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Abstract. The article analyses the issues related to detection and contour approximation of road surface defects, in 

particular, road potholes captured by a smart device camera. The assessment of measurements, obtained after image 

analysis and real objects, will be disclosed with a view to depict the measurement bias. The difference from all the 

other methods, mentioned in the literature, is that only 2D images captured by one camera were used in this 

investigation with a view to identify the contour of road potholes and get its parameterised representation. In practice, 

according to other authors, the most common approach to obtain a parameterised description of a pothole incorporates 

not only cameras, but also other various sensors such as accelerometer, global positioning systems, laser, hyperspectral 

imagery, infrared or ultrasonic sensors. In this article, we present a method that allows recognising a pothole object in 

terms of its colour, shape, and structure. The method discussed was applied to real world images to detect and outline 

the road pothole contour. Finally, the evaluation of approximation accuracy by empirical research techniques has been 

accomplished. 
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1. Introduction 

The increasing level of traffic increases the need 

for road repair services accordingly. One of the causes 

of road damage is freezing liquids during winter 

periods. In such a case, it is very important to detect 

any impairments as soon as possible in order to avoid 

incidents. Often, it is not feasible to assess the 

condition of a road as there are no tools or devices to 

measure the damages. On the other hand, it is crucial 

for the road engineers to observe the dynamics of road 

conditions and evaluate the scope of the work needed 

to repair the road. The literature analysis has revealed 

that there exist approaches to solve such a problem. 

One of them is to use smartphones with accelero-

meters [1] and to detect the current location with a 

global positioning system [2]. Another approach is to 

use pressure sensors that can be built in shock 

absorbers to detect and quantify the intensity of a 

pothole [3]. Potholes are detected by using two 

ultrasonic sensors [4], laser line striper sensors [5], or 

using hyperspectral imagery [6]. One of the most 

convenient, well-known and inexpensive ways to 

recognize road potholes is to use image analysis 

algorithms that analyse images obtained by a smart 

device [7,8,9]. 

At present, mobile devices became an inseparable 

attribute of our life. Their technical capabilities allow 

taking high quality photographs of objects, moreover, 

mobile networks have a possibility to provide a high 

data transfer rate, so it is rather practical to create 

methods capable of measuring parameters of road 

potholes and upload the collected data for public/-

personal use of the road companies. 

We analyse issues related to detection and 

evaluation of road surface defects that were captured 

by a smart device as well as assessment of 

measurements of particular road pothole objects (e.g. 

Fig. 1). In this article, we present a method that 

automatically detects and measures the size of 

extracted defect contours. The bias of the proposed 

method is evaluated by comparing differences 

between contours obtained applying the method and 

that drawn by an expert (Fig. 1). 
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Figure 1. Detection of a pothole contour: From left to right: original image, human-drawn countour,  

contour of the proposed method 

     

Figure 2. Application of different threshold algorithms. From left to right: Huang, Otsu, Minimum, Triangle, Adaptive 

The task of pothole contour detection is very 

difficult because of several factors. Impairments of the 

road surface have a very complex structure since there 

can be water, snow or other substances of various 

shades inside the pothole. The edge of a pothole is 

also not easily recognized as it does not have an even 

shape, asphalt is not smooth and monolithic, and in 

many cases it is fragmented into pieces. Even for a 

human it is challenging to recognize a boundary of a 

pothole, because it is a matter of subject, and cannot 

be drawn unambiguously. Moreover, a pothole does 

not have a predefined colour since it can have various 

shades, for example, when the surface is wet or dry. 

The interior of a pothole can be darker than the 

exterior and vice versa. 

We present a method that does not depend on the 

smart device used, the size of the taken image, or the 

presence of non-uniform illumination and discuss the 

evaluation of its performance. 

2. Image thresholding methods 

In order to analyse pothole image the segmentation 

of foreground and background must be implemented 

[10, 11]. Frequently such a segmentation is done by 

thresholding the image, i.e. the image is converted to a 

binary image where white colour represents the 

foreground and the black colour corresponds to 

background structures, or vice versa. There are many 

different kinds of image threshold methods such as: 

Huang and Wang [12], Intermodes [13], IsoData [14], 

Li and Lee [15], MaxEntropy [16], Mean [17], 

MinError [18], Minimum [19], Moments [20], Otsu 

[21], Percentile [22], RenyiEntropy [16], Shanbhag 

[23], Triangle [24], Yen, Chang F. and Chang S. [25] 

and Adaptive thresholding [26]. However, the 

thresholding operation almost always guarantees the 

presence of the salt-and-pepper noise, which we 

eliminate in this article by reducing the image size. 

Moreover, not all the algorithms are suitable for every 

image scene processing. Images in Fig. 2 illustrate the 

application of a few thresholding algorithms to the 

same pothole image. It can be seen that the best 

performance of separating the foreground and 

background is achieved by using the Adaptive and 

Triangle thresholding algorithms. 

Thus, further two sections provide a short 

introduction to thresholding algorithms. 

2.1. Triangle threshold 

When an image histogram has the shape of 

unimodal distribution, most classical thresholding 

methods have difficulties when they try to correctly 

segment the image. To deal with this problem, a 

simple triangle segmentation method was proposed in 

1977 [24]. The method was successfully applied in 

chromosome detection. Later, the method was used to 

analyse synthetic and real data and has proved that it 

is particularly effective when the object pixels produce 

weak peaks in a histogram [27]. 

The Triangle threshold method is very simple 

[24,27]. Suppose that we have an image intensity 

histogram of unimodal distribution shape, where the 

main peak is in the highest end of the histogram 

(Fig. 3). Then, a threshold that separates two classes 

could be computed as follows: a line is constructed 

between the last empty bin of the histogram before the 

first filled bin point 𝐴𝑚𝑖𝑛( 𝑚𝑎𝑥
𝑓𝑖=0 𝑎𝑛𝑑 𝑓𝑖+1≠0 

(𝑖)  ,0)  and 

the maximum frequency 𝑓𝑖  histogram bin 

point  𝐴𝑚𝑎𝑥(𝑗, 𝑚𝑎𝑥 (𝑓𝑖)) . Here 𝑖 and 𝑗  are intensity 

values. The threshold point 𝑇  is selected as a 

histogram intensity value that the histogram bin 

maximises the perpendicular distance d between the 
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line and the histogram bin taken at each intensity from 

the interval [𝑖, 𝑗]. Finally, pixels below the threshold 𝑇 

are set to the foreground value; those above the 

threshold will be set to the background value. 

 

Figure 3. Scheme of the Triangle threshold method 

2.2. Adaptive threshold 

Usual thresholding methods use the global 

threshold for all pixels of the image. However, the 

Adaptive threshold method changes the threshold in 

such a manner that different threshold value is applied 

to each image pixel: 

𝐷𝐼(𝑥, 𝑦) = {
255 𝑖𝑓 𝑆𝐼(𝑥, 𝑦) > 𝑇(𝑥, 𝑦),

0 𝑖𝑓 𝑆𝐼(𝑥, 𝑦) ≤ 𝑇(𝑥, 𝑦).
  

Here 𝑆𝐼  is a source image; DI is a destination 

image; 𝑇(𝑥, 𝑦)  is a threshold calculated individually 

for each region at the pixel location (𝑥, 𝑦). 

This method has a significant advantage for noisy 

images and images where the foreground or object is 

poorly defined [28]. In fact, this method can also be 

successfully applied in the edge detection process, 

where boundaries between objects and the background 

are identified. 

There are two variations of the method’s 

algorithms: Chow and Kaneko approach [28] and 

local thresholding methods, where the threshold can 

be equal to: mean, weighted mean, median or mean of 

minimum and maximum of the region [29]. In the 

paper, a local adaptive threshold algorithm with the 

weighted mean was used. This algorithm is 

implemented as follows: at first, the region size 

( 𝑘𝑠𝑖𝑧𝑒 × 𝑘𝑠𝑖𝑧𝑒) is defined; at the second step, the 

threshold   𝑇(𝑥, 𝑦)  is calculated for each region. 

Finally, the destination image (DI) is calculated by the 

formula above. 

For experiments, OpenCV [30] implementation of 

the Adaptive threshold method with the weighted 

mean was used. In this implementation, all the weights 

can be uniform or distributed according to the 

Gaussian distribution [29]. In such a case, the 

weighted mean is equivalent to the Gaussian 

smoothing operator [29] that is known as a Gaussian 

blur. The Gaussian smoothing operator is used to 

process each and every pixel according to the central 

pixel (𝑥, 𝑦) as a query pixel and 𝑇(𝑥, 𝑦) is a weighted 

sum of the cross-correlation result after applying the 

Gaussian window of (𝑥, 𝑦) to neighbouring pixels. 

The threshold 𝑇  depends on the following 

parameters of the Gaussian smoothing operator: the 

kernel size 𝑘𝑠𝑖𝑧𝑒  or windows size and standard 

deviations 𝜎𝑥 and 𝜎𝑦. Implementation of the OpenCV 

adaptive threshold enables us automatically calculate 

the standard deviations by the formula: 𝜎𝑥 = 𝜎𝑦 =

0.15 ∗ 𝑘𝑠𝑖𝑧𝑒  + 0.35 [30]. Using this factor, only the 

kernel size has to be defined. To select an appropriate 

kernel size, an experiment was done. In the 

 

 

Figure 4. Dependence of the Adative threshold method on the kernel size. From left to right: k_size=951, k_size=1075, 

k_size=1201 

Original image Canny Sobel Kirsch Prewitt. Snakes 

      

Figure 5. The result of application of Canny [32], Kirsch [33], Prewitt [13], Sobel [34], Snakes [31] algorithms  

to a pothole image 
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experiment, the kernel size was selected from the 

interval [1, 1500] and images were visually examined. 

The result has shown that the boundaries of potholes 

are clearly visible and images have less noise (Fig. 4), 

as 𝑘𝑠𝑖𝑧𝑒 ∈ [1001,1151] . Therefore, in the future 

investigation, a mean value of the interval was used, 

e.g. 𝑘𝑠𝑖𝑧𝑒 = 1075 pixels. It is important to note, that 

almost every time the kernel size exceeds the size of 

images used, therefore with to view to calculate the 

threshold 𝑇  with the Gaussian smoothing operator, 

images were enlarged by duplicating their borders to 

fit the kernel size at each pixel. 

3. Contour recognition 

The analysis of the contour extraction methods has 

been accomplished. Such an analysis allowed us to 

select the best object contour detection method and 

use it in comparison with our proposed method for 

pothole contour detection. The Analysis results are 

presented in Fig. 5. 

It is clearly seen that traditional approaches for 

contour extraction do not work well and the best result 

was obtained by applying segmentation of the 

Adaptive contour models (snakes) [31]. Thus, the next 

section describes in short the idea of models. 

3.1. Active contour models - snakes 

The snakes is one of the classical frameworks for 

object tracking, shape recognition, segmentation, edge 

detection, which was proposed by M. Kass, A. Witkin 

and D. Terzopoulos in 1988 [31]. The basic concept of 

the framework is snakes or an active contour model – 

it is an energy-minimizing spline, guided by external 

constraint forces and influenced by image forces that 

pull it toward features such as lines and edges. The 

model proposes effective energy functions that have 

few local minima and little dependence on the starting 

points. Nevertheless, it relies on other global 

mechanisms to place the starting points somewhere 

near the desired contours. 

In short, the snakes model tries to draw a spline 

that minimizes the energy function: 

𝐸𝑠𝑛𝑎𝑘𝑒 = ∫ 𝐸𝑖𝑛𝑡(𝑣(𝑠))
1

0
+ 𝐸𝑖𝑚𝑔(𝑣(𝑠)) +

𝐸𝑐𝑜𝑛(𝑣(𝑠)) 𝑑𝑠,  

where the position of active contour points 𝑣(𝑠) =

(𝑥(𝑠), 𝑦(𝑠)) in the image plane, 𝐸𝑖𝑛𝑡 is internal energy 

of the contour, 𝐸𝑖𝑚𝑔  represents the energy delivered 

from the image, 𝐸𝑐𝑜𝑛 represents the energy of external 

constraint forces. 𝐸𝑐𝑜𝑛  allows for a user to 

interactively control and guide the snake towards the 

contour.  

The internal energy 𝐸𝑖𝑛𝑡  serves to impose a 

piecewise smoothness constraint. It is defined as 

follows: 

𝐸𝑖𝑛𝑡(𝑣(𝑠)) = 𝛼𝐸𝑐𝑜𝑛𝑡(𝑣(𝑠)) + 𝛽𝐸𝑐𝑢𝑟𝑣(𝑣(𝑠)), 

where 𝐸𝑐𝑜𝑛𝑡 is the continuity energy, 𝐸𝑐𝑢𝑟𝑣 represents 

curvature energy, and 𝛼, 𝛽 are user-defined weights.  

The image energy is decomposed into the 

weighted sum of the following energies: 

𝐸𝑖𝑚𝑔 = 𝑤𝑙𝑖𝑛𝑒𝐸𝑙𝑖𝑛𝑒 + 𝑤𝑒𝑑𝑔𝑒𝐸𝑒𝑑𝑔𝑒 + 𝑤𝑡𝑒𝑟𝑚𝐸𝑡𝑒𝑟𝑚 

where 𝐸𝑙𝑖𝑛𝑒(𝑣(𝑠)) = 𝐼(𝑣(𝑠)) is a line energy function 

represented by intensity of the image, 𝐸𝑒𝑑𝑔𝑒 =

−|∇𝐼(𝑣(𝑠))|
2
 is the edge energy based on the image 

gradient, 𝐸𝑡𝑒𝑟𝑚 is the termination energy that helps to 

find termination of line segments and corners.  

Optimization of the 𝐸𝑠𝑛𝑎𝑘𝑒 function is quite simple 

and can be performed iteratively by the gradient 

method. A full description of the snakes method can 

be found in [31].  

For our experiments, we used the OpenCV 

implementation of the snakes method. In this 

implementation, all the weights of the 𝐸𝑖𝑚𝑔  function 

are multiplied by the constant 𝛾 , that provides a 

separate control of image energy. 𝐸𝑐𝑜𝑛 is represented 

only by the initial contour. Since the general form of a 

pothole is similar to the oval one, we had chosen the 

initial contour of ellipsoidal shape. The ellipse is 

drawn to fit the image (Fig. 6) and has 100 uniformly 

distributed points.  
 

  

Figure 6. Snakes model results:From left to right: initial 

contour, final snake model contour (𝛼 = 0.1, 𝛽 = 0.4, 

and 𝛾 = 10). 

The constants 𝛼 ,  𝛽 ,  𝛾  have been calculated 

experientially and for the current data set the highest 

accuracy was obtained with the following values: 𝛼 =
0.1, 𝛽 = 0.4, and 𝛾 = 10. These values were used in 

the future experiments. 

3.2. Proposed edge detection method 

To effectively find the contour of a pothole in a 

binary image, we have proposed a new heuristic edge 

detection method. Assume that we have a binary 

image of the pothole (Fig. 7). Then the contour can be 

obtained by processing the steps as follows: 

Step 1. Calculate the center of the image. We assume 

that the image center point falls within the 

area of the pothole.  
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Step 2. Draw the lines from the center point to each 

image border point. Fig. 7 depicts the lines 

drawing idea.  

 

Figure 7. Lines crossing the pothole borders 

Step 3. After drawing the lines, the algorithm collects 

the thresholded image points crossed by the 

lines. To determine whether the points lay on 

a line, we have used the Bresenham method 

[35]. For simplicity, assume that all the lines 

preserving their order are saved in set 𝑨. Each 

line (a sample of the line is depicted in Fig. 8) 

can be understood as an ordered list of 

intensities of black and white pixels. The 

arrow on the top of the image shows the point 

ordering direction from the centre image point 

to the image boundary. The line depicts blobs 

of black pixels. The length 𝐷𝑖  of each blob 

can be obtained by finding the length of the 

consequent black pixel count.  

 

Figure 8. Example of a line in set 𝑨 

Step 4. Since all the lines start from the centre of the 

image, there are a lot of the same blobs in 

different lines. Therefore, to cope with 

removal of duplicates, filtering of 

homogeneous points must be applied. With a 

view to eliminate them, each point that 

belongs to the line is considered. The 

coordinates of repeating points are removed 

from all the lines except the middle ones. 

Thus, a new set 𝐀∗ is obtained.  

Step 5. Detection of the pothole contour path points 

is performed by Dijkstra`s algorithm [36] 

with the structure 𝑺 = (𝑮, 𝑳)  defined. The 

graph 𝑮 = (𝑽, 𝑬)  is constructed, where 𝑽 =
{𝑣𝑖} is composed of vertices 𝑣𝑖 that are taken 

from the set 𝑨∗ and are presented by each line 

each blob the furthest black pixels (Fig. 8), 𝑬 

consists of edges that connect all the vertices 

between two neighbour lines. 𝑳 = {𝑙𝑖𝑗}  is a 

set of lengths between the 𝑖th and 𝑗th vertices 

of set 𝑽 . The lengths are calculated by the 

proposed formula:  

 𝑙𝑖𝑗 = 𝑤1(𝐷𝑖 + 𝐷𝑗) + 𝑤2𝑑𝑖𝑗 + 𝑤3(𝑑𝑖𝑐 + 𝑑𝑗𝑐), 

where 𝐷𝑖 ,  𝐷𝑗 are lengths of line sections 𝑖 and 

𝑗 ; 𝑑𝑖𝑗  is the Euclidian distance between the 

vertices 𝑖  and 𝑗 ; 𝑑𝑖𝑐 and 𝑑𝑗𝑐  are Euclidian 

distance between the vertex and image centre, 

𝑤1,  𝑤2,  𝑤3 are weights such as ∑ 𝑤𝑖
3
𝑖=1 = 1. 

 

Figure 9. Contour path after application of Dijkstra's 

algorithm 

 All the vertices compose an ordered set 𝑭 =
{𝑣𝑖}. 

 The weights 𝑤𝑖  are selected so as to fit the 

line to contour. After a careful analysis, the 

weights were selected experimentally: 𝑤1 =
0.6; 𝑤2 = 0.25; 𝑤3 = 0.15 . The result is 

presented in Fig. 9.  

Step 6. Elimination of the pothole contour path 

outliers is accomplished as described further. 

A new set 𝑭∗ = {𝑓𝑖}  is constructed from 

vertices of the set 𝑭. At the beginning, we 

take the first vertex 𝑣0 from the set 𝑭  and 

insert it into set 𝑭∗, i.e. 𝑓0 = 𝑣0. We make an 

assumption that the vertex 𝑣0 is not an outlier. 

Then if it is closest to 𝑣0 from 10 left-sided 

neighbours in set 𝑭, we insert the vertex 𝑣𝑖 

into set 𝑭∗ . Further, we take the newly 

obtained vertex as a reference and start to 

look for its closest neighbour. The process 

continues until the whole set 𝑭  is checked. 

The filtering result is shown in Fig. 10.  

 

Figure 10. Smoothed contour of the pothole after  

filtering procedure
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Yes

No No

 

Figure 11. General contour recogintion scheme for pothole detection 

Table 1. The accuracy of methods 

Method Example C=A/B*100% Average 

100%-

90% 

90%-

80% 

80%-

70% 

70%-

60% 

60%-

50% 

50%-

40% 

40%-

30% 

30%-

20% 

20%-

10% 

10%-

0% 

Snakes - 

Triangle 

 

2 7 18 15 20 13 6 7 4 9 52% 

Snakes - 

Adaptive 

 

2 10 11 25 11 13 11 4 2 11 53% 

Proposed 

- Triangle 

 

13 25 25 16 11 4 2 0 1 4 70% 

Proposed 

- 

Adaptive 

 

15 38 25 11 9 2 0 0 0 0 78% 

 

4. General contour recognition scheme 

The general contour recognition scheme (Fig 11) 

was used to evaluate the proposed contour (edge) 

detection method, and to deliver the final version of 

the proposed pothole contour detection method. 

The method for pothole contour detection, 

proposed in this article, is organized as follows: 

1. Noise suppression. Reduction of the image 

size is accomplished by applying nearest 

neighbour interpolation technique [33]. The 

image size is contracted to 700 pixels in 

width and then the length is also reduced 

accordingly. Such a reduction enables us to 

eliminate salt-and-pepper noise and also to 

increase the algorithm speed significantly. 
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2. Conversion to a grayscale. The resized 

image is converted to a greyscale. During 

the conversion to a grey-scale image (from 

RGB) the YUV conversion scheme has been 

applied. 

3. Thresholding of image for foreground and 

background segmentation. In this step, we 

used one of the presented thresholding 

methods - either Triangle threshold or 

Adaptive threshold. 

4. Edge of the pothole detection. After 

obtaining a binary image in Step 3, the 

snakes method and our method for edge 

detection has been applied. 

By mixing the parts, presented in the third and 

fourth steps, we can obtain four different combina-

tions of the method: Snakes-Triangle (method that 

includes parts 3.b and 4.b), Snakes-Adaptive (3.a and 

4.b), Proposed-Triangle (3.b and 4.a) and Proposed-

Adaptive (3.a and 4.a). These modifications of the 

method were compared in the next section. 

5. Comparison of the described methods 

Experiments were done by using a set of 105 

various resolution images, purposely gathered for the 

research and captured with a mobile device camera. 

The aim of the experiment was to evaluate the 

accuracy of the method for pothole contour detection 

we have proposed, and that of the snakes method by 

comparing them to that of the human-drawn pothole 

contour. The accuracy was expressed as 𝐶 = 𝐴/𝐵 ∗
100% , where 𝐴  is the area (white colour) contour 

calculated applying either the proposed method or 

snakes method; 𝐵  is the area of a human-drawn 

contour. The results are shown in Table 1. 

These results show that when comparing the 

snakes method after adaptive and triangle thresholds, 

the adaptive threshold shows better results. The same 

is true for the method proposed in this paper. Also, 

comparing the snakes method and the proposed 

method, the latter shows better results. 

6. Conclusion 

In this article, the new method for pothole contour 

(edge) detection has been proposed and evaluated 

using 105 pothole images and the study conclusions 

are:  

 When comparing the Snakes-Adaptive and 

Proposed-Adaptive methods, the better 

performance shows Proposed-Adaptive method. It 

increase difference accuracy by 25%. 

 The highest concurrence (applying the Adaptive 

threshold and the proposed edge detection 

method) of the contour drawn when applying the 

proposed pothole contour detection method and 

the human-drawn contour was 97%. The lowest 

accuracy was 42% , mostly as a result of 

insufficient lighting conditions or external 

impediments. The average accuracy of the 

proposed method is 78% . 15  images were 

recognised with the size accuracy of 90% −
100% , 38  images with the size accuracy of 

80% − 90% , and only 2  images with that of 

40% − 50% and below. 
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