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Abstract. In this paper, a trajectory-linearization based robust model predictive control (MPC) approach is 

proposed for unmanned surface vessels (USVs) with system constraints and disturbances. The trajectory linearization 

technique is used to translate a continuous-time nonlinear model of vessels into a linear time-varying predictive model 

and to decrease the complexity of nonlinear MPC. The control scheme includes a linear feedback control and a MPC 

term, where the former ensures the real trajectory being contained in a tube centered at the reference trajectory, and the 

later ensures asymptotic stability of the nominal system. The effectiveness of the designed control is analyzed 

theoretically and illustrated by simulation results. 
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1. Introduction 

The trajectory tracking and path-following of 

unmanned surface vessels (USVs) attracted more and 

more attention, due to applications in military and 

civil, including resource detection, environmental 

surveillance, maritime rescue, reconnaissance, and 

mine countermeasures [1-5]. However, disturbances 

from wind, waves, and ocean currents severely affect 

the stability of USVs and bring difficulties to 

controller design. Therefore, how to design robust 

tracking control for surface vessels is of great signi-

ficance. Up to now, many robust tracking controllers 

for vessels have been obtained based on sliding-mode 

control [6-8], H∞ control [9-11], neural-network 

control [12-18], fuzzy control [19] and disturbance 

observer -based control [20]. However, the state and 

input constraints are seldom considered in these 

approaches. Factually, the control powers of USVs are 

limited and the states are constrained due to collision 

avoidance and limited working space. Thus, it is 

valuable to design robust control for USVs with state 

and input constraints. 

Model predictive control (MPC) is well known for 

its advantage of receding horizon optimization, robus-

tness and its ability in actively handling constraints, 

and has been successfully applied in petro-chemical, 

robotics, and so on [21, 22]. Nowadays, for cons-

trained uncertain systems, robust model predictive 

control (RMPC) has been obtained mainly based on 

min-max MPC [23, 24] and constraint tightening 

approaches [25, 26]. In these results, the constraints 

are satisfied in receding horizon optimization, which 

is online solved for all possible realization of uncer-

tainties. However, this possibly brings infeasibility 

and conservatism of the online-solved optimal control 

problem. The tube-based MPC described in [27, 28] 

mitigates the disadvantages of RMPC in [23-26], since 

its decision variables include not only the usual con-

trol sequences, but also the initial state of the nominal 

model at each optimization iteration. However, the 

current results on tube-based MPC are mainly based 

on discrete-time models, while unmanned surface 

vessels are usually modeled as continuous-time non-

linear system. Therefore, the continuous-time non-

linear system-based tube RMPC is considered as the 

approach to design a control law for constrained 

USVs. 

In this paper, a trajectory-linearization based tube 

MPC is proposed for USVs to track desired 

trajectories. A linear time-varying predictive model is 

constructed by trajectory linearization [29, 30] of the 

vessel’s continuous-time nonlinear model. The use of 

linear time-varying model not only decreases 

computational complexity of nonlinear MPC, but also 

maintains the model precision. For simplicity, only 

kinematic model with additive disturbance is 

considered in this paper.  

The organization of this paper is stated as follows. 

Section 2 presents the problem considered in this 
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paper. Trajectory linearization of vessel’s nonlinear 

system is constructed and the robust control invariant 

set for the error system are established in Section 3. 

Section 4 is devoted to tube-based MPC design. At 

last, simulations are stated in Section 5 and conclu-

sions are presented in Section 6. 

Notation. Denote nR  as the n-dimensional Euclidean 

space. Define (0)C  as the neighborhood of zero with 

  being the radius. The symbols   and ⊖ denote 

Minkowski sum and difference, respectively. 

2. Problem statement 

The kinematic model of the unmanned surface 

vessel is described as  

cos sin 0
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, (1) 

Where 3[ ]Tx y R     denotes the position 

and heading of vessel in the earth-frame coordinate 

system; 3[ ]Tu v r R     represents the 

surge, sway, and yaw velocities in the vessel-frame 

coordinate system, respectively; ( )d t  denotes the 

system disturbance. The sets  and  are two 

closed sets and both contain zero as their interior 

point. 

The objective of this paper is to design tube-based 

RMPC for (1) such that the state [ , , ]Tx y   tracks the 

command signal [ , , ]T

com com comx y  . 

3. Main results 

3.1. Trajectory linearization 

In this section, the trajectory linearization 

approach is adopted to convert the vessel’s nonlinear 

system into a time-varying linear system.  

From (1), the nominal rate for a predetermined 

trajectory  ( ) ( ) ( )
T

x t y t t  is 
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with 

1 2 1

0 1 0( ) ( )
,

( ) ( ) ( )( ) ( )
com

d d d
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 (3) 

where ( ) ( ) ( )
T

x t y t t    and  ( ) ( ) ( )
T

x t y t t

are calculated in equation (3) by passing command 

state  
T

com com comx y   into a twice-order, low-

pass, command filter. The states ( )x t  and ( )x t  in (3) 

represent the estimations of ( )comx t  and its derivative, 

respectively. In (3), 2

1 ,( )d n diffa t  , 2 ,( ) 2d n diffa t  , 

with   being the damping ratio, 
,n diff being the 

natural frequency, which determines the bandwidth of 

the filter. ( )y t  and ( )t  can be obtained similarly as 

( )x t . 

Define  

   [ ] ( ) ( ) ( ) ( ) ( ) ( )
T TT

x ye e e x t y t t x t y t t    (4) 

and  

     ( ) ( ) ( ) ( ) ( ) ( ) .
T T T

u v r u t v t r t u t v t r t  (5) 

Taking linearization of equation (1) along 

 ( ) ( ) ( )
T

x t y t t  and  ( ) ( ) ( )
T

u t v t r t , we can 

obtain the following linearized error dynamics  

( ) ( ) ( ).

x x

y y

e e u
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 (6) 

Define [ ]T

x ye e e e ,  
T

u v r . Then, 

the system (6) can be rewritten in the following form 

( ) ( ) ( )e A t e B t w t   , (7) 

where 

0 0 ( )sin ( ) ( )cos ( )

( ) 0 0 ( )sin ( ) ( )cos ( ) ,

0 0 0

u t t v t t
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cos ( ) sin ( ) 0

( ) sin ( ) cos ( ) 0 ,

0 0 1

t t

B t t t

 

 

 
 
 
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 (8) 

( ) ne t R  is the state of system (7); ( ) mt R   is the 

control of system (7); ( ) nw t R  denotes lumped 

disturbances containing linearization errors and 

system disturbances, which satisfies

( ) { |wn
w t w R w   max}w  for all t ≥ 0.  

From the constraints on   and  in (1), the 

dynamics (7) is subject to state and control constraints

 
T

x y   and  
T

u v r  with  

and  being compact sets containing zero as their 

interior point. 

3.2. Robust control invariant set  

The nominal system of (7) can be stated as 

( ) ( ) ,e A t e B t    (9) 

where   is the nominal control input of (9). 

To stabilize the system error of the system (7), a 

proportional feedback control law is proposed. 
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Suppose that there exist ( )K t  such that the matrix 

( ) ( ) ( )A t B t K t  is stable.  

Define 
T T T

x y x y x ye e e e e e e e e e  
            . 

If the control law for (7) is designed as 

 ( ) = ( ) ,K t e e K t e       (10) 

then, based on (7)-(10), the dynamics of the error 

system is 

,

x x

y y

e e

e A e w

e e 

   
   
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   

  

 (11) 

where  11 22 33[ ( ) ( ) ( )]A A t B t K t diag a a a   , which 

satisfies that a11<0, a22<0, a33<0.  

Lemma 1. Denote 
11 22 33max{ , , } 0,a a a    then the 

set 
2

max: |
2 (2 )

w
e e F

  

 
    

 
 is a robust 

control invariant set for the controlled 

uncertain system (11), where 

( ) / 2TF e e e  and   is a designed 

positive constant. 

Proof. Taking time derivative of F  and substituting 

(11), yields 

.T T T TF e Ae e w e e e w     (12) 

Using Young’s inequality 
1
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then, we can further obtain the following result 

2
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From (13) we can see that the derivative of F  is 

guaranteed to be less than zero, as long as the 

following expression holds 

2

max .
2 (2 )

w
F

  
 


 (14) 

Therefore, the set 
2

max: |
2 (2 )

w
e e F

  

 
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 
 

is a robust control invariant set for the controlled 

uncertain system (11). 

Proposition 1. If (0) (0)e e  , w  and 

   ( )K t  , then ( ) ( )e t e t   holds for all 

t > 0, where ( )e t  and ( )e t  are the states of system 

model (10) and (11), respectively. 

4. Tube-based MPC 

4.1. Construction of Tube-based MPC 

Denote ( , , ( ), ( ))k ke t t e t    as the movement of the 

nominal system (9) from the initial time 
kt  and initial 

state ( )ke t  for a control signal. Then the cost function 

( ( ), ( ))J e t t  of the receding horizon optimization 

problem is formulated as follows: 

  ( ( ), ( )) ( ( ), ( ))
k p

k

t T

k
t

J e t l e d    


    

( ( )),k pG e t T   (15) 

where 
1 1

( , ) ( ),  G( )
2 2

T T Tl e e Qe R e e Pe    ; 

Q, R and P are positive definite symmetric matrices; 

0pT   is defined as the prediction horizon. 

Assume there exist a matrix K  such that 

( )K t K  . Then, the system constraints for the 

nominal system in the MPC can be constructed as 

follows: 

( )e   ⊖ ..  [ , );k k pt t T    (16) 

( ) V V   ⊖ K ..  [ , );k k pt t T    (17) 

( )k p fe t T   ⊖ .  (18) 

Hence, the set of feasible control sequences at 

sampling time 
kt  can be defined by 

U ( ( ))

{ ( ), [ , ) | ( ) , ( ) ,

     [ , ), ( ) }.

N k

k k p

p p f

e t

t t T V e

t t T e t T

     



    

    

 (19) 

It is assumed that  is small enough to ensure 

that interior( )  and interior( )K , and the 

terminal constraint set f  satisfies: 

1) ,f f fA   ⊖ , fK  ⊖ ,K

 f  is closed and 0 ;f  (20) 

2) f  is a positively invariant set for 

( ) ( )e A t e B t Ke  ; (21) 

3) [ ]( , ) 0,     .fG l e Ke e     (22) 

Remark 1. If e  and e e  , the e  and 

  can be concluded. If   and e e   

hold, from ( )K e e    , we can conclude that 

  and  . Therefore, the defined constraints 

for the nominal system (9) are reasonable.  
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In the conventional continuous-time MPC for the 

nominal model, the optimal problem at sampling time 

kt  is defined by 

*

*

( ( )) min{ ( , ) | ( ) U ( ( )),

                       [ , )},

( ) arg  min{ ( , ) | ( ) U ( ( )),

                       [ , )}.

k N k

k k p

k N k

k k p

V e t J e e t
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

   


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 
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 (23) 

Compared with the conventional optimal control 

problem, the new optimization problem in tube MPC 

involves the initial state. This is permissible because 

the initial state in the optimal problem is now not 

equal to the current state ( )ke t  of the system, which 

cannot be instantaneously changed, but a parameter of 

the control law. The new optimal control problem is 

defined by 

0

0

* *

0 0
,

0

* *

0 0 0
,

0

( ( )) min{ ( , ) | ( ) U ( ( )),

                       [ , ), ( ) ( ) },

( ( ), ( )) arg min{ ( , ) | ( ) U ( ( )),

                            [ , ), ( ) ( )

k N k
e

k k p k k

k N k
e

k k p k k

V e t J e e t

t t T e t e t

e t J e e t

t t T e t e t





  


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
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   
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(24) 

If the function *

0( ),e t t t  is defined as 

* *

0 0 0 0 0 1

*

* *

0 0 1

( , , ( ), ( )), [ , )

( ) ,
( , , ( ), ( )), [ , )k k k k

e t t e t t t t

e t
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
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 (25) 

then according to Proposition 1, we can obtain 

*

0( ) ( ) , .e t e t t t    (26) 

Based on the above analysis, the tube MPC for 

system (7) can be stated as: 

* *

0 0 +1( ) ( ) ( )( ( ) ( )), [ , ) ,

                       k 0,1,2, .

k kt t K t e t e t t t t    


 (27) 

4.2. Stability analysis of the proposed control 

Definition 1. 

1. 0 0 0 0{ ( ) | ( ), ( ) ( ) , ( )N NX e t e t e t e t U e     

is not empty} ; 

2. The robust control invariant set   is 

robustly asymptotically stable for system (7) 

controlled through (25) with NX  as the 

region of attraction if, for all admissible 

disturbance, a) ( ( ), ) 0dist e t    as t   

for all 0( ) Ne t X  and b) for all  >0, 0 

such that, for all 0( ) (0)e t C  , then

( ) (0)e t C   for all 0t t . 

Theorem 1. Suppose the optimization problem (24) is 

feasible at sampling time tk .Then, 

1) The optimization problem (24) is feasible for all 

sampling time tn with n>k; 

2) The optimal value function satisfies  

1

* * * *

0 0 1 0 0

2 2
* *

( ( )) ( ( ))

        ( ( ) ( ) ) ;
k

k

k k

t

Q Rt

V e t V e t
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

  


 (28) 

3) The set   is asymptotic stable for the  

controlled continuous-time nonlinear system 

( ) ( ) ( )e A t e B t w t    with *( ) ( )t t  

*

1( )( ( ) ( )),  [ , )k kK t e t e t t t t    for a sufficiently 

small sampling time interval δ>0. 

Proof. 

1) It is assumed that at sampling time 
kt , an opti-

mal solution * * *

0 0( ( ),  ( ,  ( ),  ,  ))k k k k pe t e t t t T   to problem 

(24) exists and is found. Therefore, the state 
*

0( , ( ),  ,  )k k k pe e t t t T   and the input 
* *

0( ;  ( ),  ,k ke t t 

)k pt T , [ ,  ]k k pt t T    satisfy the constraints (16)-

(18). When applied to the nominal system (9), the 

state will be driven from *

0 ( )ke t  to 

*

0( ,  ,  ( ),  k p k ke t T t e t *( )) f   . 

Since the state of nominal system at time 

1k kt t     is * *

1 0( , , ( ), ( ))k k ke t t e t    and 1( )ke t    
* *

1 0( , , ( ), ( ))k k ke t t e t     holds, * *

1 0( , , ( ), ( ))k k ke t t e t  
 

is a feasible choice of initial state of the optimization 

(24) at time 
1.kt 

 Since 
*

0( , , ( ), ( ))k p k ke t T t e t  

f , fK  ⊖ K  and f  is positively 

invariant for ( ) ( )e A t e B t Ke  . Then, at sampling 

time 1kt  , the control input ( )  on 1 1[ , )k k pt t T    

may be chosen as 

* *

0 1

1

( , , ( )),  [ , ]
( )

( , , , ( )),  [ , ).

k k k k p

k p k p k p

t e t t t T

Ke t T t T t T

  
 

   





  
 

    

 (29) 

Therefore, the feasibility of the optimal control 

problem (24) with constraints (16)-(18) at time 
kt  

implies its feasibility for all sampling time 
nt  with 

n>k. 

2) The optimal value of the objective functional at 

time tk can be written as 

2 2
* * * *

0 0

2
* *

0

( ( )) ( ( ) ( ) )

                     + ( , , ( ), ( )) .

k p

k

t T

k Q Rt

k p k k P

V e t e d

e t T t e t

   





 

 


(30) 
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Since at sampling time 1kt  , a feasible control 

input
 
can be chosen as (29), then the value of the 

objective function at sampling time 1kt   is 

1

1

1

1

2 2

1 1

2

1 1 1

2
* * *

0 0

2
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1 1
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   + ( ( , , , ( )) ( ) )

k p

k

k p

k

k

t T

k k Q Rt

k p k k P

t T

k k k k Qt

k k R

k Q R

V e t

e t e t d
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

 

  

    











 

  
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 

 
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2
* * * * *

0 0 0 0

2
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2 2*

0 1 1 1
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From *

0( , , ( ), )k p k k k p fe t T t e t t T    and inequa-

lity (22), we can obtain the following result 
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Therefore, the following results can be obtained 

from (31)-(32), 
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At last, the result (28) can be concluded from the 

fact that * * *

0 0 1 1( ( )) ( ( ))k kV e t V e t  . 

3) It can be easily seen from (28) that the sequence 
* *

0 0{ ( ( )),k 0,1,2, }kV e t    is monotonic non-increasing 

and with 0 being a lower bound. Thus, *

0{ ( )}V  

converges to some non-negative value as k tends to 

infinity. Then, from (28) and the convergence of 
* *

0 0{ ( ( )),k 0,1,2, }kV e t   , the following result can be 

concluded 
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  



(34) 

Then, we can obtain  

lim sup ( ) 0.
t

e t


  (35) 

Since 0 lim inf ( ) lim sup ( )
t t

e t e t
 

  and (34), 

(35) hold, we can get the following result 

lim ( ) 0.
t

e t


  (36) 

Since ( ) ( )e t e t  and ( ) 0e t  as t  , the 

set  is robustly asymptotic stable for the controlled 

nonlinear uncertain system (7). 

5. Simulation results 

In this section, the effectiveness of the proposed 

control law is illustrated by simulation. Based on (3), 

we set 0.5  , 
, 4n diff  , 2comx  , 2comy  ,  

com / 4  and ( (0), (0), (0)) (0,0,0)x y   , then we 

get [ ( ), ( ), ( )]Tx t y t t  and [ ( ), ( ), ( )]Tu t v t r t . 

In the linearization (7) of the system (1), the 

lumped disturbance is denoted as ( ) [0.1sin(0.1 ) w t t

0.1sin(0.1 ) 0.05sin(0.1 )]Tt t . The constraints to the 

system (7) are described as: x 2.5, y 2.5,    

  1.2, and 1 6, 1 3,-1 1u v r        . In the 

simulation, we set K=-0.5I, P=0.5I, Q=I and R=0.2I. 

We set the sampling time as δ=0.1. The terminal state 

constraint in the MPC is chosen as { | 0.06}Te e Pe  . 

Based on these designed parameters, the control 

for the system (7) is executed by using MATLAB. The 

simulation results are showed in Fig. 1-Fig. 3, where 

Fig. 1 presents the error between the state of  

 

 

Figure 1. The error between ( , , )x ye e e and 
* * *( , , )x ye e e  
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Figure 2. The tracking of command signals  

for the vessel 

 

Figure 3. The designed control ( , , )u v r for the  

surface vessel 

( )x ye e e  and * * *( , , )x ye e e , Fig. 2 depicts the 

tracking of command signals 2comx  , 2comy  ,  

com / 4.
 
From Fig. 1-Fig. 3, we can get the 

effectiveness of the designed tube-based robust MPC, 

including input and state constraints satisfaction and 

robustness of the closed-loop system. 

6. Conclusions 

In this paper, we have proposed a trajectory-

linearization-based robust model predictive control 

(RMPC) for unmanned surface vessels with system 

constraints and disturbances. In the proposed RMPC, 

the linear feedback control ensured the real trajectory 

contained in a tube of trajectory of a nominal system, 

while the MPC guaranteed the asymptotical stability 

of the nominal system. We have also provided 

theoretical analysis and simulation results to illustrate 

the effectiveness of the proposed control. 

Acknowledgments 

This work was supported by the National Natural 

Science Foundation of China (No. 61503158), Natural 

Science Foundation of Jiangsu Province (No. 

BK20130536, No. BK20130533), Scientific Research 

Foundation for Advanced Talents by Jiangsu Univer-

sity, and the Priority Academic Program Development 

of Jiangsu Higher Education Institutions. 

References 

[1] K. D. Do, Z. P. Jiang, J. Pan. Global partial-state 

feedback and output-feedback tracking controllers for 

underactuated ships. Systems and Control Letters, 

2005, Vol. 54, No. 10, 1015-1036. 

[2] W. Dong, Y. Guo. Global time-varying stabilization of 

underactuated surface vessel. IEEE Transactions on 

Automatic Control, 2005, Vol. 50, No. 6, 859-864. 

[3] M. Wondergem, E. Lefeber, K. Y. Pettersen, H. 

Nijmeijer. Output feedback tracking of ships. IEEE 

Transactions on Control Systems Technology, 2011, 

Vol. 19, No. 2, 442-448. 

[4] P. Švec, A. Thakur, E. Raboin, B. C. Shah, S. K. 

Gupta. Target following with motion prediction for 

unmanned surface vehicle operating in cluttered 

environments. Autonomous Robots, 2014, Vol. 36, 

No. 36, 383-405. 

[5] D. C. Gandolfo, L. R. Salinas, A. S. Brandão, J. M. 

Toibero. Path following for unmanned helicopter: an 

approach on energy autonomy improvement. 

Information Technology & Control, 2016, Vol. 45, 

No. 1, 86-98. 

[6] H. Ashrafiuon, K. R. Muske, L. C. McNinch, R. A. 

Soltan. Sliding mode tracking control of surface 

vessels, IEEE Transactions on Industrial Electronics, 

2008, Vol. 55, No. 11, 556-561. 

[7] T. R. Sun, H. L. Pei, Y. P. Pan, H. B. Zhou, C. H. 

Zhang. Neural network-based sliding mode adaptive 

control for robot manipulators. Neurocomputing, 2011, 

Vol. 74, Issue 14-15, 2378-2384. 

[8] R. Yu, Q. Zhu, G. Xia, Z. Liu. Sliding mode tracking 

control of an underactuated surface vessel. Control 

Theory and Applications, 2012, Vol. 6, No. 3, 461-466. 

[9] M. R. Katebi, M. J. Grimble, Y. Zhang. H∞ robust 

control design for dynamic ship positioning. IEE 

Proceedings-Control Theory and Applications, 1997, 

Vol. 144, No. 2, 110-120. 

[10] Y. P. Pan, Y. Zhou, T. R. Sun, M. J. Er. Composite 

adaptive fuzzy H∞ tracking control of uncertain 

nonlinear systems. Neurocomputing, 2013, Vol. 99, 

15-14. 

[11] Y. P. Pan, M. J. Er, D. P. Huang, T. R. Sun. 

Practical adaptive fuzzy H∞ tracking control of 

uncertain nonlinear systems. International Journal of 

Fuzzy Systems, 2012, Vol. 14, No. 4, 463-473. 

[12] M. Chen, S. S. Ge, B. V. E. How, Y. S. Choo. Robust 

adaptive position mooring control for marine vessels. 

IEEE Transactions on Control Systems Technology, 

2013, Vol. 21, No. 21, 395-409. 

[13] Z. Zhao, W. He, S. S. Ge. Adaptive neural network 

control of a fully actuated marine surface vessel with 

multiple output constraints. IEEE Transactions on 

Control Systems Technology, 2014, Vol. 22, No. 4, 

1536-1543. 

[14] Y. P. Pan, H. Y. Yu, E. J. Er. Adaptive neural PD 

control with semiglobal asymptotic stabilization 

guarantee. IEEE Transactions on Neural Networks and 

Learning Systems, 2014, Vol. 25, No. 12, 2264-2274. 



L. Wang, T. Sun, X. Yu 

418 

[15] T. R. Sun, H. L. Pei, Y. P. Pan, C. H. Zhang. Robust 

wavelet network control for a class of autonomous 

vehicles to track environmental contour line. 

Neurocomputing, 2011, Vol. 74, No. 17, 2886-2892. 

[16] T. R. Sun, H. L. Pei, Y. P. Pan, C. H. Zhang. Robust 

adaptive neural network control for environmental 

boundary tracking by mobile robots. International 

Journal of Robust and Nonlinear Control, 2015, 

Vol. 23, No. 2, 3097-3108. 

[17] Y. P. Pan, T. R. Sun, H. Y. Yu. Peaking-free output-

feedback adaptive neural control under a nonseparation 

principle. IEEE Transactions on Neural Networks and 

Learning Systems, 2015, Vol. 26, No. 12, 3097-3108. 

[18] Y. P. Pan, Y. Q. Liu, B. Xu, H. Y. Yu. Hybrid 

feedback feedforward: an efficient design of adaptive 

neural network control. Neural Networks, 2015, 

Vol. 76, 122-134. 

[19] Y. P. Pan, D. P. Huang, Z. H. Sun. Backstepping 

adaptive fuzzy control for track-keeping of 

underactuated surface vessels. Control Theory and 

Applications, 2011, Vol. 28, No. 7, 907-914. 

[20] Y. Yang, J. Du, H. Liu, C. Guo, A. Abraham. A 

trajectory tracking robust controller of surface vessels 

with disturbance uncertainties. IEEE Transactions on 

Control Systems Technology, 2014, Vol. 22, No. 4, 

1511-1518. 

[21]  S. J. C. Lins Barreto,  A. G. Scolari Conceicao, 

C. E. T. Dorea, L. Martinez,  E. R. De Pieri. Design 

and implementation of model-predictive control with 

friction compensation on an omnidirectional 

mobile robot. IEEE/ASME Transactions on 

Mechatronics, 2014, Vol. 19, No. 2,467-476. 

[22] Monteriù, A. Freddi, S. Longhi. Nonlinear 

decentralized model predictive control for unmanned 

vehicles moving in formation. Information Technology 

& Control, 2015, Vol. 44, No. 1, 89-97. 

[23] D. Limon, T. Alamo, F. Salas, E. F. Camacho. Input 

to state stability of min-max MPC controllers for 

nonlinear systems with bounded uncertainties. 

Automatica, 2006, Vol. 42, No. 5, 797-803. 

[24] E. C. Kerrigan, J. M. Maciejowski. Feedback min-

max predictive control using a single linear program: 

robust stability and the explicit solution. International 

Journal of Robust and Nonlinear Control, 2004, 

Vol. 14, No. 4, 395-413. 

[25] L. Magni, G. De Nicolao, R. Scattolini, F. Allgower. 

Robust model predictive control for nonlinear discrete-

time systems. International Journal of Robust and 

Nonlinear Control, 2003, Vol. 13, No. 3-4, 229-246. 

[26] L Chisci, J. A. Rossiter, G. Zappa. Systems with 

persistent disturbances: predictive control with 

restricted constraints. Automatica, 2001, Vol. 37, 

No. 7, 1019-1028. 

[27] D. Q. Mayne, M. M. Seron, S. V. Rakovic. Robust 

model predictive control of constrained linear systems 

with bounded disturbances. Automatica, 2005, Vol. 41, 

No. 2, 219-224. 

[28] S. Yu, C. Maier, H. Chen, F. Allgower. Tube MPC 

scheme based on robust control invariant set with 

applications to Lipschitz nonlinear systems. System 

and Control Letters, 2011, Vol. 62, No. 62, 2650-2655. 

[29] Y. Liu, J. Jim Zhu, R. L. Williams, J. Wu. Omni-

directional mobile robot controller based on trajectory 

linearization. Robotics and Autonomous Systems, 

2008, Vol. 56, No. 5, 461–479. 

[30] Y. Xue, C. Jiang. Trajectory linearization control of 

an aerospace vehicle based on RBF neural network. 

Journal of Systems Engineering and Electronics, 2008, 

Vol. 19, No. 4, 799-805. 

Received October 2015. 

 

 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lins%20Barreto%20S%2C%20J.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Scolari%20Conceicao%2C%20A.G..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dorea%2C%20C.E.T..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Martinez%2C%20L..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.De%20Pieri%2C%20E.R..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6461945&queryText=model%20predictive%20control%20%20robot&refinements=4291944246&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6461945&queryText=model%20predictive%20control%20%20robot&refinements=4291944246&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6461945&queryText=model%20predictive%20control%20%20robot&refinements=4291944246&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6461945&queryText=model%20predictive%20control%20%20robot&refinements=4291944246&searchField=Search_All
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3516
http://www.sciencedirect.com/science/journal/09218890
http://www.sciencedirect.com/science/journal/09218890/56/5
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yali%2C%20Xue.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Changsheng%2C%20Jiang.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6072382&queryText=trajectory%20linearization&refinements=4291944246&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6072382&queryText=trajectory%20linearization&refinements=4291944246&searchField=Search_All
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5971804
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5971804

