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Abstract. This paper proposes a multi-objective gene expression programming for clustering (MGEPC), which 
could automatically determine the number of clusters and the appropriate partitioning from the data set. The clustering 
algebraic operations of gene expression programming are extended first. Then based on the framework of the Non-
dominated Sorting Genetic Algorithm-II, two enhancements are proposed in MGEPC. First, a multi-objective k-means 
clustering is proposed for local search, where the total symmetrical compactness and the cluster connectivity are used 
as two complementary objectives and the point symmetry based distance is adopted as the distance metric. Second, the 
power-law distribution based selection strategy is proposed for the parent population generation. In addition, the 
external archive and the archive truncation are used to keep a historical record of the non-dominated solutions found 
along the search process. Experiments are performed on five artificial and three real-life data sets. Results show that 
the proposed algorithm outperforms the PESA-II based clustering method (MOCK), the archived multiobjective 
simulated annealing based clustering technique with point symmetry based distance (VAMOSA) and the single-
objective version of gene expression programming based clustering technique (GEP-Cluster). 
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1. Introduction 

Clustering is the assignment of a set of unlabeled 
objects into groups such that objects from the same 
group are more similar to each other than objects from 
different groups. Clustering algorithms have been 
widely applied into many different fields, such as 
image processing [6], text categorization [19], market 
segmentation [14], eye gaze visualizations [20], etc. 
Since clustering could be considered as a particular 
kind of optimization problem, evolutionary algorithms 
have been proposed for clustering [11]. 

Gene Expression Programming (GEP), which 
combines the advantages of both genetic algorithm 
and genetic programming, is a relatively new member 
in the evolutionary computation family [8]. GEP 
works with two entities called the chromosome and 
the expression tree. The separation of the chromosome 
and the expression tree ensures that expression trees 
are always syntactically correct after any genetic 
change of chromosomes; thus the exploration of the 
search space is greatly expanded. Therefore, GEP 
shows powerful capabilities over a large variety of 
domains, including regression modeling, optimization, 
classification tasks and time series prediction [9, 22, 
12, 23]. 

A clustering technique based on GEP (GEP-
Cluster) was first proposed in [4], and a new concept 
named the clustering algebra, which performs 
clustering as algebraic operation, is presented. GEP-
Cluster could divide or merge the clusters 
automatically without any prior knowledge. However, 
like the conventional evolutionary clustering 
algorithms performing with just one clustering 
criterion, GEP-Cluster is also a single-objective 
clustering method. For a wide variety of real life 
datasets, a single clustering criterion is hardly able to 
judge the correctness of clustering result. Furthermore, 
since there would be considerable discrepancies 
between solutions produced by the same algorithm 
using different clustering criteria, an inappropriate 
choice of the validity measure may lead to poor 
clustering results [21]. Therefore, for overcoming the 
limitation of single-objective clustering method, the 
concept of multi-objective clustering has been 
introduced [3, 10, 13, 16, 18]. 

In the paper, a multi-objective gene expression 
programming for clustering (MGEPC) is proposed. 
The proposed algorithm could automatically 
determine the number of clusters and the appropriate 
partitioning from the data set. MGPEC first extends 
the clustering algebraic operations of GEP for 
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avoiding using a huge amount of computational 
resources to edit those illegal chromosomes. Then 
based on the framework of the Non-dominated Sorting 
Genetic Algorithm-II (NSGA-II), two enhancements 
are proposed in MGEPC. First, a multi-objective k-
means method is presented as a local search, which 
performs fine-tuning of some rough partitions 
obtained by the global search, to speed up the 
convergence. Second, the power-law distribution 
based selection strategy is proposed for ensuring some 
inferior individuals being selected into the next 
generation while maintaining a bias against superior 
solutions, which helps maintain the diversity of the 
population and avoids getting stuck at a local optimal 
or partial Pareto front. In addition, the external archive 
and the archive truncation are used to keep a historical 
record of the non-dominated solutions found along the 
search process. 

The remainder of the paper is organized as 
follows: Section 2 reviews relevant previous work. In 
Section 3, the proposed algorithm is discussed in 
detail. Section 4 shows the experimental setup and 
comparison results on both artificial and real-life data 
sets. Finally, Section 5 concludes the paper. 

2. Related works 

MOCK is a popular multi-objective evolutionary 
clustering algorithm based on PESA-II (PESA-II is a 
multiobjective evolutionary algorithm proposed in 
[5]). It optimizes two complementary objectives, 
which are the cluster compactness and the 
connectedness [10]. It has been shown to outperform 
traditional single-objective clustering techniques 
across a diverse range of benchmark data sets. 
However, since MOCK employs a locus-based 
adjacency encoding scheme, namely, the length of 
each chromosome is equal to the number of points 
present in the data set; the length of each chromosome 
would increase with the number of points. Hence, 
MOCK would suffer from premature convergence for 
long chromosomes in large search space [15]. 

VAMOSA, which is an archived multiobjective 
simulated annealing based clustering technique with 
point symmetry based distance, adopts a variable-
length real encoding, namely, the strings are made up 
of real numbers which represent the coordinates of the 
centers of partitions [16]. Therefore, for data sets of 
large cluster numbers and high dimensions, VAMOSA 
has the same drawback as MOCK. Moreover, since 
the mutation mechanism could only add or remove 
one cluster center at a time, the exploration of the 
search space would be limited to a certain extent. Thus 
VAMOSA suffers from a slow convergence rate and 
often easily falls into local optimality.  

GEP-Cluster is a GEP-based clustering method 
without prior knowledge. It introduces a new encoding 
scheme based on clustering algebraic operations [4]. 
Although GEP-Cluster could overcome the limitation 
in the representation of MOCK and VAMOSA, a large 

number of invalid chromosomes would appear in the 
evolving process of GEP-Cluster and a huge amount 
of computational resources would be wasted. In 
addition, GEP-Cluster chooses the overall deviation as 
the objective. Since the overall deviation would 
increase with the number of clusters increasing, the 
number of clusters detected by the iteration process 
would always be the maximum cluster number pre-
specified. Although GEP-Cluster employs an 
automatic merging cluster algorithm to adjust clusters 
after the iteration process, it is effective only when 
true clusters in the data set are well-separated. 

In the next section, we will present a new 
clustering algorithm named MGEPC. In Section 4, we 
will use artificial and real-life datasets to compare the 
effectiveness of MGEPC with that of MOCK, 
VAMOSA and GEP-Cluster, respectively.  

3. The Proposed Method 

3.1. Multiobjective optimization 

We consider the clustering task as a multiobjective 
optimization problem (MOP), which can be 
mathematically formulated as [24] 

Minimize ))(,),(()( 1
T

m xfxfxF  , s.t. x  (1) 

where   is the decision space and x  is a 
decision vector. ( )F x  consists of m objective 

functions , 1,...,if i m . 

The objectives of MOP often conflict with each 
other. Improvement of one objective may lead to 
deterioration of another. Thus there no longer exists a 
single optimal solution but rather a set of trade-off 
solutions, which is called the Pareto optimal solutions. 
Some definitions related to the Pareto optimality are 
given as follows. 

Definition 1 (Pareto dominance). A solution px  is 

said to dominate another solution qx  (denoted by 

p qx x ), if and only if 1,...,k m  , ( ) ( )p qf x f x  

and 1,...,k m  , ( ) ( )p qf x f x . 

Definition 2 (Pareto-optimal set). If no solution 
dominates px , then px  is a Pareto-optimal solution. 

The set of all feasible Pareto-optimal solutions is 
called Pareto-optimal set. 

Definition 3 (Pareto front). The image of Pareto-
optimal set in the objective space is called the Pareto 
front. 

Definition 4 (Non-dominated set). Among a set of 
solutions P, the non-dominated set of solutions P* is 
composed of solutions that are not dominated by any 
other solution of the set P. 
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3.2. Representation 

3.2.1. Clustering algebraic operations 

Clustering operators used in GEP-Cluster are ‘ ’ 
and ‘ ’ [4]. Let xO  be the center of cluster xC , and 

yO  be the center of cluster yC . Then 

(1) { }x y xyO O O  , where xyO  is the mean point of 

xO  and yO . 

(2) { , }x y x yO O O O  . 

The first operation indicates that xC  and yC  are 

merged into one cluster with the center xyO , and the 

second operation indicates that xC  and yC  would not 

be merged together, namely, they are two separate 
clusters with the center xO  and yO .  

Based on the concepts of the clustering operators, 
we extend the clustering algebraic operations, which 
are presented in Theorem 1. 

Theorem 1: Let xO , yO  and zO  be the centers of 

cluster xC , yC  and zC  in the d-dimensional space, 

and 1 2( , ,..., )x dO x x x , 1 2( , ,..., )y dO y y y , 

1 2( , ,..., )z dO z z z , then 

 

(1)  x y y xO O O O   ; x y y xO O O O    

(2)  1 1 1 2 2 22 2 2
( ) {( , ,..., )}

4 4 4
d d d

x y z
x y z x y z x y z

O O O
     

   ; 

1 1 1 2 2 22 2 2
( ) {( , ,..., )}

4 4 4
d d d

x y z
x y z x y z x y z

O O O
     

    

(3)  1 2 1 2 1 2( ) ( ) {( , ,..., ), ( , ,..., ), ( , ,..., )}x y z x y z d d dO O O O O O x x x y y y z z z       

(4)  1 1 2 2
1 2( ) {( , ,..., ), ( , ,..., )}

2 2 2
d d

x y z d
y z y z y z

O O O x x x
  

    

(5)  )}
2

,...,
2

,
2

(),
2

,...,
2

,
2

{()( 22112211 dddd
zyx

zxzxzxyxyxyx
OOO


  

 
 
▼Proof: 

(1) This commutative law has been proved in [4]. 

(2) The operation ( )x y zO O O   indicates that yC  

and zC  are merged into cluster yzC  with the center 

1 1 2 2( , ,..., )
2 2 2

d d
yz

y z y z y z
O

  
 , and then yzC  

and xC  are merged into cluster xyzC  with the center 

1 1 1 2 2 22 2 2
( , ,..., )

4 4 4
d d d

xyz

x y z x y z x y z
O

     
 . 

Similarly, the operation ( )x y zO O O   indicates 

that xC , yC  and zC  are ultimately merged into one 
cluster with the center 

1 1 1 2 2 22 2 2
( , ,..., )

4 4 4
d d dx y z x y z x y z     

. 

Consequently, operator ‘  ’ is not always 
associative. 

(3) The operation ( )x y zO O O   indicates that yC  

and zC  are separate clusters, and xC  is separate 

from yC  and zC . Thus xC , yC  and zC  are three 

distinct clusters with the center xO , yO  and zO , 

respectively. Similarly, ( )x y zO O O   also 

indicates that xC , yC  and zC  are three distinct 

clusters. Therefore, the equation 
( ) ( )x y z x y zO O O O O O      is satisfied, and 

the three cluster centers are 1 2( , ,..., )dx x x , 

1 2( , ,..., )dy y y  and 1 2( , ,..., )dz z z  respectively. 

(4) The formula ( )x y zO O O   indicates that yC  

and zC  are merged into cluster yzC  with the center 

yzO , and then yzC  and xC  are kept separate. That 

is to say, there are two clusters with the centers xO  

and yzO , namely, 1 2( , ,..., )dx x x  and 

1 1 2 2( , ,..., )
2 2 2

d dy z y z y z  
. 

(5) The operation ( )x y zO O O   indicates that xC  

will be merged with yC  and zC  respectively. Thus 

the merged cluster centers are 

1 1 2 2( , ,..., )
2 2 2

d dx y x y x y  
 and 

1 1 2 2( , ,..., )
2 2 2

d dx z x z x z  
.▲ 

In summary, the clustering algebraic operations, 
the corresponding expression trees and the centers of 
the resultant clusters are shown in Table 1. 
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Table 1. The clustering algebraic operations, the corresponding expression trees and the centers of the resultant clusters 

Algebraic operation Expression tree Centers of the resultant clusters 

x yO O  

 

1 2( , ,..., )dx x x  1 2( , ,..., )dy y y  

x yO O  

 

1 1 2 2( , ,..., )
2 2 2

d dx y x y x y  
 

( )x y zO O O   

 

1 1 1 2 2 22 2 2
( , ,..., )

4 4 4
d d dx y z x y z x y z     

 

( )x y zO O O   

 

1 2 1 2 1 2( , ,..., ), ( , ,..., ), ( , ,..., )d d dx x x y y y z z z  

( )x y zO O O   

 

1 1 2 2
1 2( , ,..., ), ( , ,..., )

2 2 2
d d

d
y z y z y z

x x x
  

 

( )x y zO O O   

 

1 1 2 2( , ,..., )
2 2 2

d dx y x y x y  
,

1 1 2 2( , ,..., )
2 2 2

d dx z x z x z  
. 

 
 

3.2.2. Encoding 

Each chromosome of MGEPC is composed of a 
head and a tail. The head contains symbols that 
represent both the functions (the elements from the 
function set F) and terminals (the elements from the 
terminal set T), whereas the tail contains only 
terminals. The function set F is { ,  }, and the 
terminal set T is {1, 2, …, i, …N}, [1, ]i N , where N 

is the number of data points in the data set and i is the 
sequence number of the ith data point. The first 
position in the head should always be set as ‘ ’ in 
order to ensure the clustering problem meaningful. 
Other positions in the head are set as a randomly 
selected function or a randomly selected terminal 
based on an equal probability. Elements in the tail are 
chosen from the terminal set randomly. Duplicate 
terminals are allowed in the chromosome because the 
information encoded in the chromosome is cluster 
centers rather than link of each data item. Let h denote 
the length of the head and t denote the length of the 
tail. Since the maximum arity of the clustering 
operators is 2, then 1t h   [8]. It is evident from the 
clustering expression tree that a chromosome could 
express 1h  clusters at most. Thus, if the maximum 

number of clusters is maxk , the total length of the 
chromosome  )1)1(()1( maxmax kkthm

12 max  k . Figure 1 gives an example of the 

representation of a chromosome for MGEPC, where 

iX  ( =1,2,...,7i ) indicates the ith data point. Figure 1 
(a) shows a chromosome of MGEPC. Figure 1 (b) and 
Figure 1 (c) show its corresponding expression tree 
and clustering algebraic operation, respectively. 

3.2.3. Decoding 

The translation from the chromosome to the 
expression tree is performed by a breadth-first 
traversal from left to right and from top to down [8]. 
The algebraic operation is obtained by a traversal in 
the reverse order, and the resultant cluster centers are 
evaluated according to Table 1. 

Because the number of the nodes of an expression 
tree is m at most, the translation from the chromosome 
to the expression tree requires at most ( )O m  time. 

Evaluation of expression tree also requires at most 
( )O m  time. Therefore, this decoding step requires at 

most ( )O m  time. 
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  1 4 3 1 4 2 7 5 6

 

(a) Chromosome 

 

 (b) Expression tree 

1X 4X2X 7X  1X) 4X 3X( ) 
 

(c) Clustering algebraic operation 

Figure 1. An example of the representation of a 
chromosome for MGEPC 

This representation has two advantages. First, 
clusters could be merged or kept separate 
automatically by clustering operations. Thus there is 
no need to pre-specify the number of clusters, which is 
usually difficult to estimate in many applications. 
Second, extension of the clustering algebraic 
operations not only avoids using a huge amount of 
computational resources to edit those illegal 
chromosomes in the evolving process, but also allows 
modification of the chromosome using nearly any 
genetic operator without restrictions; thus the 
exploration of the search space is greatly enhanced. 

3.3. Point symmetry based distance measure 

Since symmetry is a basic feature of most shapes 
and objects, it can be considered as an important 
feature in their recognition and reconstruction. 
Symmetry is a natural phenomenon and clusters are 
not exception. Based on this observation, a point 
symmetry based distance (PS distance) is developed in 
[2]. Then assignment of points to different clusters is 
done based on the PS distance rather than the 
Euclidean distance. This enables the clustering 
algorithm to automatically evolve clusters of any 
shape, size or convexity as long as they possess some 
symmetry property. 

The PS distance proposed in [2] is defined by 

1 2( , ) ( ) / 2 ( , )ps i k e i kd x c d d d x c    (2) 

where ( , )e i kd x c  is the Euclidean distance between the 

point ix  and the cluster center kc . 1d  and 2d  are 
distances of the two nearest neighbors of the 
symmetrical point (i.e. 2 k ic x  ) of ix  with respect 

to the center kc . To reduce the complexity of finding 

1d  and 2d , an ANN search using the Kd-tree method 
is used. 

3.4. Objective functions 

The objective functions corresponding to a state 
indicate the degree of goodness of the solution it 
represents. In this paper, two complementary 
objectives that reflect fundamentally different aspects 
of a clustering solution are selected: one is the total 
symmetrical compactness; the other is the cluster 
connectivity. 

The total symmetrical compactness measures the 
within cluster total symmetrical distance. It is 
computed as the overall summed PS distance between 
data objects and their corresponding cluster center. It 
is defined as [17] 

1 1 1

( , )
ink k

i
k i ps j i

i i i

E d x c
  

    (3) 

where k  is the number of clusters, in  is the total 

number of points present in the i th cluster, ic  is the 

center of the i th cluster, and i
jx  is the j th point of 

the i th cluster. ( , )i
ps j id x c  denotes the PS distance 

between i
jx  and ic . iE  is the total symmetrical 

deviation of a particular cluster i. Note that when the 
partitioning is compact and has good symmetrical 
structure, k  should be low. Thus for achieving better 
partitioning, the total symmetrical compactness should 
be minimized. 

The cluster connectivity evaluates the degree to 
which neighboring data points have been placed in the 
same cluster. It is calculated as [10] 

,
1 1

( ) ( )
ij

N L

i n
i j

Conn c x
 

    (4) 

where ,

1
, :

0,
ij

k i k ij k

i n

if C x C n C
jx

otherwise

     


,  

ijn  is the j th nearest neighbor of the i th datum, N  

is the size of the data set, and L  is a parameter 
determining the number of neighbors that contribute 
to the connectedness. As an objective of clustering, the 
cluster connectivity should be minimized. 

The objective value associated with the total 
symmetrical compactness necessarily improves with 
an increasing number of clusters, and the opposite is 
the case for the cluster connectivity. Thus the 
interaction of these two objectives allows MGEPC to 
automatically determine the number of clusters and 
generate clustering solutions corresponding to 
different trade-offs. 

3.5. Description of the algorithm 

In the subsection, MGEPC is formulated in detail. 
The flowchart of the MGEPC is shown in Figure.2 
first, and the outline of MGEPC is presented in the 
following. 



 

4X 3X 1X 4X 2X 7X



1X
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Figure 2. Flowchart of the MGEPC 

Procedure MGEPC 
Input: the data set D , the population size PN , 

the maximum number of generations maxG , the 

maximum number of clusters maxk , the number of 
neighbors that contribute to the connectedness L , 
mutation rate Mp , inversion rate Ip , recombination 

rate Rp , the parameter of power law distribution  , 

the maximum number of loops of multiobjective k-
means clustering iterL  and the external archive size 

AN . 

Output: the cluster label of each data point. 

Step 1: Initialize the parent population.  

Step 2: Decode the chromosomes. Then the 
multi-objective k-means clustering is performed as 
follows: Assign each point to one of the clusters 
according to the point assignment method proposed in 
[2], which is shown in Figure 3. After the assignments 
are finished, two objective functions are evaluated and 

the cluster centers are replaced by the mean points of 
the respective clusters. This process is repeated until 
the maximum number of iterations is reached or the 
value of any objective function becomes larger than 
that computed in the last loop. Finally, output the 
objective values of each chromosome. Since the multi-
objective k-means clustering works as a local search 
to refine the global search performed by the 
evolutionary procedure, the convergence is speeded 
up. 

 

Procedure: assignment of data points 
1. Let K denote the number of clusters encoded in one of 
the chromosomes. For all data points xi, 1≤ i ≤ N, 
compute 

),(minarg ,,1
*

kipsKk cxdk   

2. If ),(/),( ** kiekips cxdcxd , where   is the 

maximum nearest neighbor distance among all the points 
in the data set, assign the data point 

ix  to the thk*  

cluster. 

3. Otherwise the data point 
ix  is assigned to the thk*  

cluster, where  

),(minarg ,,1
*

kipsKk cxdk 
 

Figure 3. Data point assignment procedure 

Step 3: Rank the population based on the non-
dominated sorting and assign the crowding distance in 
each front. These two operations are proposed in [7] 
and are used for population selection. The non-
dominated sorting is to rank each individual based on 
the definition of domination. Specifically, individuals 
not dominated by any other individuals are assigned 
front number 1, and individuals only dominated by 
individuals in front number 1 are assigned front 
number 2, and so on. The crowding distance is used to 
measure the density of individuals with the same front 
number. The crowding distance of a particular 
individual is computed as the average distance of two 
closest individuals on either side of this individual 
along each of objectives.  

Step 4: Generate offspring population by using 
binary tournament selection (based on the front 
number and the crowding distance) and genetic 
operators. Three classes of genetic operators are 
adopted. (1) Mutation: the mutation operator 
randomly selects one element from the chromosome, 
except that at the root. If the element lies in the tail, 
then replace it with a randomly selected terminal. If 
the element lies in the head, two different cases should 
be considered: If it is a function, replace it with a 
different function or a randomly selected terminal 
based on an equal probability; if it is a terminal, 
replace it with a randomly selected function or a 
different terminal based on an equal probability. (2) 
Inversion: the inversion operator randomly selects a 
short fragment of elements in the head, except that at 
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the root, and inverts the element order in the fragment. 
Since the inversion operator is restricted to the head of 
the chromosome, all the new individuals created by 
inversion are syntactically correct. (3) Recombination: 
the recombination operator exchanges parts of a pair 
of randomly chosen chromosomes to form new 
offspring chromosomes. In this paper, one-point 
recombination is used. 

Step 5: Decode the chromosomes of the 
offspring population and perform the multi-objective 
k-means clustering. 

Step 6: Combine the parent and offspring 
population. Then rank the combined population based 
on non-dominated sorting and assign the crowding 
distance in each front. 

Step 7: Add the non-dominated solutions into 
the external archive. We set the upper limit of the size 
of the external archive as AN  ( AN  is a much larger 

number than the population size PN ) in order to 
prevent the elitists from growing extremely large. If 
the size of the external archive exceeds the upper 
limit, archive truncation is performed as follows: the 
non-dominated solutions in the external archive are 
identified firstly. Then the dominated solutions are 
discarded. If the size of non-dominated solutions is 
still larger than AN , only AN  solutions with higher 
value of crowding distance are retained in the external 
archive. 

Step 8: Create the next parent population from 
the combined population according to the power law 
probability distribution. This process has two 
substeps: a front is selected by a power law 

probability 1 1( )P u u   firstly, where 1u  is the front 

number sorted based on the non-domination,   is a 
user specified parameter. Then a solution is chosen 

from the selected front by 2 2( )P u u  , where 2u  is 

the sequence number of solutions sorted by decreasing 
the crowding distance and the solutions are selected 
without replacement. For 0  , it is exactly a random 
selection. For    , it approaches the elitist-
preserving process as in NSGA-II. For a given value 
of  , the selection ensures that no front and no 
crowded regions get completely excluded from further 
evolution while the evolution maintains a bias towards 
superior solutions. Hence, the power-law distribution 
based selection strategy for new parent population 
could not only keep a high convergence rate, but also 
maintain the diversity in the population, which would 
prevent the algorithm from getting stuck at a local 
optimal or partial Pareto front. 

Step 9: Go to Step 3 if termination criterion is 
not satisfied, otherwise go to Step10. 

Step 10: Perform the archive truncation and 
output solutions in the external archive. The output of 
the external archive contains a number of mutually 
non-dominated clustering solutions, which correspond 

to different tradeoffs between the two objectives, and 
also to different numbers of clusters. 

Step 11: Select a solution from the external 
archive, where we use the model selection method 
proposed in MOCK to select the most promising 
clustering solution. 

Step 12: Output the clustering result. 
By the proposed algorithm, the clustering for the 

data set is finished and the number of clusters is 
determined automatically. In the next section, we will 
use the experimental results to verify the effectiveness 
of the proposed algorithm. 

4. Experimental results 

In this section, we present experiments on artificial 
and real-life datasets to evaluate the performance of 
the proposed MGEPC. The algorithm is compared 
with MOCK, VAMOSA and GEP-Cluster based on 
two widely used clustering quality evaluation 
measures: the adjusted rand index (ARI) [10] and the 
Minkowski score (MS) [16]. The higher the value of 
ARI and the lower the value of MS, the better the 
clustering quality is. Experiments are implemented in 
MATLAB 2009a and the running environment is an 
Intel (R) CPU 2.50 GHz machine with 3 GB of RAM 
and running Windows XP Professional.  

4.1. Data sets 

Five artificial data sets and three real-life data sets 
are used for the experiment. A short description of the 
data sets in terms of the number of data points, 
dimension and the number of clusters is provided in 
Table 2. The artificial data sets are displayed in Figure 
4. Square1 [10] contains four well-separated squared 
clusters. Square4 [10] contains four overlapping 
squared clusters. Sizes5 [10] contains clusters of non-
uniform densities. Long1 [10] contains two long-
shaped clusters. Ellipse [2] contains data points 
distributed on two crossed ellipsoidal shells. The three 
real-life datasets are obtained from the UCI Machine 
Learning Repository [1]. 

Table 2. Details of the datasets used 

The name of data set 

The 
number 

of 
points 

The 
number 

of 
dimension 

The 
number 

of 
clusters 

Artificial 
data sets 

Square1 1000 2 4 
Square4 1000 2 4 
Sizes5 1000 2 4 
Long1 1000 2 2 
Ellipse 400 2 2 

Real-life 
data sets 

Iris 150 4 3 
Glass 214 9 6 

Wisconsin 
Breast Cancer 

Diagnosis 
(WBCD) 

569 30 2 



Y. Zheng, L. Jia, H. Cao 

290 

   

(a) Square1 (b) Square4 (c) Sizes5 

  

(d) Long1 (e) Ellipse 

Figure 4. Artificial data sets 

 

4.2. Parameters of the algorithms 

In this subsection, we list the specification of 
parameters for the four algorithms. For MGEPC, the 
population size 50PN  , the maximum number of 

generations max 100G  , the external archive size 

1000AN  , the maximum number of clusters maxk = 

= N  (N denotes the size of the data set), the number 
of neighbors that contribute to the connectedness 

10%L N , the recombination rate 0.7Rp  , the 

mutation rate 0.1Mp  , the inversion rate 0.1Ip  , 

the parameter of power law distribution 1.4   and 
the maximum number of loops of multi-objective k-
means clustering 3iterL  . These parameter values are 
recommended for MGEPC after performing a great 
number of hand-tuning experiments. For MOCK, the 
population size is 50, the number of generations is 

100, the maximum number of clusters is N , the 
number of neighbors that contribute to the 
connectedness L  is 10%N , the recombination rate is 
0.7 and the mutation rate is 0.1. For VAMOSA, in 
order to make direct comparisons possible, we set the 
maximum temperature max 100T  , the minimal 

temperature 8
min 2 10T   , the cooling rate 0.8   

and the number of iterations at each temperature 
50iter   so that it has approximately the same 

number of function evaluations with the other three 
algorithms. For GEP-Cluster, the population size is 50, 
the number of generations is 100, the maximum 

number of clusters is N , the recombination rate is 
0.7 and the mutation rate is 0.1. 

4.3. Experimental results 

The mean values and standard deviations of the 
number of clusters, ARI and MS values for the eight 
data sets over 30 consecutive runs for MGEPC, 
MOCK, VAMOSA and GEP-Cluster are provided in 
Table 3. The distributions of ARI values and MS 
values are also visualized in Figure 5. It can be seen 
that MGEPC, MOCK and VAMOSA, which are the 
multi-objective clustering methods, consistently 
outperform GEP-Cluster algorithm in terms of the 
cluster numbers detected, ARI and MS values. For 
Square1, Square4 and Sizes5 which are composed of 
spherically-shaped clusters, MGEPC, MOCK and 
VAMOSA are always able to detect the appropriate 
number of clusters; and MGEPC performs better than 
MOCK and VAMOSA. The results of Square4 show 
that MGEPC performs well for overlapping clusters, 
and the results of Sizes5 show that MGEPC is also 
able to detect clusters of different densities and sizes. 
For Long1, both MGEPC and MOCK could detect the 
right partitions. For Ellipse, only MGEPC could detect 
the right number of clusters, and the mean values of 
ARI and MS are much better than those of MOCK and 
VAMOSA while their standard deviations are higher. 
The results of Long1 and Ellipse show that MGEPC is 
able to detect the appropriate partitioning from data 
sets with non-hyperspherical clusters as long as they 
possess the property of symmetry. For Iris, WDBC 
and Glass, MGEPC performs better than the others. 
Therefore, the effectiveness of MGEPC for clustering 
is higher. 
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Table 3. Mean values and standard deviations (in parentheses) of number of clusters, ARI and MS for different data sets over 30 
consecutive runs of different algorithms 

Data set 
Real number of 

clusters 
Algorithm k ARI MS 

Square1 4 

MGEPC 4 (0) 0.9686 (0.0076) 0.1995 (0.0268) 
MOCK 4 (0) 0.9614 (0.0096) 0.2183 (0.0324) 

VAMOSA 4 (0) 0.9672 (0.0118) 0.2123 (0.0251) 
GEP-Cluster 5.42 (0.93) 0.6254 (0.1419) 0.5749 (0.2256) 

Square4 4 

MGEPC 4 (0) 0.8305 (0.0192) 0.5197 (0.0146) 
MOCK 4 (0) 0.7991 (0.0247) 0.5477 (0.0348) 

VAMOSA 4 (0) 0.8036 (0.0265) 0.5310 (0.0291) 

GEP-Cluster 3.50 (1.24） 03165 (0.2723) 0.8910 (0.2647) 

Sizes5 4 

MGEPC 4 (0) 0.9593 (0.0176) 0.1821 (0.0293) 
MOCK 4 (0) 0.9469 (0.0178) 0.1940 (0.0339) 

VAMOSA 4 (0) 0.9507 (0.0161) 0.1931 (0.0375) 
GEP-Cluster 3.48 (0.83) 0.5593 (0.1454) 0.6981 (0.1852) 

Long1 2 

MGEPC 2 (0) 1 (0) 0 (0) 
MOCK 2 (0) 1 (0) 0 (0) 

VAMOSA 1.58 (0.62) 0.5843 (0.0936) 0.6774 (0.1321) 
GEP-Cluster 3.72 (0.42) 0.3810 (0.1320) 0.8762 (0.1566) 

Ellipse 2 

MGEPC 2 (0) 0.7385 (0.2472) 0.4433 (0.2701) 
MOCK 7.8 (0.31) 0.2357 (0.1041) 0.7387 (02092) 

VAMOSA 4.75 (0.83) 0.2221 (0.1134) 0.7116 (0.2287) 
GEP-Cluster 6.4 (0.79) 0.1954 (0.2569) 1.9766 (0.3743) 

Iris 3 

MGEPC 3 (0) 0.7944 (0.0529) 0.4831 (0.0740) 
MOCK 3.05 (0.15) 0.7287 (0.1382) 0.5944 (0.1827) 

VAMOSA 3.87 (0.99) 0.3105 (0.1633) 0.6331 (0.0772) 
GEP-Cluster 4.83 (1.36) 0.2604 (0.1352) 0.9512 (0.1445) 

Glass 6 

MGEPC 6.18 (0.20) 0.2138 (0.0258) 1.1842 (0.0304) 
MOCK 6.18 (0.20) 0.1677 (0.0245) 1.3408 (0.1914) 

VAMOSA 6.7 (3.13) 0.1458 (0.0863) 1.3345 (0.1925) 
GEP-Cluster 10.2 (4.36) 0.1079 (0.1592) 1.9252 (0.2179) 

WBCD 2 

MGEPC 2.18 (0.40) 0.6897 (0.0751) 0.5252 (0.0451) 
MOCK 2.87 (0.83) 0.5358 (0.1076) 0.6505 (0.0787) 

VAMOSA 3.27 (0.99) 0.3105 (0.1633) 0.6331 (0.0772) 
GEP-Cluster 4.63 (1.36) 0.2604 (0.1352) 0.9512 (0.1445) 

 

4.4. Runtime 

In the subsection, we provide the time complexity 
analysis of MGEPC. The basic operations and their 
worst case complexities are as follows: 

(1) Initialization of MGEPC needs ( )PO N m

)( mNO p   time, where 
pN  and m  indicate the 

population size and the length of each chromosome, 
respectively. 

(2) Fitness computation is composed of three 
steps: (a) Decoding of the chromosome requires ( )O m  

time; (b) Assigning each point to a cluster using point 
symmetry based distance, updating the centers and 
calculating the objective functions requires 

max( log )O k N N  time [16], where N  is the size of the 

data set. If the maximum number of loops of multi-
objective k-means clustering is iterL , the time 

complexity of fitness evaluation is 
max( log )iterO L k N N . 

(3) The time complexity of the non-dominated 
sorting and the crowding-distance assignment are 

2( )PO N  and ( log 2 )P PO N N（ ）, respectively [7]. 

(4) The time complexity of creation of the new 
parent population is ( log(2 ))P PO N N . If PN N , 

the total time complexity of MGEPC is 

max max( log )iterO G L k N N    , where maxG  is the 

maximum number of generations in MGEPC. 

The time taken by MGEPC for all the data sets 
used for experiment is also reported here. For 
Square1, Square4, Sizes5, Long1, Ellipse, Iris, Glass, 
and WDBC, MGEPC takes 10min 16 s, 11min 41 s, 
11min 41s, 13min 26s, 1min 56s, 20.6s, 32.5s and 
3min 1s, respectively. 
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Figure 5. Boxplots showing the distribution of ARI values (with a white pattern) and MS values (with a grey pattern) for four 
clustering algorithms on eight data sets 
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5. Conclusion 

In the paper, a multi-objective gene expression 
programming for clustering is proposed. The proposed 
algorithm could automatically determine the number 
of clusters and the appropriate partitioning from the 
data set. The proposed algorithm has some advantages 
as follows. First, the proposed algorithm extends the 
clustering algebraic operations used in gene 
expression programming to ensure all chromosomes 
evolved by the proposed algorithm are syntactically 
correct, which not only avoids using a huge amount of 
computational resources to edit illegal chromosomes, 
but also allows modification of the chromosome using 
nearly any genetic operator without restrictions. 
Second, the proposed algorithm presents a multi-
objective k-means clustering as a local search, which 
performs fine-tuning of some rough partitions 
obtained by the global search, to speed up the 
convergence. Third, a power-law distribution based 
selection of new parent population is proposed, which 
could help maintain diversity in the population and 
avoid getting stuck at a local optimal or partial Pareto 
front. The performance of the proposed algorithm is 
compared with that of MOCK, VAMOSA and GEP-
Cluster on five artificial and three real-life data sets. 
Experimental results verify the effectiveness of the 
proposed algorithm. In the future research work, we 
will investigate the effective method to select the best 
solution from a large number of non-dominated 
solutions in the final Pareto front of MGEPC. 

Acknowledgment 

This work is supported by the National Natural 
Science Foundation of China (61005058), State Key 
Laboratory of Electrical Insulation and Power 
Equipment (EIPE12309), and the Fundamental 
Research Funds for the Central University. The 
authors also gratefully acknowledge the helpful 
comments and suggestions of the reviewers, which 
have improved the presentation 

References 

[1] A. Asuncion, D. J. Newman. UCI Machine Learning 
Repository. School of Information and Computer 
Science, University of California, Irvine, CA. 
http://www.ics.uci.edu/∼mlearn/MLRepository.html. 

[2] S. Bandyopadhyay, S. Saha. GAPS: A clustering 
method using a new point symmetry-based distance 
measure. Pattern Recognition, Vol.40, No.12, 2007, 
3430–3451 http://dx.doi.org/10.1016/j.patcog.2007.03 
.026. 

[3] R. Caballero, M. Laguna, R. Marti, J. Molina. 
Multiobjective clustering with metaheuristic 
optimization technology. Technical Report, Leeds 
School of Business in the University of Colorado at 
Boulder, CO, 2006. http://leeds-faculty.colorado 
.edu/laguna/∼articles/mcmot.pdf. 

[4] Y. Chen, C. Tang, J. Zhu, C. Li, S. Qiao, R. Li, 
J. Wu. Clustering without prior knowledge based on 

gene expression programming. The 3rd International 
Conference on Natural Computation (ICNC'07), 
Haikou, China, August 24-27, 2007, 451-455. 

[5] D. W. Corne, N. R. Jerram, J. D. Knowles. PESA-II: 
Region-based selection in evolutionary multiobjective 
optimization. The Genetic and Evolutionary 
Computation Conference (ICGA-2001), San 
Francisco, CA, USA, July 7-11, 2001, 283-290. 

[6] S. Das, A. Konar. Automatic image pixel clustering 
with an improved differential evolution. Applied Soft 
Computing, Vol.9, No.1, 2009, 226-236. 
http://dx.doi.org/10.1016/j.asoc.2007.12.008. 

[7] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast 
and elitist multiobjective genetic algorithm: NSGA-II. 
IEEE Transactions on Evolutionary Computation, 
Vol.6, No.2, 2002, 182-197. http://dx.doi.org/10.1 
109/4235.996017 

[8] C. Ferreira. Gene expression programming: A new 
adaptive algorithm for solving problems. Complex 
Systems, Vol.13, No.2, 2001, 87–129. 

[9] A. H. Gandomi, S. M. Tabatabaei, M. H. Moradian, 
A. Radfar, A. H. Alavi. A new prediction model for 
the load capacity of castellated steel beams. Journal of 
Constructional Steel Research, Vol.67, No.7, 2011, 
1096-1105. http://dx.doi.org/10.1016/j.jcsr.2011.01.0 
14. 

[10] J. Handl, J. Knowles. An evolutionary approach to 
multiobjective clustering. IEEE Transactions on 
Evolutionary Computation, Vol.11, No.1, 2007, 56–76. 
http://dx.doi.org/10.1109/TEVC.2006.877146. 

[11] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, 
A.C.P.L.F. de Carvalho. A survey of evolutionary 
algorithms for clustering. IEEE Transactions on 
Systems, Man and Cybernetics - Part C: Applications 
and Reviews, Vol.39, No.2, 2009, 133-155. 
http://dx.doi.org/10.1109/TSMCC.2008.2007252. 

[12] J. Jedrzejowicz, P. Jedrzejowicz. Experimental 
evaluation of two new GEP-based ensemble classifiers. 
Expert Systems with Applications, Vol.38, No.9, 2011, 
10932-10939. http://dx.doi.org/10.1016/j.eswa.2011.0 
2.135. 

[13] W. Ma, L. Jiao, M. Gong. Immunodominance and 
clonal selection inspired multiobjective clustering. 
Progress in Natural Science: Materials International, 
Vol.19, No.6, 2009, 751–758. http://dx.doi.org/10.10 
16/j.pnsc.2008.08.004. 

[14] H. Ren, Y. Zheng, Y. Wu. Clustering analysis of 
telecommunication customers. The Journal of China 
Universities of Post and Telecommunications, Vol.16, 
No.2, 2009, 114-116. http://dx.doi.org/10.1016/S1005-
8885(08)60214-9 

[15] K. S. N. Ripon, C. H. Tsang, S. Kwong, M. K. Ip. 
Multi-objective evolutionary clustering using variable-
length real jumping genes genetic algorithm. The 18th 
International Conference on Pattern Recognition 
(ICPR 2006), Hong Kong, China, August 20-24, 2006, 
1200-1203. 

[16] S. Saha, S. Bandyopadhyay. A symmetry based 
multiobjective clustering technique for automatic 
evolution of clusters. Pattern Recognition, Vol.43, 
No.3, 2010, 738-751. 
http://dx.doi.org/10.1016/j.patcog.2009.07.004 

[17] S. Saha, U. Maulik. Use of symmetry and stability for 
data clustering. Evolutionary Intelligence, Vol.3, No.3-
4, 2010, 103-122. http://dx.doi.org/10.1007/s12065-
010-0041-0 



Y. Zheng, L. Jia, H. Cao 

294 

[18] I. Saha, U. Maulik, D. Plewczynski. A new multi-
objective technique for differential fuzzy clustering. 
Applied Soft Computing, Vol.11, No.2, 2011, 2765-
2776. http://dx.doi.org/10.1016/j.asoc.2010.11.007 

[19] W. Song, S.C. Park. Genetic algorithm for text 
clustering based on latent semantic indexing. 
Computers and Mathematics with Applications, 
Vol.57, No.11-12, 2009, 1901–1907. http://dx.d 
oi.org/10.1016/j.camwa.2008.10.010. 

[20] O. Špakov, D. Miniotas. Application of Clustering 
Algorithms in Eye Gaze Visualizations. Information 
Technology and Control, Vol.36, No.2, 2007, 213-216. 

[21] D. A. Viattchenin. Validity Measures for Heuristic 
Possibilistic Clustering. Information Technology and 
Control, Vol.39, No.4, 2010, 321-332. 

[22] K. Xu, Y. Liu, R. Tang, J. Zuo, J. Zhu, C. Tang. A 
novel method for real parameter optimization based on 
Gene Expression Programming. Applied Soft 
Computing, Vol.9, No.2, 2009, 725-737. http://dx.doi.o 
rg/10.1016/j.asoc.2008.09.007. 

[23] N. A. Zakaria, H. M. Azamathulla, C. K. Chang, 
A. A. Ghani. Gene expression programming for total 
bed material load estimation--a case study. Science of 
the Total Environment, Vol.408, No.21, 2010, 5078-
5085. http://dx.doi.org/10.1016/j.scitotenv.2010.07.048 

[24] A. Zhou, B. Qu, H. Li, S. Zhao, P. N. Suganthan, 
Q. Zhang. Multiobjective evolutionary algorithms: A 
survey of the state of the art. Swarm and Evolutionary 
Computation, Vol.1, No.1, 2011, 32-49. http://dx.doi.o 
rg/10.1016/j.swevo.2011.03.001. 

Received August 2011. 

 




