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Abstract. In this paper a new method of modelling and controller design for continuous systems is introduced. 

Petri Net is a useful tool for modelling, analysis and controller synthesis in discrete event systems. Continuous-Time 

Delay-Petri Nets (CTDPN) are presented to challenge with other types of continuous dynamic system modelling tools. 

This article focuses on an approach to design a controller using Petri Net for continuous dynamic systems. It is shown 

here that this method simplifies system analysis and controller design by first, converting the continuous state space to 

a discrete state space and then applying CTDPN, to model and analyse it. Finally, a state feedback control algorithm is 

adapted to be used for models which are derived by CTDPN approach. Simulation results show the efficiency of the 

proposed approach comparing to state space feedback controller in terms of the simplicity of the system analysis and 

the time it takes to simulate the close-loop system. 
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1. Introduction 

Recently, due to great advances in technology and 

computer aided techniques, modelling based on Petri 

Nets has attracted researchers’ attention. Automata and 

Petri Nets are the main modelling tools in the area of 

control synthesis for discrete event systems in compu-

ter integrated manufacturing systems, correspondence, 

aviation, spaceflight, etc. In the last decade, many 

researchers study modelling based on Petri Nets 

because of the advantages of the graphical and 

distributed representations of the system states and the 

computational efficiencies [1,2]. 

Petri Nets have been used extensively as a tool for 

modelling, analysis and synthesis of discrete event 

systems and usually interpreted as a control flow 

graph of the modelled system [3]. This method is an 

alternative tool for modelling event based systems [4]. 

Petri Nets are both a graphical and mathematical tool 

that can model deterministic or stochastic system 

behaviours and phenomena such as parallelism, 

asynchronous behaviour, conflicts, resource sharing 

and mutual exclusion [5].  

Petri Nets were introduced in Carl A. Petri’s 1962 

Ph.D. dissertation [6]. Since then, researches have 

proved it to be a helpful graphical and mathematical 

modelling tool applicable to many systems. As a 

graphical tool, Petri Nets can be used as an effective 

visual communication aid similar to flow charts, block 

diagrams, and networks [6]. As a mathematical tool, 

the modelling procedure based on Petri Nets can 

describe the system behaviour by linear algebraic 

equations [7]. 

Continuous Petri Nets model was presented by 

David and Alla in [8]. These authors have obtained a 

continuous model by fluidization of a discrete Petri 

Nets [9]. This approach is a useful method for 

modelling of many phenomena and systems. In [10], 

controllability of Timed Continuous Petri Nets, under 

infinite server semantics, with uncontrollable 

transitions is presented. Further, Continuous Petri Nets 

constitute a part of process of modelling by a 

systematic procedure that was discussed in [11]. The 

continuous part can model systems with continuous 

flows. Autonomous Continuous Petri Nets and other 

models like Differential Algebraic Equations Petri 

Nets have been studied intensively in this research 

area [12, 13]. Digitized signals leaning on analogue 

signal and continuous approximated model are used in 

this paper which presents important connection 

between mathematical transfer function and state 

event base model [14]. This leads to a mathematical 

model with very simple algorithm in contrast with the 

complexity of mathematical models. 

The classical control theory is based on a simple 

input-output description of the plants which are 
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usually expressed as a transfer function and never use 

any knowledge of the interior structure of the plant. 

Modern control theory solves many of the limita-

tions by using a much richer description of the system 

dynamics. The so-called state space description 

represents the dynamics as a set of coupled first-order 

differential equations between a set of internal 

variables known as state variables, together with a set 

of algebraic equations that combine the state variables 

into physical output variables [15]. 

For many systems, the differential equations of the 

system change due to the change of conditions. Hence, 

there are different transfer functions and the system 

can be divided into a number of subsystems. 

Therefore, they are absolutely difficult to be modelled 

and controlled. One of the most powerful tools to 

model and control these types of systems is Petri Nets. 

Some previous attempts are done in order to model 

continuous dynamic systems using Petri Nets [16]. 

Here in this article a Continuous-Time Delay-Petri 

Nets (CTDPN) method is presented to solve the 

difficulty of modelling and control. Using CTDPN, 

first continuous state space is modelled by Petri Nets 

approach. After modelling step, a state feedback 

control algorithm based on CTDPN is introduced. One 

of the significant advantageous of this procedure is 

that all features of the system are preserved in 

incidence matrix. 

The remainder of this paper is organized as 

follows: In Section 2, main concepts of discrete and 

continuous Petri Nets are presented. The basic 

definitions for Continuous-Time Delay-Petri Nets 

(CTDPN) are explained in Section 3. The differences 

between CTDPNs with PNs are also explained in this 

section. The control algorithm based on state space 

controller is presented in Section 4. Section 5 is 

dedicated to simulation results and finally the 

conclusion is stated in Section 6. 

2. Basic Concepts and Notations 

2.1. Ordinary Petri Nets 

Petri Net is a directed net consisting of places, 

transitions, directed arcs and tokens [17]. 

A Petri Net is a 5-tuple N = {P, T, W-(Pre), 

W+(Post), M0} where: 

P= {p1, p2,…, pn} is a finite set of places, and n>0 

is the number of places; 

T= {t1, t2,…, tm} is a finite set of transitions, and 

m>0 is the number of transitions and P∩T=Ø, i.e. the 

sets P and T are disjoint; 

Pre or W-: (P×T) →N is the input function, Post or 

W+: (T×P) →N is the output function; 

M0 is the initial marking. The incidence matrix W 

is calculated by W=W+- W-. 

Pictorially, places are represented by circles, 

transitions are represented by rectangles or bars, and 

arcs are depicted as arrows. 

Here, the following notations will be used [18]: 

  Pr , 0
o

j jt
i i

p P e p t   = set of input places of tj.  

  P , 0j ji i
p P ost p tt    =set of output places of tj.  

  Pr , 0j ji
p

i
t T e p t   =set of input transitions 

of pi.
 

  P , 0i j ji
t T ost p tp    =set of output transitions 

of pi. 

The dynamic behaviour of Petri Net models is 

characterized by certain markings. Markings may be 

altered during the execution of a Petri Net, which are 

controlled by the number and distribution of tokens. A 

transition is enabled if and only if each of its input 

places includes certain number of tokens. When a 

transition is enabled, it may fire. As soon as a 

transition fires, all enabling tokens are removed from 

its input places and then the tokens are transferred to 

each of its output places [19]. When using Petri nets to 

model systems, places represent states and transitions 

are used to represent events [20]. 

Dynamic behaviour of the system represented by 

the Petri Nets can be expressed using the Petri Nets 

incidence matrix W where W is an n×m matrix. 

It is desirable to have an equation to test if a given 

marking Mk is reachable from an initial marking M0. 

Suppose that Mk is reachable from M0 by successive 

firing of certain sequences. Then [21]: 

 0 0 1 1 .k kM M W U U U       (1) 

Where Ui is the firing transition of ti. Using equation 

(1), it is easy to show that the state equation is: 

0 .kM M W U   (2) 

where, U is the firing count vector and is equal to 

summation of all Ui(i =0,1,2,…,k-1). 

2.2. Continuous Petri Nets 

A marked Continuous Petri Net is a 5-uple 

0{ , ,Pr , , }R P T e Post M  such that P, T, Pre and Post 

are the same as mentioned in previous subsection, and 

M0 is the initial marking of all places knowing that 

M(t) denotes the vector marking at time t, including 

elements m(p1),…,m(pn) in which n shows the number 

of places. It shall be mentioned that m(pi) is a positive 

real number tokens [21].  

An important difference between the ordinary  

Petri Net and the Continuous Petri Net (CPN) is the 

enabling degree. The enabling degree of a transition  

tj for a marking M is indicated by q or q(tj,M) which  

is the real number as shown in the equation below 

[22]:  

 
 
 

, min

Pr ,:

i

j

i j

m

q M

o ei
i j

p
t

p tp t





 
 
 
 
 

 (3) 
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If q>0, the transition tj is enabled; it is said to be q-

enabled. It is important to note that the marking of a 

Continuous Petri Net can take real positive values, 

while in discrete Petri Nets only integer values are 

possible. In fact, this is the only difference between a 

continuous and a discrete Petri Net [23]. 

Timed Petri Nets with constant times associated 

either with places or with transitions are used in order 

to model various systems. A timed Continuous Petri 

Net is a pair(R,Spe) such that: R is a marked 

autonomous Continuous Petri Net; and Spe is a 

function from the set T. For transition tj, the values 

vj(t) denote instantaneous firing speed and Spe(tj)=Vj 

is the maximal speed. The instantaneous firing speed 

vj(t) satisfying the following conditions: 

   .j jv t V t  

The concept of the validation of a continuous tran-

sition is different from the traditional concept met in 

discrete Petri Nets. The fundamental equation for a 

timed Continuous Petri Nets between times (t and 

t+dt) is as follows: 

     

     2

112

.

.
t

t

M t dt M t W v t dt

M t M t W v t dt

   

  
 (4) 

where W is the Petri Nets incidence matrix, v(t) is the 

characteristic vector of s (firing sequence), M(t+dt) 

and M(t) are the new marking and the previous 

marking, respectively. Additionally, in equation (4), 

time t1 is smaller than time t2. 

3. Continuous-Time Delay-Petri Nets 

(CTDSPN) 

The transfer function or state space of systems can 

be determined by the system identification techniques. 

The state space for a continuous system is indicated 

through differential equations. It is so difficult to show 

differential equations with ordinary Petri Nets model. 

To overcome the problem, CTDPN has been proposed. 

Continuous equation shall be digitized with adequate 

sample time. In discrete state space, a recursive 

function with delays is used instead of derivative 

function, making modelling much simpler. In CTDPN, 

transition firing plays the role of delay. For this 

innovation, there should be some new hypothesizes: 

Hypothesis1. Place tokens in CTDPN can be negative 

or non-negative real numbers at any time.  

Hypothesis2. A transition is enabled if m(pi)>0 or 

m(pi)<0.  

Hypothesis3. The speed of transitions is infinity.   

Hypothesis4. When transitions are fired, values of 

tokens of input places tokens become zero.  

In this method, time delays will correspond to 

transitions, and places play the role of input variable, 

output variable and states for systems. 

To illustrate this approach, consider a first-order 

state space as  

     

    .

1 1x k Ax k Bu k

y k x k

   



 (5) 

The CTDPN model of equation (5) with a unit step 

input is shown in Fig. 1. 

 

Figure 1. Petri Nets model of equation (5) 

In Fig. 1, places p1 and p2 depict the input variable 

and the output variable, respectively. 

Now consider strictly proper transfer function with 

n poles and m zeros as: 

 

1

1 1 0

1

1 1 0

.

m m

m m

n n

n

b s b s b s b

F s

s a s a s a









   



   

 (6) 

Discrete-time model of the transfer function in 

equation (6) with sample time of TS is: 

 
1

1 0

1

11
.

n

n

n

n

z z
F z

z z

 

 

 



 

 


  
 (7) 

The discrete state space of the equation (7) is: 

     

   

1 1

1 1

x k Ax k Bu k

y k Cx k

   


  





 (8)

  

 
 
 

 
 

 
 
 

 
 

 

10 1 0 0 01 1

10 0 1 0 02 2

0 0 0 0 1
3 3

0

0 0 0 0 0 1 1
1 1

11 2 3 1

0

0

0
. 1

0

1

x k x k

x k x k

x k x k

x k x k
n n

nx k x knn n

u k

    









 

     

 

    
    
    
    
    
    
    

       

 
 
 
 
 
 
 
 

 

 

 

 

 

 

1
1

1
2

1
31

0 1 2 2 1

1
1

1

.

x k

x k

x k
y k

n n

x k
n

x kn

    






 

 






 
 
 
 

    
 
 
 
   

Petri Nets model of equation (8) is shown in 

Fig. 2. 
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Figure 2. Petri Nets model of discrete state space described by equation (8) 

In Fig. 2, places p1 and pn+1 depict input variable 

and output variable, respectively. Here, p2 to pn 

correspond to x1,…,xn, respectively. Moreover, 

considering this figure, the state equation can be 

written as follows:  

  0 .m k m W v    (9) 

where the dot signifies the multiplication between the 

matrix W and the vector v, also W-, W+, W and v are as 

follows: 

1 0 0 0 0

0 0 1 0 0

0 0 0 0

0 0 1

1 0
1 2

0 0
0 1 1

W

n

n

  

  




  



 
 
 
 
 
 
 
   

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0

0 0 0 0 1 0

0 0 0 0 0 1

W



 
 
 
 
 
 
 
   

0 0 0 0 0

0 1 1 0 0

0 0 0 0

0 0 1

1 1 0
1 2

0 1
0 1 1

W W W

n

n

  

  



 
  

   




 
 
 
 
 
 
 
   

and 

  
  

  
  

1
1

1
2

1
1

1
2

m p k

m p k

v

m p k
n

m p k
n













 
 
 
 
 
 
 
 
  

.

 
 

 

The role of principal equation of Petri net is the 

same as that of discrete state space equation. 

It is obvious that the properties of the discrete state 

space are reserved in W+ matrix, because: 

 

 

Property 1. The state space eigenvalues can be 

obtained by calculating the eigenvalues of a W+ 

matrix and omitting the values equal to 0 and 1 among 

them.  

 

Proof. The characteristic equations of W+ are 

det(zI−W+) = 0. This function is a polynomial of 

degree n+2. 
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 

   

1 0 0
1

det det 0
1

0
1

1 det 0

z
n

zI W B zI An n n nn

C z
n

z zI A zn n n n





    




      

  
  
  
    

 (10) 

Therefore, the eigenvalues of W+ are 

     

 

   

det 1 det 0

1 0

0

det 0

1

0

det 0.

zI W z zI A zn n n n

z

z

zI An n n n

z

z

f z zI An n n nsystem


        

 

 

  





   













 

So, the properties of the discrete state space are 

kept in continuous -Time Delay- Petri Nets  

modelling.  

4. State Space Controller Design Algorithm 

The state of a dynamical system is the set of 

variables known as state variables that fully describe 

the system and its response to any given set of  

inputs [24]. 

State variable feedback allows the flexible 

selection of linear system dynamics. State feedback 

involves the use of the state vector to compute the 

control action for specified system dynamics. 

The equations for the linear system and the 

feedback control law are, respectively, given by the 

following equations: 

     

   

     

1

.

x k Ax k Bu k

y k Cx k

u k Kx k r k

  



  

 (11) 

The two equations can be combined to yield the 

closed-loop state equation: 

       

       

1

1 .

x k Ax k B kx k r k

x k A BK x k Br k

     

   

    (12) 

The closed-loop state matrix is defined as: 

.clA A BK   (13) 

The dynamics of the closed-loop system depends 

on the eigenvalues and eigenvectors of the matrix Acl. 

Thus, the desired system dynamics can be achieved 

with appropriate choice of the gain matrix K. 

To design a feedback control law based on Petri 

Nets model using the proposed algorithm, following 

steps should be considered: 

Algorithm 1. 

Step 1. Calculate open loop poles of the system using 

W+ and Property 1. 

 det 0.zI W


   

Step 2. Design a controller such that the closed loop 

poles are at certain desired locations. The 

desired pole locations are defined with the 

characteristic equation: 

  1 2
1 2 1

.desired

n n n
f z z z z zn n

   
 

     


(14) 

If fdesired(z)=fsystem(z), there is no need to design 

controller; otherwise go to Step 3. 

Step 3. The W+
newK is structured as follows. The 

dimensions of W+
newK are (n+2)×(n+2). 

 

0
( ) 1

1 0 0
1 1 1 1 1 1 1

0
1 1

1 0 0 0 0

0 0 1 0 0

0 0 0 0

0 0 1

1 0
1 1 2 2

0 0
0 1 1

.

n

W W KnewK n

k k kn n

n

  

  


 

  
   





     



 
   
   
 
 

 
 
 
 
 
 
 
 

(15) 

Step 4. The characteristic equation of W+
newK is 

calculated as: 

     
   

det 1 det

1 .

zI W z zI A znewK cl

z f z z
newk


     

   

 (16) 

where 

   

 

   

1

2
1 1

1 12 2
.

n n
f z z k zn nnewk

n
k z

n n

k z k





 


  


  

 

   

 (17)  

Step 5. From equation fnewk(z)=fdesired(z), the K-vector 

is obtained: 

   

 

 
 

1 11 11 1

1 1 1 1 1 1

.

desiredf z f z
newk

k

k k
n n n n n n

k kn n n n n n

k  

   

   



 

  

   

   




     




 (18) 

Step 6. End. 

The flowchart of this algorithm is depicted in 

Fig. 3. 

5. Simulation Results 

In this section, the performance of a feedback 

control law designed on the basis of Petri Net model is 
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Figure 3. Flowchart of the algorithm to design a feedback control law based on Petri Nets model 

presented. The simulation is carried out using 

MATLAB version 7.12.0.635. The inverted pendulum 

is an open loop unstable system. The system of 

interest is shown in Fig. 4, where F is the force in 

Newtons, m is the mass of the pendulum rod in 

kilograms, M is the mass of the moving cart in 

kilograms and θ is the angle of the inverted pendulum 

measured from the vertical y-axis in radians. 

A mathematical model of the pendulum system is 

derived below: 

 

1

1

.

x v

mg
v F

M M

m M g
F

Ml ml

y



 

 



  

     


  
 
     


 

 (19) 

The output variable is angle of the inverted 

pendulum. 

The parameters of the inverted pendulum system 

used for simulations are given in Table 1. 

Table 1. Parameters of the inverted pendulum system 

M(kg) m(kg) g(m/s2) l(m) 

0.792 0.231 9.8 0.305 

 

 

Figure 4. Schematic of the inverted pendulum system 
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Figure 5. Petri Nets model of (20) 

Let us define x1, x2, x3, and x4 as the states of the 

system. Then the following state equations can be 

obtained: 

   

   

   

   

1 2

2.86 1.26
2 3

3 4

41.5 14.2
4 3

.
3

x t x t

x t x t u

x t x t

x t x t u

y x



   






 



  (20) 

After discretizing the system using the triangle 

(first-order hold) approximation with sample time 

Ts=0.1sec, the resulted state equation can be written: 

 

 

 

 

 

 

 

 

 

     

1 1

2 2

3 3

4 4

1

1

1

1

1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 4.43 6.859 4.43 1

0.07349 0.07349 0.07349 0.07349

0 1 0 0

0 0 1 0

0 0 0 1

1 4.43 6.859 4.43

k k

k k

k k

k k

x x

x x
u k

x x

x x

y k x k

A









  





                     
      
             

  

 




  

  0

0

0

0

1

0.07349 0.07349 0.07349 0.07349 .

B

C D



 

 
  
  
  
  

 

  (21) 

Finally, Petri Net for this model is demonstrated in 

Fig. 5. 

In Fig. 5, places p1 and p6 indicate input variable 

and output variable, respectively. The place 

descriptions of the model in Fig. 5 are introduced in 

Table 2.  

The incidence matrix W for Fig. 5 can be obtained 

as follows: 

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 1 4.43 6.859 4.43 0

0 0.07349 0.07349 0.07349 0.07349 0

andW



 

 

 
 
 
 
 
 
 
 

 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

W



 
 
 
 
 
 
 
 

 

0 0 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

1 1 4.43 6.859 3.43 0

0 0.07349 0.07349 0.07349 0.07349 1

W W W



 
  



 

  

 
 
 
 
 
 
 
   

 

Table 2. Place descriptions of Fig. 5 

Place State Description 

p1 u(k) Input 

p2 x1(k) Position of cart in x direction 

p3 x2(k) Velocity of cart in x direction 

p4 x3(k) Angle of the inverted pendulum 

p5 x4(k) 
Angular velocity of the inverted 

pendulum 

P6 y(k-1) Output 

 

The eigenvalues of system can be obtained as: 

 

1 0 0 0 0 0

0 1 0 0 0

0 0 1 0 0
det det

0 0 0 1 0

1 1 4.43 6.859 4.43 0

0 0.07349 0.07349 0.07349 0.07349 0

z

z

z
zI W

z

z






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 
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  
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 

1 0 0

0 1 0
1 det 0

0 0 1
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z z
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
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 
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  
  
      
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   

1 0 0

0 1 0
det 1 det 0

0 0 1
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z
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  
  
   
  

 

This system is unstable. 

In this step by applying feedback control law 

based on the Petri Nets model a controller is designed 

and consequently the system begins to be stabled. The 

following step should be taken to do so: 

Step 1. The open loop poles of the system are 

calculated: 

11

12

0.5243

1.94

z

z

z

z

















 

Step 2. Define the desired pole locations with the 

characteristic equation. 

        

4 3 2

0.20.525 0.7 0.8

0.775 0.423 0.249 0.059.

desired zf z z z z
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    

 

Step 3. W+
newK is constructed as follows: 
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0 0 1 0 0 0 0

0 0 0 1 0 0 0
0 01 2 3 4
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1 1 4.43 6.859 4.43 0 1
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   

The Petri Nets model with the feedback control 

law is shown in Fig. 6. 

Step 4. The characteristic equation of W+
newK is 

obtained as: 

 

 

1 0 0 0 0 0
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det det
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Figure 6. Petri Nets modelling with feedback control law 

Step 5. In this Step the following equation should be 

satisfied: 

   

         

 

4 3 2
4 3 2 1

4 3 2

4.43 6.859 4.43 1

0.775 0.423 0.249 0.059

desirednewk

newk

desired

f z f z

f z z k z k z k z k

f z z z z z

 

        

    
 

Consequently, the K-vector is: 

K=[k1 , k2 , k3 , k4]=[-0.941,4.18,-7.28,5.21] 

This model has been simulated here. Fig. 7, shows 

the angle of the inverted pendulum step response 

without controller using Petri Nets model and state 

space model. 

As it is shown above as the time increases, the 

deviation of pendulum angle increases too. Therefore, 

the system is unstable. The introduced Petri Nets 

method showed this fact clearly. 

 

Figure 7. Step response of system with Petri Nets and state 

space model 

 

Figure 8. Output of system with state space and Petri Nets 

approach controller 

Fig. 8, illustrates the instable system with the 

feedback control law based on the state space model 

and Petri Nets approach, and it is obvious that after 

applying the controller, system begins to be stable. 

By comparing responses in Fig. 8, it is shown that 

the Petri Nets model response is the same as the state 

space model. The comparative accuracy of this 

approach can be determined by investigating relative 

error. The output relative error between state space 

and Petri Nets approach controller is illustrated in 

Fig. 9.  
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Figure 9. Output error between state space and Petri Nets 

approach controller 

The simulation results show that the dynamic 

behaviour including transient response, steady state 

response and steady state error is the same in both 

methods. Hence, the validity of the presented 

approach can be verified. The simulation of the 

aforementioned system by our novel algorithm and the 

conventional one via the same hardware configuration 

relays a significant advantage of the new method 

which is the time efficiency. (The simulation time for 

the presented method was 0.0023 seconds compared 

to the 0.0063 seconds of the old one which means 

considerable amount of %64.27 decreases in run 

time). For further investigation, different types of 

common systems are considered and the time it takes 

to calculate the gains and simulate the model is 

compared [25]. Table 3 shows the simulation time 

result for the presented method compared to the 

conventional approach. 

It can be observed that the advantage of the 

introduced method lies in reduced computation effort 

leading to time efficiency. Modelling with the Petri 

Nets provides powerful tools for the user. Petri Nets 

modelling gives graphical tools that provide an 

effective communication medium between the user 

and the system which enables us to model the 

dynamics of the systems visually. 

 

Table 3. Simulation time results 

System Transfer function Petri Nets Conventional 

Boring Machine  
 

1

12
G S

S S




 
9.2×10-4(sec) 15×10-4(sec) 

Laser eye surgery System  
   

2

1 4
G S

S S S


 

 
16×10-4(sec) 26×10-4(sec) 

Head dynamics  
   

1

2 3
G S

S S S


 

 
15×10-4(sec) 25×10-4(sec) 

Aircraft dynamics  
 

 

20

2
10

S
G S

S S






 
15×10-4(sec) 25×10-4(sec) 

Flexible arm  
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1

2 2 4
G S

S S S


 
 

15×10-4(sec) 27×10-4(sec) 

The open-loop transfer function of direct driver arm  
  

2

25 2 5

S
G S

S S S S




  
 

19×10-4(sec) 33×10-4(sec) 

Elevator Driver  
    
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1 20 50

S
G S

S S S S




  
 

18×10-4(sec) 33×10-4(sec) 

 

6. Conclusion 

A continuous system described by differential 

equations cannot be modelled by ordinary Continuous 

Petri Nets. To simplify modelling, controller design 

and analysis, this paper introduces Continuous -Time 

Delay- Petri Nets (CTDPN). CTDPN allows to model 

all continuous systems using simple rules. The 

principal equation of Petri Nets plays the same role as 

discrete state space equation. The properties of the 

discrete state space are reserved in incidence matrix. A 

simple algorithm for controller design by CTDPN 

based on state feedback control law is presented and 

simulation results show this approach is effective and 

this method has much less complexities. By using 

CTDPN, a visual and systematic method for 

modelling the dynamics of a continuous system is 

presented which has considerably less run time 

compared to conventional approach. Besides, this 

method can be utilized to model hybrid systems with 

variable parameters or multiple subsystems which 

suggested for the further works on the basis of this 

approach. 
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