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Segmentation and classification of objects in images is one of the most important and yet one of the most com-
plex problems in computer vision. In this work we propose a new model for natural image object classification 
using contextual information at the level of image segments. Context modeling is largely independent of ap-
pearance-based classification and proposed model enables simple upgrade of existing systems with informa-
tion from global and/or local context. Context modeling is based on non-parametric use of appearance-based 
classification results which is a novel approach compared to previous systems that model context on a limited 
number of rules expressed with a fixed set of parameters. Model implementation resulted in a system that, in 
our simulations, showed stable improvement of the appearance-based object classification.
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Introduction
Object classification in natural images is generally a 
very complex problem due to variations in object ap-
pearance when viewed from various perspectives, 
changes in scene illumination and typically a large 
number of partially occluded objects in a scene. Com-
mon approaches to object classification rely heavily on 
the visual characteristics that can be associated with 
the objects that need to be classified, but the object 
appearance alone is usually not enough to recognize it 
reliably and unambiguously. To aid this, contextual in-
formation can be used in order to improve recognition. 
Papadopoulos et al. in [19] explained image context as:
“Image context includes all possible information 
sources that can contribute to the understanding of the 
image content, complementarily to the use of the visual 
features.”
 Studies of human vision showed that context is used 
on different levels of image understanding and that 
it is possible to distinguish between several kinds of 
contextual interactions: semantical (related objects 
usually appear together in the same image, for exam-
ple keyboard and a computer mouse), spatial (key-
board is usually in front of the computer screen) and 
orientational (chair in front of the computer is usu-
ally facing the computer screen) (subset of relations 
presented in [4]). From the perspective of computer 
vision it is possible to connect different types of tasks 
such as image classification, image segmentation, de-
tection, localization and recognition of objects with 
the use of different types of context. There are mul-
tiple ways in which one could divide different types 
of context. One can differentiate between local and 
global context or between levels of context in relation 
to the levels in the hierarchy of the image (e.g. scene 
[3], objects [13], regions [27], object features [28] and 
pixels [21]). It is also possible to differentiate between 
sources of contextual information or the nature of ob-
jects in a scene [29]. Generally, in analogy with human 
vision, contextual information can improve the speed 
and robustness of algorithms that are based on the 
analysis of object appearance. That is most evident 
in cases where the object appearance is compromised 
with low image quality or the complexity of the scene 
(occlusions, shadows, bad lighting) where human vi-
sion copes much better [4]. A taxonomy of sources of 
contextual information used in image processing and 
understanding is given in [6], while a critical survey of 

context-based natural image parsing is given in [20].
The proposed model introduces several novelties 
compared to the previous models used for con-
text-based object classification. The first novelty is 
the use of non-parametric methods for the inclusion 
of local contextual information with the necessary 
appearance-based object classification. Non-para-
metric approach is already partially explored in 
[24], but the described model of the basic classifier 
(k-Nearest Neighbors) did not give good results on a 
smaller image dataset (Stanford Background Data-
set) and it used Markov random field for the inclusion 
of local context. The second novelty is the use of the 
results of feature-based segment classification as di-
rect features that represent the local context followed 
by use of unsupervised learning (k-modes algorithm 
[14]) for approximation of the class probability. To 
our knowledge, this approach has not been used in 
any other previous work. 
The following sections are structured as follows: in 
the second section we present our non-parametric 
context-based model for object classification, and 
give information about image segmentation methods, 
image features, local context and global context that 
we used in its implementation. In the third section we 
validate the presented model, and in the fifth and final 
section we give conclusions and discuss future work.

Proposed model
In the scope of this paper we entitled our proposed 
model for non-parametric context-based object clas-
sification in images Non-parametric Appearance and 
Context Classification (NACC). In NACC’s first step, 
appearance-based object classification is performed, 
and in its second step contextual information about 
the image regions is added to the results of the first 
step. On the highest level, NACC can be represented 
as a Bayesian network, i.e. as a graphical probability 
model (shown in Figure 1) that shows dependencies 
between random variables that represent the follow-
ing: C denotes the real class of the object, L denotes 
the local context of the object, X denotes the features 
related to the object appearance and G denotes the 
global context. Random variables are represented by 
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nodes and connected by directed edges that describe 
the conditional dependency between the two vari-
ables. The NACC model is constructed to classify a 
relatively small part of the image that represents the 
object or a part of the object in the image, and belongs 
to one of the predefined classes. Dependences be-
tween random variables are based on the following 
observations:
 _ Edge C → X represents the conditional probability  

P(X|C) that shows our expectations about the 
appearance of the object in the image, given the 
object class. 

 _ Edge L → C represents the conditional probability 
P(C|L) that shows our expectations about the 
object class, given the local context of the object. 

 _ Edge G → L represents the conditional probability 
P(L|G) that shows our expectations about the local 
context of the object, given the global context of the 
image. 

 _ Edge G → C represents the conditional probability 
P(C|G) that shows our expectations about the class 
of the object, given the global context of the image. 

 _ Edge G → X represents the conditional probability 
P(X|G) that shows our expectations about the 
appearance of the object, given the global context 
of the image. This dependency describes how 
illumination, distance or type of the scene can 
affect the features related to the object appearance. 
For example, the way that the sky looks depends on 
the time of the day, weather conditions or the sun 
position in relation to the camera.  

Figure 1
NACC model represented as a probabilistic graphical 
model
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Figure 2. Overview of the NACC model 

Equation (1) is the base of the classification of image 
objects (or parts of the image objects). The object is 
classified according to the maximum probability of 
class given the object’s global context, local context 
and appearance. The equations (2)-(4) represent the 
product of all conditional probabilities that result 
from the Bayesian network, and they show how the 
final probability for the class of the object is acquired. 
Equation (5) represents the normalizing factor that 
does not depend upon the class of the object, and 
since it is the same for all classes we omit it from fur-
ther calculations.
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(5)

A general overview of the NACC model is shown in 
Figure 2.

Figure 2
Overview of the NACC model
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Conditional probabilities P(C|G, L), P(C|G, X) and 
P(C|G) should be modeled in order for a NACC 
model to be implemented. These probabilities can 
be learned by machine learning methods on a set of 
images. In practice, however, it is often the case that 
we cannot approximate these probabilities with 
the desired accuracy on the account that we do not 
have enough data (i.e. labelled images) on which to 
learn these probabilities. Therefore, a model that is 
simpler should be considered, and a simpler model 
was indeed used while testing our system on a set 
of training images. Our simpler model did not take 
into the account the global context of the image, but 
rather assumed that the global context is the same 
for all of the images and few global features were in-
cluded in appearance base classification (absolute 
position of segment). The reason for this simplifica-
tion is that it is not simple to describe and to deter-
mine the types and the number of types of the global 
context, and neither is it simple to distinguish and 
reliably classify an image into one of these types on 
the basis of some of the image features. To fit this 
simpler model, we transformed the equations (3)-
(5) into the equations (6)-(8):
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where P(C) represents the frequency with which the 
class appears in the training set, and is calculated for 
each of the classes as shown in equation (9):
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where a is the number of pixels or segments that be-
long to class c, while b is the total number of pixels or 
segments.
Since the equation (7) is based on the approximations 
of the distributions P(C|L), P(C|X) and P(C), it would 
be useful to add to the model certain parameters that 

can be used to regulate representations of certain dis-
tributions in the final distribution P(C|L, X). Since we 
are only interested in a class that maximizes equation 
(7), monotony of the logarithmic function can be used 
and the equation can be represented in the form of 
equation (10):
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In the equation (10), a1= P(C|L), a2= P(C|X), a3= P(C), 
and α and β are parameters that can alleviate or em-
phasize the approximated distributions in regards 
to the distribution P(C) whose weight parameter is 
normalized to 1. This equation sums up the model im-
plemented in this work. α and β parameters were de-
termined during model validation by cross-validation 
and our results were obtained for α =30 and β =0.4.

Image segmentation
Image segmentation is one of the essential steps in 
image processing. It is a process that divides the im-
age into smaller parts according to some given logic. 
For example, the image can be divided into segments 
of uniform color and/or texture, or into segments that 
represent objects in the image. In practice, it is often 
preferred to first segment the image into segments 
of approximately equal sizes, where each segment 
would have approximately equal pixel features, and 
then combine these segments into objects.
 In the proposed model, image segmentation methods 
we used were uniform grid segmentation and super-
pixel-based segmentation. 
Uniform grid segmentation divides the image into 
segments that are equally spaced and that are of uni-
form size, i.e. it divides the image into blocks of pre-
defined size. If the size of these segments is too large, 
segments can encapsulate pixels that belong to differ-
ent classes and the resulting segmentation will not be 
very accurate. If, however, the size of these segments 
is the size of just one pixel, computations take lon-
ger to complete and the program becomes slow. So 
the size of these segments should be optimally de-
termined. In the proposed model, we used uniform 
grid segmentation to segment the images into 32x32 
segments whose size depends upon image resolution. 
This allowed us to have approximately 1000 samples 
per image. Since the average size of the images in the 
used image database was 320x280 pixels, the size of 
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our uniform segments was around 10x8 pixels. We 
also experimented with different sizes of the seg-
ments (16x16 and 64x64), but we did not notice a sig-
nificant change in the classification results.
Superpixel-based segmentation divides the image 
into segments of irregular shape, size and position 
in the image, but on the other hand these segments 
encapsulate pixels with similar image features (e.g. 
color or texture), and can contain partial information 
about the shape of the object. By unifying superpix-
els one can get the precise segmentation of the entire 
object. A method that we used for superpixel-based 
segmentation is Simple Linear Iterative Clustering 
(SLIC) [1], but in our proposed model this algorithm 
is completely independent of the rest of the model 
and implementation and it can easily be replaced by 
another algorithm that can perform accurate object 
segmentation. 
In the proposed model, the entire learning process 
and appearance-based and local context-based clas-
sification is conducted on segments obtained by 
uniform grid segmentation of the image. Superpix-
el-based segmentation is used in the later stage where 
it is superimposed on the uniform grid segmentation. 
Every superpixel is assigned with a class label by us-
ing a method of majority voting by pixels inside the 
superpixel or by using naive Bayes classifier at the 
pixel level, as shown in equation (11), where PSP(C)  
is the probability of the class of the superpixel SP, and 
Pi(C) is the probability of the class of the pixel i that 
belongs to the superpixel SP:

 
 �������� �� � ∏���� ������� ��. (11) 

 
 

(11)

Appearance-based object classification
For appearance-based object classification, we used 
SAMME Boost algorithm [30] that uses decision 
trees as a basic classifier. SAMME Boost algorithm 
is a direct generalization of the basic AdaBoost algo-
rithm [11] from two to multiple classes. Results from 
individual weak classifiers are distributions P(C|X) 
contained in decision tree leaves. These results are 
combined as weighted average using weights of 
each weak classifier obtained by the SAMME Boost 
algorithm. 

Boosted decision trees gave us better classification 
performance when combined with the local con-
text of the object than other methods (e.g. k-Nearest 
Neighbors and logistic regression) so we conclude 
that P(C|X) is approximated better with boosted deci-
sion trees. In the implemented model, decision trees 
have the ability to automatically select features that 
are to be used in appearance-based object classifica-
tion, while boosted decision trees also add weights for 
all of the selected features. To make it possible for de-
cision trees to select features, it is necessary to define 
and compute a set of features from which our decision 
trees can select features that they deem best for the 
object classification. Since the goal of our research 
was to show how context impacts object classification, 
we used the simplest appearance-based features that 
can relatively accurately determine P(C|X). However, 
our model still leaves a great deal of freedom in the se-
lection of appearance-based algorithms and features 
that can be used in object classification. 
We used the following features for each segment: av-
erage values of RGB color components (calculated on 
the pixels in a segment), standard deviation of RGB 
color components (calculated on the pixels in a seg-
ment), histogram of pixel orientations and a feature 
that keeps the information about the orientations 
magnitude before the normalization (as suggested in 
[7]), maximum responses to MR8 filter set [26], nor-
malized absolute vertical coordinate of uniform seg-
ment and normalized horizontal distance from the 
image center. The last two features can also represent 
a part of the global context because they do not de-
pend on the segment appearance. Other color models 
were tested in our model instead of RGB, but we ob-
tained no improvement in our results. We believe this 
is because our model is complex enough so that it can 
successfully use simpler features.

Local context-based object classification
In the proposed model we made two assumptions:
1 it is possible to describe a local context of the image 

segment based solely on the classification of the 
adjacent segments, and 

2 it is possible to non-parametrically learn to ap-
proximate the probability of a class given the local 
context P(C|L).  

The first assumption can be achieved by using uni-
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form grid segmentation which allows us to simply 
determine local spatial and semantic model by tak-
ing into the account the segments in the immediate 
neighborhood of the segment that we are classifying. 
Figure 3 shows the ideal and approximated local con-
text of the segment. In the scope of this work, we used 
the approximated local context since it was simpler to 
implement.  

Figure 3
Local context (shown in gray areas) approximated by 
segments obtained by uniform grid segmentation. Left 
image shows the ideal local context, while the right image 
shows the approximated local context

 

 

 

The size of the local context is important since it has 
to be big enough to describe the statistically probable 
shape of the object (e.g. a tendency that buildings have 
straight edges that separate them from the other ob-
jects in the image), and small enough to not degrade 
the performance of the system, since the impact of 
the neighborhood decreases with the distance. Local 
context samples that we obtain by appearance-based 
segment classification are represented as a vector of 
discrete labels (encoded as integers) that correspond 
to the class labels of the adjacent segments. We do 
not incorporate into the sample the class label of the 
central segment, but we rather use it as a label of the 
sample. Our approach is similar but simpler then [25] 
where class probabilities were used as features.
To accomplish the things stated in the second as-
sumption, we need to show that we can learn to ap-
proximate distribution P(C|L) from the local context 
samples. (An example of a distribution of the central 
segment class probability P(C|L) is given in Figure 
4.). Since the smaller differences between features 
of samples do not impact the distribution P(C|L), our 
model allows for typical local context prototypes to 
be created. For this we use k-modes algorithm [14]. 

K-modes algorithm creates centroids that represent 
prototypes of the local contexts, so that the new sam-
ples can be classified according to the most similar 
prototype.
When we determine the prototypes, we can calculate  
P(C = c|L) for each prototype by calculating the fre-
quency with which the number of samples that be-
longs to a certain centroid and whose central segment 
class is equal to c appears in the total number of sam-
ples that belong to that centroid. An exact number of 
prototypes cannot be determined analytically in ad-
vance, but it can be assumed that each class will have 
a limited number of local contexts in which it appears 
in a training set. Training set is limited and a large 
number of prototypes should not be used since then 
the prototypes would be represented by a number of 
samples that is too small to later accurately approxi-
mate P(C|L). In practice, we can determine the opti-
mal number of prototypes by using cross-validation.

Global context
The proposed model assumes that it is possible to 
describe and differentiate between different global 
image contexts, and that it is possible to approximate 
the distributions for each image class. Global image 
context can be described in many ways, for exam-
ple as image gist [18], by a “bag of features” used for 
content-based image classification [22], through se-
mantical features of a scene [18] or through features 
obtained on the level of image regions [9]. Images in 
the training set can then be divided into classes by 
unsupervised learning, and distributions P(C|L, G), 
P(C|X, G) and P(C|G) can be approximated for each 
image class. Alternatively, it is possible to describe 

Figure 4
Example of a distribution of the central 
segment class probability P(C|L)

 

 

 

 

 

 



Information Technology and Control 2017/1/4692

the global semantic context using basic appear-
ance-based segment classification, and then create 
normalized histograms that represent the distribu-
tion of classes in the images.

Model validation
We validated our proposed model on two image 
datasets: Stanford Background Dataset (SBD) [12] 
and FESB Mediterranian Landscape Image Data-
set (FESB MLID) [10]. While validating our model 
on SBD dataset we used five-fold cross validation as 
in [12], [24] and [23], so that our results can be more 
comparable with the results of other researchers 
so that we can compare our classification results to 
theirs. 
As a metric for the success of a given system we took 
a standard metric defined in previous works that 
dealt with similar problems and on similar datasets. 
The metric is expressed as a percentage of accurate-
ly classified pixels on all of the images used in testing 
and validation phase, and we will refer to it as classi-

fication accuracy. This metric excludes all the pixels 
that are not labeled (i.e. that are typically labeled 0). 
The final expression is given in equation (12), where  
real_class(p) denotes the real class of a pixel and 
class(p) denotes the pixel class that is predicted by the 
model that is being tested:

 

 
 �� � ����|��|�����������������|

|��|�����|
 (12) 

 
(12)

where b1= real_class(p).
The systems compared were: [12], [24], [17], [23] and 
[8], and comparison for part of them can be found in 
[24]. Same as in our work, all of these systems were 
tested with the same protocol (5-fold cross-valida-
tion) on SBD image dataset. The performance of our 
model, when using only the basic detection meth-
od (boosted decision trees over uniform image seg-
ments), i.e. no context information, was 67.0% on SBD 
dataset. However, if we added context information, 
the performance of our system increased to 73.6%. 
Although our model did not perform as well as other 
systems because we used relatively simple features 

Figure 5
First row: original image from the SBD dataset, hand-labeled segmentation and classification, classification results 
obtained by NACC. Second row: appearance-based classification, context-based classification, combined appearance-
based and context-based classification over uniform segments. This image was classified with 85% accuracy
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for appearance-based object classification, the in-
crease in classification accuracy that happened after 
context was added to the model was the highest in our 
model. Figure 3 shows clasification results on one of 
the images from SBD dataset, while Tables 3, 1, 2 and 3 
represent classification results obtained by our model 
on the SBD dataset. From these tables, we can point 

Table 1
Confusion 
matrix for the 
appearance-
based uniform 
segment 
classification on 
the SBD dataset

Table 2
Confusion 
matrix for the 
context-based 
uniform segment 
classification on 
the SBD dataset

Sky  Trees Road Grass Water Buildings Mountains Object

Sky 0.88 0.03 0.01 0.00 0.00 0.07 0.00 0.01

Trees 0.02 0.57 0.01 0.03 0.00 0.29 0.00 0.07

Road 0.00 0.00 0.84 0.01 0.02 0.04 0.00 0.08

Grass 0.00 0.12 0.08 0.67 0.00 0.08 0.00 0.04

Water 0.07 0.01 0.36 0.02 0.36 0.07 0.00 0.12

Buildings 0.04 0.12 0.05 0.01 0.00 0.66 0.00 0.13

Mountains 0.09 0.23 0.08 0.03 0.02 0.44 0.00 0.11

Object 0.02 0.07 0.13 0.01 0.01 0.28 0.00 0.48

Sky  Trees Road Grass Water Buildings Mountains Object

Sky 0.90 0.02 0.01 0.00 0.00 0.06 0.00 0.01

Trees 0.04 0.58 0.01 0.02 0.00 0.29 0.00 0.06

Road 0.00 0.00 0.88 0.01 0.01 0.04 0.00 0.06

Grass 0.00 0.10 0.08 0.70 0.00 0.08 0.00 0.03

Water 0.07 0.01 0.34 0.01 0.39 0.07 0.00 0.12

Buildings 0.03 0.04 0.05 0.00 0.00 0.78 0.00 0.10

Mountains 0.11 0.20 0.08 0.01 0.02 0.49 0.00 0.09

Object 0.02 0.03 0.13 0.02 0.00 0.27 0.00 0.52

out the mountains class that is certainly the most 
difficult to classify since it has fuzzy appearance but 
clear semantical meaning. This class is also weakly 
represented in the data set so it’s often confused with 
buildings, trees or sky. Adding contextual information 
can sometimes correct errors of appearance-based 
classification.

Table 3
Confusion 
matrix for 
the combined 
appearance-
based uniform 
segments 
classification 
and context-
based uniform 
segment 
classification on 
the SBD dataset

Sky  Trees Road Grass Water Buildings Mountains Object

Sky 0.90 0.02 0.01 0.00 0.00 0.05 0.00 0.01

Trees 0.03 0.62 0.01 0.03 0.00 0.24 0.00 0.06

Road 0.00 0.00 0.87 0.01 0.01 0.03 0.00 0.07

Grass 0.00 0.10 0.07 0.73 0.00 0.07 0.00 0.03

Water 0.07 0.01 0.31 0.02 0.43 0.05 0.01 0.11

Buildings 0.03 0.06 0.04 0.00 0.00 0.74 0.00 0.11

Mountains 0.10 0.22 0.07 0.02 0.03 0.44 0.02 0.09

Object 0.02 0.04 0.11 0.02 0.01 0.24 0.00 0.56
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FESB MLID dataset is the subset of images ob-
tained mostly from different wildfire surveillance 
cameras positioned in Dalmatia and Istria through 
the Croatian iForestFire (Intelligent Forest Fire 
Monitoring System) project, but it also containes 
images from [5] and [15]. At the time of writing 
of this article, the FESB MLID dataset is unpub-
lished and not entirely completed and at the pres-
ent time encompasses 300 images for the training 
stage, and 71 image for the testing stage of the im-
age processing algorithms that use it. The dataset 
is labeled and encompasses 11 classes defined in 
[16]: smoke, clouds and fog, sun and light effects, 
sky, sea, distant landscape, rock, distant vegeta-
tion, close vegetation, low vegetation and agricul-
tural areas, and buildings and artificial objects. 
Unknown parts of the images are labeled as zero. 
Figure 5 shows classification results on one of the 
images from FESB MLID dataset. Tables 6, 7, 9 and 

Table 4
Confusion 

matrix for the 
final superpixels 
classification on 
the SBD dataset

Sky  Trees Road Grass Water Buildings Mountains Object

Sky 0.91 0.02 0.01 0.00 0.00 0.05 0.00 0.01

Trees 0.03 0.63 0.01 0.03 0.00 0.24 0.00 0.06

Road 0.00 0.00 0.88 0.01 0.01 0.03 0.00 0.07

Grass 0.00 0.10 0.07 0.73 0.00 0.07 0.00 0.03

Water 0.06 0.01 0.31 0.02 0.44 0.05 0.01 0.11

Buildings 0.03 0.05 0.04 0.00 0.00 0.76 0.00 0.11

Mountains 0.10 0.22 0.07 0.02 0.03 0.46 0.01 0.10

Object 0.02 0.04 0.11 0.01 0.01 0.24 0.00 0.57

8 represent confusion matrices and the numbers 
written in bold represent the image classes in the 
following way: (1) smoke, (2) clouds and fog, (3) 
sun and light effects, (4) sky, (5) sea, (6) distant 
landscape, (7) rock, (8) distant vegetation, (9) close 
vegetation, (10) low vegetation and agricultural ar-
eas and (11) buildings and artificial objects. From 
these tables we can point out smoke class that was 
central for this dataset. Based only on appearance, 
smoke is often confused equally with clouds and 
fog, distant landscape, rock and distant vegetation. 
By adding context to the classification of smoke we 
can see that the confusion with clouds and fog, dis-
tant landscape and rock is lower, but the confusion 
with distant vegetation is higher. This higher con-
fusion can be explained by the similar context for 
both smoke and distant vegetation in this dataset. 
Similar conclusions can be drawn for other classes 
where context is similar (e.g. sky and sun and light 

Table 5
Comparison 
between the 

previous work 
and the proposed 

model on the SBD 
dataset. Second 

column represents 
the improvement 

in classification 
accuracy of the 

system when basic 
classification 

method is expanded 
with context 
information 

Reference Approach 
Improvement in classifica-
tion accuracy gained with 

context inclusion

Gould et al. (2009) [12] unified energy function over scene 
appearance and structure 2.1%

Tighe and Lazebnik 
(2010) [24]

Markov Random Field over locally 
labeled superpixels 0.6%

Munoz et al. (2010) [17] hierarchical labeling 4.1%

Socher at al. (2011)  [23] recursive neural networks 2.2%

Farabet et al. (2012) [8] convulsion neutral network 5.2%

Our model as presented in this paper 6.6%
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Figure 6
First row: original image from the FESB MLID dataset, hand-labeled segmentation and classification, classification 
results obtained by NACC. Second row: appearance-based classification, context-based classification, combined 
appearance-based and context-based classification over uniform segments. This image was classified with 94% accuracy

Table 6
Confusion 
matrix for the 
appearance-
based uniform 
segments 
classification on 
the FESB MLID 
dataset

1 2 3 4 5 6 7 8 9 10 11

1 0.341 0.142 0.002 0.023 0.007 0.126 0.105 0.192 0.031 0.025 0.006

2 0.080 0.557 0.015 0.171 0.003 0.103 0.012 0.051 0.002 0.004 0.002

3 0.041 0.142 0.272 0.344 0.008 0.011 0.008 0.078 0.065 0.016 0.016

4 0.043 0.111 0.039 0.772 0.010 0.018 0.006 0.002 0.000 0.000 0.000

5 0.063 0.153 0.002 0.072 0.538 0.082 0.011 0.044 0.002 0.004 0.031

6 0.097 0.148 0.001 0.062 0.021 0.472 0.044 0.144 0.002 0.008 0.003

7 0.018 0.010 0.000 0.003 0.001 0.019 0.691 0.121 0.041 0.020 0.077

8 0.013 0.011 0.000 0.001 0.047 0.034 0.113 0.527 0.186 0.033 0.036

9 0.004 0.000 0.001 0.001 0.000 0.001 0.031 0.160 0.676 0.081 0.045

10 0.008 0.001 0.000 0.000 0.014 0.009 0.022 0.208 0.317 0.310 0.112

11 0.021 0.016 0.001 0.007 0.027 0.019 0.083 0.140 0.136 0.023 0.528

 

  

 

  

 

  

 

  

 

  

 

  

effects, sea and distant landscape, etc.). Table 4 
shows the comparison between the previous work 
and the proposed model based on the results re-
ported in referenced works. Since approaches and 
baselines in other works are very different, it can 

be difficult to separate appearance from context so 
the improvements shown in Table 4 are not directly 
comparable. However, we can see that even the sim-
ple inclusion of context, as in our model, can lead to 
comparable improvement of classification results. 
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1 2 3 4 5 6 7 8 9 10 11

1 0.405 0.122 0.000 0.015 0.002 0.095 0.091 0.220 0.034 0.016 0.001
2 0.049 0.641 0.004 0.145 0.001 0.083 0.008 0.063 0.004 0.003 0.000
3 0.015 0.134 0.263 0.368 0.005 0.017 0.005 0.086 0.091 0.007 0.010
4 0.023 0.079 0.038 0.841 0.004 0.006 0.005 0.003 0.001 0.000 0.000
5 0.023 0.156 0.000 0.063 0.610 0.085 0.002 0.036 0.012 0.002 0.012
6 0.059 0.132 0.000 0.066 0.018 0.532 0.027 0.164 0.001 0.001 0.000
7 0.000 0.002 0.000 0.002 0.000 0.003 0.764 0.092 0.059 0.019 0.058
8 0.004 0.011 0.000 0.000 0.051 0.016 0.093 0.611 0.181 0.009 0.024
9 0.002 0.000 0.000 0.000 0.000 0.001 0.023 0.092 0.843 0.009 0.031

10 0.006 0.000 0.000 0.000 0.004 0.003 0.004 0.222 0.351 0.302 0.111
11 0.007 0.014 0.000 0.007 0.009 0.015 0.030 0.177 0.197 0.012 0.532

Table 8
Confusion matrix 
for the combined 

appearance-
based uniform 

segments 
classification 

and context-
based uniform 

segments 
classification on 
the FESB MLID 

dataset

1 2 3 4 5 6 7 8 9 10 11

1 0.463 0.124 0.001 0.024 0.001 0.050 0.154 0.113 0.031 0.040 0.000
2 0.049 0.656 0.011 0.115 0.000 0.094 0.013 0.056 0.005 0.000 0.000
3 0.041 0.094 0.145 0.512 0.001 0.018 0.005 0.057 0.113 0.004 0.010
4 0.030 0.047 0.015 0.848 0.035 0.014 0.005 0.006 0.000 0.000 0.000
5 0.041 0.135 0.000 0.060 0.609 0.053 0.003 0.062 0.014 0.000 0.022
6 0.026 0.110 0.000 0.060 0.017 0.656 0.021 0.097 0.010 0.002 0.001
7 0.001 0.000 0.000 0.005 0.000 0.003 0.769 0.090 0.066 0.046 0.020
8 0.009 0.007 0.000 0.001 0.044 0.041 0.091 0.543 0.231 0.007 0.026
9 0.003 0.000 0.000 0.000 0.000 0.000 0.046 0.066 0.881 0.001 0.003

10 0.005 0.000 0.000 0.000 0.009 0.004 0.017 0.178 0.392 0.311 0.084
11 0.003 0.004 0.000 0.019 0.002 0.022 0.033 0.138 0.169 0.017 0.592

Table 9
Confusion 

matrix for the 
final superpixels 
classification on 
the FESB MLID 

dataset

1 2 3 4 5 6 7 8 9 10 11

1 0.423 0.116 0.000 0.014 0.003 0.101 0.086 0.205 0.032 0.019 0.001
2 0.051 0.646 0.005 0.145 0.000 0.088 0.004 0.058 0.001 0.002 0.000
3 0.016 0.114 0.291 0.367 0.005 0.015 0.004 0.081 0.091 0.008 0.010
4 0.023 0.077 0.040 0.845 0.005 0.006 0.001 0.003 0.000 0.000 0.000
5 0.023 0.162 0.000 0.066 0.632 0.076 0.002 0.022 0.004 0.002 0.012
6 0.063 0.122 0.000 0.060 0.021 0.552 0.021 0.157 0.000 0.002 0.000
7 0.000 0.001 0.000 0.002 0.000 0.004 0.768 0.085 0.051 0.017 0.073
8 0.005 0.009 0.000 0.000 0.054 0.014 0.095 0.606 0.176 0.010 0.031
9 0.002 0.000 0.000 0.000 0.000 0.000 0.021 0.088 0.844 0.008 0.036

10 0.006 0.000 0.000 0.000 0.004 0.002 0.003 0.204 0.331 0.320 0.131
11 0.007 0.011 0.000 0.006 0.012 0.013 0.032 0.154 0.176 0.010 0.579

Table 7
Confusion matrix 

for the context-
based uniform 

segments 
classification on 
the FESB MLID 

dataset
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Conclusion
In this work we presented a new model for non-para-
metric context-based object classification. We val-
idated the proposed model on SBD and FESB MLID 
datasets, and the results have shown that, when test-
ed against other similar models, our model showed 
the greatest improvement in classification accura-
cy when context was added to it (i.e. the strength of 
the context used in this model was greater that the 
strengths of the contexts used in previous works). 
Model validation also showed that the performance 
of our model is comparable to the best parametric 
systems for context-based object classification, but 
that it is also in direct dependence on the success of 
the basic appearance-based classifier. The proposed 
model allows the classification process to be inde-
pendent of precise image segmentation, and it also 
enables deterministic process that unifies appear-
ance-based and context-based classifications. In ad-
dition, the proposed model also introduces a novel 
model for the description of a local context of a seg-
ment by using uniform grid segmentation of the im-
age. This is achieved by the use of appearance-based 
classification results as local context description fea-
tures, and by the adaptation of the k-modes algorithm 
to be able to classify those samples. Such a model al-
lows the expansion of the existing system for the ap-
pearance-based classification with the context-based 
classification, the precise determination of classifi-
cation improvement when using context and the in-
dependence of training appearance-based classifiers 

and local context-based classifiers. The implementa-
tion of the proposed system is modular, so it is possi-
ble to change certain parts of it without them directly 
affecting the rest of the model. 
In further work, we could include in our proposed 
model the use of global context, more sophisticated 
appearance-based features and classifiers, partial 
information about the shape of the objects obtained 
from superpixels and different uniform segmenta-
tions of the image (e.g. log-polar description of local 
context [2]).
In addition to the described capabilities of the 
NACC model, non-parametric approach to appear-
ance-based and context-based object classification 
still leaves much space for research. The non-para-
metric approaches to object classification are rela-
tively unexplored, so the model presented in this work 
could serve as the basis for research in non-paramet-
ric use of contextual information. 
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Summary / Santrauka
Segmentation and classification of objects in images is one of the most important and yet one of the most com-
plex problems in computer vision. In this work we propose a new model for natural image object classification 
using contextual information at the level of image segments. Context modeling is largely independent of ap-
pearance-based classification and proposed model enables simple upgrade of existing systems with informa-
tion from global and/or local context. Context modeling is based on non-parametric use of appearance-based 
classification results which is a novel approach compared to previous systems that model context on a limited 
number of rules expressed with a fixed set of parameters. Model implementation resulted in a system that, in 
our simulations, showed stable improvement of the appearance-based object classification.

Objektų segmentacija ir klasifikacija atvaizduose yra viena svarbiausių, kartu ir viena kompleksiškiausių 
problemų kompiuterinėje regoje. Šiame straipsnyje mes siūlome naują natūralios objektų klasifikacijos mod-
elį, panaudojant kontekstinę informaciją atvaizdo dalių lygmenyje. Konteksto modeliavimas yra didžia dalimi 
nepriklausomas nuo apipavidalinimu grįstos klasifikacijos. Siūlomas modelis įgalina nesudėtingą sistemų su 
globalaus ar lokalaus konteksto informacija, patobulinimą. Konteksto modeliavimas yra paremtas nepara-
metriniu apipavidalinimu grįstų klasifikacijos rezultatų naudojimu. Tai yra naujas metodas, lyginant su ank-
stesnėmis sistemomis, kurios modeliuoja kontekstą pagal ribotą taisyklių su pastoviais parametrais kiekį. 
Įdiegus siūlomą modelį, gauta sistema, kuri simuliacijose parodė stabilų apipavidalinimu grįstos klasifikacijos 
pagerinimą.


