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Abstract. This paper presents a novel control method for active suspension systems based on the Uncertainty and 

Disturbance Estimator (UDE) control strategy. The nonlinear dynamics of the hydraulic actuator in a quarter-car active 

suspension system is considered with uncertainties. In order to facilitate the controller design, the whole system is 

partitioned into a linear subsystem and a nonlinear subsystem. For the linear subsystem, a reference model is offered 

based on sky-hook damper and the UDE control strategy is applied to obtain desired fictitious input of linear 

subsystem. For the nonlinear subsystem, sliding mode control approach is used to construct controller in order to force 

the output of nonlinear subsystem to track the desired fictitious input of linear subsystem. Simulation results verify the 

effectiveness of the proposed method. 
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1. Introduction 

Suspension systems are important parts of vehicle 

systems, providing great contribution to the riding 

comfort and safety of passengers [1]. Usually, there 

are three types of suspensions: passive, semiactive and 

active [2–6]. Recently, the control of active 

suspensions has attracted the attention of many 

researchers [5–8]. Active suspensions can be used to 

minimize the vertical forces transmitted to the 

passengers for riding comfort, and to maximize the 

tyre-to-road contact for handling and safety [9]. Active 

suspensions often operate on both smooth roads and 

rough roads and the perturbation in the parameters is 

inevitable. For example, the coefficients of damping 

and stiffness may vary because of ageing.  

In active suspensions, actuators can add and 

dissipate energy from the system so that the attitude of 

the vehicle can be adjusted through suspension and 

then the effects of road roughness can be reduced and 

the riding comfort is improved as a result [10]. Since 

the actuators pull down or push up together with the 

suspension motions, the dynamics of actuators should 

be taken into consideration. For active suspension 

systems with hydraulic actuators, the sliding mode 

control (SMC), which is effective for nonlinear and 

parameter uncertain systems [11, 12], has attracted the 

interest of many researchers recently [2, 6, 13–17]. 

A model reference sliding mode controller on the 

basis of two acceleration sensors for a two degree-of-

freedom plant model is investigated in [6]. In [13], a 

SMC controller was designed for a quarter-car 

suspension system by taking a sky-hook damper 

system as a reference model. In these two papers, the 

actuator dynamics was not taken into consideration. 

An active suspension system was considered for a 

quarter-car model using the concept of SMC based on 

a pneumatic actuator in [2], taking into account the 

time lag effect of the pneumatic actuator.  

In addition to the SMC method, many other 

control approaches are used for the control of active 

suspension systems. Rao and Narayanan [18] 

considered a quarter car vehicle model with sky-hook 

damper control strategy through linear quadratic 

regulator (LQR) control scheme. Gao et al. [7] 

presented a H∞control for quarter-car active 
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suspension system. Li et al. [19] investigated the non-

fragile H∞ controller design problem of a half-vehicle 

model with active suspension system. However, both 

of them did not consider the dynamics of the actuator. 

Ma and Chen [8] developed a disturbance attenuation 

control of active suspension with nonlinear actuator 

dynamics, but the effect of uncertainties was not 

considered.  

In this paper, a novel suspension control scheme is 

derived by means of Uncertainty and Disturbance 

Estimator (UDE) control approach [21–23] and SMC 

method, in order to realize the robust control of 

suspension systems with hydraulic actuator and 

uncertainties.  

The remainder of this paper is organized as 

follows. Section 2 is the problem formulation, in 

which the quarter-car model, the dynamics of the 

hydraulic actuator, the rescaling of states and the 

repartition of subsystems are given. Section 3 

illustrates the design of active suspension controller 

based on UDE and SMC approaches. Simulation is 

shown in Section 4. Section 5 draws the conclusions 

of this paper. 

2. Problem Formulation 

Consider the quarter-car model of an active sus-

pension system as shown in Fig. 1. 

 

Figure 1. Quarter-car model with an active suspension 

In Fig. 1, 
2m  is the sprung mass, 

1m  is the 

unsprung mass; 
2k  and 

2c  are the coefficients of 

stiffness and damping of the suspension system, 

respectively; 
1k  and 

1c  stand for compressibility and 

damping of the pneumatic tyre, respectively; 
2z  and 

1z  are the displacements of the sprung and unsprung 

masses, respectively; 
0z  is vertical ground 

displacements caused by road unevenness; and 
af  is 

the active input force of the suspension system. 

The dynamic equations of the sprung and unsprung 

masses are 

2 2 2 2 1 2 2 1

1 1 2 1 2 2 1 2

1 1 0 1 1 0

( ) ( )

( ) ( )

( ) ( )

a

a

m z c z z k z z f

m z c z z k z z

c z z k z z f

    

   

     

. (1) 

Since the masses 
im , stiffness coefficients 

ik  and 

dumping coefficients 
ic  ( 1,2)i   of seat suspension 

system are unavoidable to suffer from perturbation. 

Assume 
0i i im m m  , 

0i i ik k k  , 
0i i ic c c  , 

where 
0 0 0
, ,i i im k c  are the nominal values of , ,i i im k c , 

respectively, and , ,i i im k c    are the uncertainties of 

, ,i i im k c , respectively, with bounded , ,i i im k c   . 

Usually, the active force 
af  is generated by the 

hydraulic actuator placed between the sprung and 

unsprung masses. Therefore, a hydraulic actuator of a 

four-way valve-piston system is regarded in this paper. 

Detailed introduction of such a hydraulic actuator can 

be found in [8,9,20] and the following basic concepts 

are adapted from them. 

The active force 
af  from the actuator is 

a r Lf A P , where 
rA  is the piston area of the 

hydraulic actuator and 
LP  is the pressure drop across 

the piston. 

The rate of change of 
LP  can be described as

2 1( )L L rP Q P A z z      , where Q  is load flow, 

4 e

tV


  , 

tV is total actuator volume and 
e  is 

effective bulk modulus, 
tpC  , 

tpC  is the total 

piston leakage coefficient of the piston. 

The servovalve load flow equation is given by 

d
v

C v
Q x 


  (2) 

where 

sgn[ sgn( ) ] | sgn( ) |s v L s v LP x P P x P     

0sP   is supply pressure, vx  is valve displacement 

from its ‘closed’ position, 
dC  is discharge coefficient, 

v  is spool valve area gradient,   is hydraulic fluid 

density. 

The spool valve displacement is controlled by the 

input to the servovalve 𝜇, which could be a current or 

a voltage. The valve dynamic is approximated by a 

linear filter with time constant 𝜏 , namely,

1
( )v vx x u


   .  

It is worth pointing out that the scale of 
LP  is about 

710 while the scale of Q  is around 310 , their scales 

differ greatly. Thus, rescaling 
LP  and Q  is very 

important to reduce the numerical integration errors in 

simulations. Besides, in view of actuator saturation, it 

is reasonable to assume the load flow Q  is bounded 

by 
sQ . Hence, 

s

Q
Q

Q
  and L

L

s

P
P

P
  are introduced. 

Then  
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2 1( )L s L r

s s

sd
v

s

P Q Q P A z z
P P

PC v
Q x

Q

 





   



 (3) 

where sgn[1 sgn( ) ] |1 sgn( ) |v L v Lx P x P    . 

According to the second sub-equation in (3) and 

valve dynamic, the derivative of Q  is 

1 1
( )

2
[ | | ]sd v

v L

s

PC v x
Q x u P

Q


 
    . (4) 

Obviously, the dynamic of the quarter-car active 

suspension with actuator dynamic system can be 

described by (1) and (3). So, an intuitional way to 

design controller is to divide the system into two 

subsystems which are based on (1) and (3). However, 

the first sub-equation in (3) is linear with respect to 

Q , 
LP  and 2z , 1z , while (4) is with strong 

nonlinearity. The controller design directly in 

accordance with (3) will be a tough task.  

Therefore, in this paper, the whole system is 

divided into another two subsystems, one is linear 

subsystem and the other is nonlinear subsystem. In the 

nonlinear subsystem, there is only one state dynamic 

equation. Hence, the controller design complexity can 

be reduced greatly. 

Select T

2 1 2 1[ , , , , ]Lz z z z Px , Q  , 
0 0 0[ , ]z zZ  

the active suspension system with hydraulic actuator 

dynamics is  

0

0( )

( , ) ( , )

( , ) ( , )( )

z

z

A B B

A B B

f g u

f g u





  

 

  

   

 

  

x x

x

x x

x x

Z

Z  (5) 

where 

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

2 2 2 2

2 2 2 2 2

2 2 1 2 2 1

1 1 1 1 1

0 0 1 0 0

0 0 0 1 0

,

0 0

r s

r s

r r

s s

k k c c A P

m m m m m
A

k k k c c c A P

m m m m m

A A

P P

 


 
 
 
 
  
 

     
 
 
 
 

 
 
 

 

0

0

0

0

T

1

1T

1

1

0,0,0, ,0

0,0,0,0, ,

0,0,0, ,0

,[ ]s
z

s

k

mQ
B B

cP

m



 
 
 

 
 
 
  

 

1 1
,

2
[ | | ]s v

v L

s

P x
f x P

Q




  
  

 

1s

s

P
g

Q




 
  

where , , , , ,wA B B C f g      are the uncertainties of 

, , , , ,wA B B C f g , respectively. dC v
 


  and vx  is 

taken as a function of   according to servo valve load 

flow equation. 

Usually, there are two kinds of road excitations. 

One is the case that an isolated bump in an otherwise 

smooth road surface. The corresponding ground 

displacement can be given by  

0 0

0 0

0

0

0

2
(1 ( )), 0

2
( )

0,

z z

z z

z

z

A Av
cos t if t

L L
z t

A
if t

L


  


 
 


 

where 
0zA  and 

0zL  are the height and the length of the 

bump, 𝝂 is the vehicle forward velocity. The other is 

to consider the road excitation 
0z  as a vibration, 

which is consistent and typically specified as random 

process with a ground displacement power spectral 

density (PSD) of 2 2

0 0( ) 4 ( )q qG f G n n v , where 

0( )qG n  stands for the road roughness coefficient, 
0n  

is the reference spatial frequency, and v  is the vehicle 

forward velocity [8]. It is reasonable to assume that 

0Z  is available. 

3. Active suspension controller design 

Obviously, (5) has two subsystems, one is the 

linear subsystem which is described by the first sub-

equation in (5), and the other is the nonlinear 

subsystem which is described by the second sub-

equation in (5). Therefore, the procedure of obtaining 

controller includes two steps. 

Firstly,   can be seen as a fictitious input for the 

linear subsystem, namely, the first sub-equation in (5), 

an auxiliary control d  is designed to be the desired 

signal for   on the basis of Uncertainty and Distur-

bance Estimator (UDE) control approach ([21-23]).  

Secondly, because sliding mode control (SMC) 

method a kind of strong robust strategies which is 

convenient to be used for nonlinear system, according 

to the nonlinear subsystem, namely, the second sub-

equation in (5), control input u  is determined based 

on SMC such that the actual   tracks the desired d  

well. 

For linear subsystem in (5), let Ax  d

0zB B  Z  represent lumped uncertainty. Then 

0zA B B   Z dx x . (6) 
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The reference model of suspension system should 

have satisfying dynamic. 

The following reference model (7) 

0m m m zA B  Zx x  (7) 

is used as the reference model, which is on the basis of 

sky-hook damper [24] and as shown in Fig. 2. 

In (7) T

2 1 2 1[ , , , , ]
m m m mm Lz z z z Px  and 

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

2 2 2 2

2 2 2 2 2

2 2 1 2 2 1

1 1 1 1 1

0 0 1 0 0

0 0 0 1 0

,

0 0

sh r s

m

sh r s

r r

s s

k k c c c A P

m m m m m
A

k k k c c c c A P

m m m m m

A A

P P

 


 
 
 
 
 
 

      
 
 
 
 

 
 
   

with 

1 2 1

1 2 1

, ( ) 0

0, ( ) 0

m m m

m m m

sky

sh

c if z z z
c

if z z z

 
 

 

 

and 0skyc   is the coefficients of sky-hook damper. 

Let 
sh mC A A  ,  

then 

2

1

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

sh

sh

sh

c

mC

c

m

 
 
 
 
 

  
 

 
 
  

. 

 

The control objective is to force the error 

x m e x x  to be stable and with specified dynamic, 

that is 

( )x m m xA K   x xe e  (8) 

 

 

Figure 2. Sky-hook damper reference model 

where K  is an error feedback gain matrix with 

appropriate dimensions. 

The error dynamics can be changed via adjusting 

the error feedback gain K . A bigger absolute value of 

K  results in faster error dynamics [23]. The selection 

of K  can be based on classical control theory method, 

such as pole placement, in order to guarantee stability 

and desired dynamic. 

According to (6), (7) and(8), there exists 

0 0( )

( )

m m z z

m x

A B A B B

A K

    

 

x Z x Z d

e
.4 

Thus, the auxiliary control 
d  can be yielded as 

( )

( ) ( )

( )

d m m m x

m x m x

m x

sh x

B A A A K

A A A K

A A K

C K

     

     

   

  

d

d

d

d

x x e

e x x e

x e

x e

. (9) 

Because there exists the unknown term d  in(9), 

the auxiliary control signal d  cannot be obtained 

directly from (9). The UDE based control strategy 

proposed in [21] adopts an estimation of this unknown 

term to construct control law. 

Let 
d  u d , assume that ( )fg t  is the impulse 

response of a strictly proper filter ( )fG s , whose 

passband contains the frequency content of 
du . Then 

du  can be accurately estimated from the output of the 

UDE as 

( )d fg tude u  (10) 

where ‘ ’ is the convolution operator, with 

( ) { ( )}f fG s g t and    is the Laplace transform 

operator. 

Due to linear subsystem dynamics (6), 
du  can be 

represented as 

0d zA B B   u Zx x . (11) 

Thus, according to (9) and (11), the auxiliary 

control action can be yielded by 

0

1 1

1 1

0

1 1

( ) ( )

( ) 1 ( )

( ) 1 ( )

1 ( ) ( )

[ { ( ) }

{ ( ) }

{( ) } ]

d sh x z f

d f f

f f z

f m x

B C K A B B g t

B A sG s G s

G s G s B

G s A K

 

   

 

 

     

    

 

  

Z

Z

x e x x

x x

x e

 (12) 

where T 1 T( )B B B B   is the pseudo-inverse of B . 

Obviously, the auxiliary control d  has nothing to 

do with the unknown terms. 

Now, consider the nonlinear subsystem in (5). Let 

the error between the actual   and the desired d  be  

de    . (13) 
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According to sliding mode control (SMC) theory, a 

sliding surface with desired performance should be 

created first of all, and then a suitable control law is 

required to drive states to origin along with the sliding 

surface. 

Therefore, consider sliding mode variable 

cns e . (14) 

Due to reaching law approach, the control input is 

constructed as 

1

1 2sgn( )[ ]cn cn du g q s q s f      

where 
1 20, 0q q   are designable parameters. 

In order to reduce chattering, 2
arctan( )cns

 
 is used 

to replace sgn( )cns , then the control input is 

1

1 2

2
arctan[ ( ) ]cn

cn d

s
u g q s q f

 

     . (15) 

4. Simulation 

In this section, the simulation results will be given 

on a quarter-car model [25], in which parameters are 

0 0

0 0

0 0

2

2

2 1

1

1

320 , 40 ,

18 / , 200 /

1 / , 10 /

m kg m kg

k kN m k kN m

c kN s m c kN s m

 

 

   

. 

Physical parameters for the hydraulic actuator  

are given as [9]: 1(1/ )s  , 23.35 10.4Ar m  , 

1/ 30s  , 71.03425 10sP Pa  , 3 31.5563 10 /sQ m s  ,

13 54.515 10 /N m   , 91/ 1.545 10 /dC v N    

5/2 1/2( )m kg . 

Suppose T

1 2[ , ]y z z  are measurable outputs, and 

consider the parameters of suspension system suffer 

from perturbations 
0 02 2 2 250% , 50% ,k k c c     

01 150%c c   . 

Select 
02 2 /skyc kN s m . 

Assume that the frequency range of the suspension 

system dynamic and the external disturbances is 

limited by 
f . Although the low-pass filter ( )fG s  can 

be chosen by designers arbitrarily, however, it is 

practical to select ( )fG s  to be of a simple form such 

as 1
( )

1
fG s

Ts



, where 1

0
f

T


  . Therefore, in 

this simulation 0.01T   is selected. 

In order to evaluate the performance of the 

designed closed-loop active suspension system, we 

consider two typical cases as introduced in Section 2. 

Case 1: Consider the case of an isolated bump in 

an otherwise smooth road surface. Assume 

0 0.1zA m , 
0 5zL m , and 30 /v km h . The 

corresponding road excitation is shown in Fig. 3. 

Case 2: Consider road excitation 
0z  as a vibration, 

select the road roughness as 6 3

0( ) 256 10qG n m  , 

0 0.1n  , which corresponds to very poor ground, 

assume 30 /v km h . 

Let the designable parameters are 
4 4 4 4diag{ 10 , 10 , 10 , 10 , 200}K       , 

1 0.01q  , 

2 0.01q  , 62.5 10   .  

Simulation results are shown in Fig. 3-Fig. 8. 

According to Fig. 3-Fig. 6, it is obvious that under 

the proposed method, the suspension acceleration 
..

2z , 

the input to the servo valve u , the input to the linear 

subsystem   and the tracking error e  converge 

quickly and have good precision. Although the tyre 

displacement 1z  and the tracking error 
1xe  have ups 

and downs at the end of simulation, they converge 

quickly and the volatility is relatively small when 

compared with the amplitude of road excitation. 

 

 

Figure 3. Road excitation (Case 1) 

 

Figure 4. Tracking error (
1
,xe e ) (Case 1) 
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Figure 5. Input to the servo valve u  and input to the linear 

subsystem   (Case 1) 

 

 

 

Figure 7. Road Excitation(Case2) 

 

 

 

Figure 9. Input to the servo valve u  and input to the linear 

subsystem  (Case 2)

 

Figure 6. Tyre displacement 
1z  and suspension  

acceleration 
..

2z (Case 1) 

 

 

 

Figure 8. Tracking error (
1
,xe e ) (Case 2) 

 

 

Figure 10. Tyre displacement 
1z  and suspension 

acceleration 
..

2z (Case 2) 



L. Xiao, R. Ding 

382 

 

Figure 11. Suspension acceleration PSD (Case 2) 

From Fig. 7-Fig. 11, one can find that the curves of 

the tyre displacement 
1z , the suspension acceleration 

..

2z , the input to the servo valve u , the input to the 

linear subsystem  , the tracking errors 
1xe  and e  

are much more smoother than the road excitation. The 

power spectral density (PSD) of 
2z has low frequency 

band 4-8 Hz, which is the widely accepted ride 

comfort frequency range. 

Therefore, the presented method possesses good 

performance in the whole. 

5. Conclusions 

For a quarter-car active suspension system with 

uncertainties, a novel robust control method is 

presented. For the nonlinear dynamics of hydraulic 

actuator, the whole system is repartitioned into a linear 

subsystem and a nonlinear subsystem, instead of 

dividing into actuator subsystem and suspension 

subsystem. The repartition facilitates the controller 

design greatly. For the linear subsystem, a reference 

model is offered based on sky-hook damper at first, 

and then the Uncertainty and Disturbance Estimator 

(UDE) control approach is used to get desired 

fictitious input of linear subsystem. For the nonlinear 

subsystem, sliding mode control (SMC) strategy is 

employed to construct controller in order to force the 

output of nonlinear subsystem to track the desired 

fictitious input of linear subsystem. Simulation on two 

kinds of road surfaces are given, the results verify that 

the proposed method has good performance. 
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