of 

temperature reconstruction in the measurement point 

were minimal and did not exceed 0.43%. We obtained 

slightly better reconstructions of temperature in results 

obtained by applying the ACO algorithm II.  

It is worth to mention that the used algorithms can 

be easily adapted to parallel computing which reduces 

significantly the computation time. Executing the 

algorithm for 4 threads made the computations about 

three times faster than without multithreaded 

approach. Computation time of the second algorithm 

was smaller due to the smaller number of executions 

of the minimized function, but the results were very 

similar.  

As the future work the authors plan to apply the 

artificial intelligence algorithms for solving the 

inverse problems of fractional order, for example in 

case of the 2D fractional heat conduction equation 

and/or the 3D fractional heat conduction equation. We 

also intend to verify the developed procedures by 

executing the numerical experiment on the basis of 

data obtained from real measurements taken of real 

objects. 
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