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Abstract. Modern nonlinear control theory provides various powerful frameworks. Some of them are still either 

out of sight of the industry or too complex to be implemented. In this paper, we present and explain the key points of 

an algebraic framework of differential forms. Together with Mathematica based software package NLControl it forms 

a powerful basis toward the employment in analysis and control of various complex processes. The application is 

illustrated on the basis of the laboratory model of three serially connected water tanks, and comparison with the results 

obtained by using classical PID controller is presented. 
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1. Introduction 

Mathematical theory has formed a basis for imple-

mentation of complex methods in industrial applica-

tions. Though classical control techniques (such as 

PID controllers) are popular and widely used [1] in 

spite of existing drawbacks, the majority of automa-

tion manufacturers realize the potential of advanced 

control techniques. These methods offer a compre-

hensive analysis and more efficient control. At the 

same time they require specific knowledge and certain 

skills for the maintenance of corresponding control 

systems. 

In this paper, we explain key points and expose the 

potential of the algebraic framework of differential 

forms. The key idea of the framework is working with 

differentials of system equations rather than with 

equations themselves. Then, vector spaces of differen-

tial forms over suitable differential fields of nonlinear 

functions may be constructed [2]. Thus, the remaining 

part of the analysis is very similar to that of the linear 

case except that coefficients of the basis elements are 

now meromorphic functions in independent system 

variables and not numbers as in the linear case. The 

benefit of such a framework is that it suggests a wide 

range of rigorous mathematical tools and a systematic 

way to handle different control problems from a 

unified viewpoint. The approach has been successfully 

applied so far to address a number of problems for 

nonlinear control systems, including system reduction 

[3], realization [4] of i/o differential or difference 

equations, accessibility and feedback linearization of 

state equations [2]. On one hand, the algebraic 

approach requires a lot of mathematical technicalities 

to be used to perform analysis and obtain a solution, 

making this way an artificial gap between theory and 

practice. On the other hand, it is more transparent 

(intuitively understandable) than, for example, the 

most popular differential geometrical methods [2]. 

Moreover, it suggests generic (that holds almost 

everywhere except on a set of measure zero) solution 

of the problem and not a local solution like most of 

the other approaches. This paper is intended to 

demonstrate and explain the difficult key aspects of 

the algebraic approach. 

As a case study, the water tank (Multi-Tank) sys-

tem prototype is chosen. While the problem of liquid 

level control in a tank is not new, it still has not lost its 

actuality [5]. Level regulators are widely used in 

industry to maintain a constant fluid pressure, or a 

constant fluid supply to a process, or in waste storage 
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[6]. Common examples of industrial applications 

include chemical engineering, wastewater treatment, 

breweries, refineries and food processing [7] as well 

as different irrigation systems like dams, etc. Through 

the years, various techniques have been used to 

control the process. In many cases PID [7] or 

fractional-order PID [8] controllers provide acceptable 

solution. While such controllers are still popular 

choice in many industrial applications, they do not 

guarantee that system will work with the same level of 

accuracy in the entire operating range. Thus, more 

advanced control techniques can be used to increase 

the quality of control algorithms. 

The rest of the paper is organized as follows. In 

Section 2 a brief exposition of the algebraic frame-

work and the solution of the exact feedback lineariza-

tion problem are presented. Next section serves as a 

brief introduction to the software package for symb-

olic computations—NLControl. Section 4 describes a 

mathematical model of the water tank system, accom-

panied by explanatory comments. Next, precise analy-

sis and controller synthesis, using the algebraic forma-

lism, are provided. Several possible configurations are 

presented together with experimental results. Conclu-

ding remarks are given in the last section. 

2. Algebraic framework 

Note that throughout the paper we use the notation 
( ) : d ( ) / dk k kt t   for the k th-order time derivative 

of the variable .  Sometimes, we also use notations 

: d ( ) / d ,t t   
2 2: d ( ) / d .t t   In addition, for 

notational convenience, denote  ( ) ( ) ( ): , ,i n i k      

for 0 ,i n   ,i k  where (0)  stands for .  

Consider a nonlinear multi-input multi-output 

(MIMO) continuous-time system, described by the 

state equations 

 

 

,

,

x f x u

y h x




  (1) 

where ( ) nx t   is the vector of state variables, 

( ) mu t   is the vector of input signals, py  is the 

vector of output signals, f  and h  are meromorphic 

functions. 

Below we briefly recall the algebraic formalism, 

focused on generic system properties that hold on 

open and dense subsets of suitable domains of 

definition, provided that they hold at some points of 

such domains. The generic approach motivates the 

choice of meromorphic functions in the system 

description (1), see [2] for more details. Let  denote 

the field of meromorphic functions in a finite number 

of independent system variables from the infinite set 

 ( ), 1, , ; , 1, , , 0k

i jx i n u j m k      . 

Define the time derivative operator d / d :t   

as 
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Observe that the field  is defined by the system 

equations (1) since the application of the operator 

d / dt  to x  results in x  which, according to (1), is not 

an independent variable and has to be replaced by 

( , ),f x u  whenever it occurs in some expression. The 

pair ( ,d / d )t  is the differential field, see [9]. 

Consider next the infinite set of differentials 

 ( )d d , 1, , ; d , 1, , , 0k

i jx i n u j m k       

and denote by  the differential vector space spanned 

over the field  by elements of d , namely 

 : span d . Any element of  has the form 

( )

,

1 1 0

d ,d
n m

k

i i j k j

i j k

x u  
  

    

where 
,,i j k    and only a finite number of 

coefficients 
,j k  are nonzero. The elements of  are 

called the differential one-forms. The differential 

operator d :   is defined as 

 (0 ) ( )

( )
1 1 0

d , d d .
n m

k k

i jk
i j ki j

x u x u
x u

 
 
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 
 

 
   

For the one-form ,di i

i

    where i   and 

,i   one can define the operator d / d :t   as 

 
d

d : d d .
d

l l l l l l

l lt
     

 
  

 
   

Proposition 1. Operators d  and d / dt  commute, 

i.e., for    

 
d d

d d d .
d dt t

  
 

  
 

 

One says that   is an exact one-form, if 

d   for some   . A one-form   for which 

d 0   is said to be closed. Note that exact one-forms 

are closed, whereas closed one-forms are only locally 

exact. A subspace is said to be closed or integrable, if 

it has a basis which consists only of closed one-forms. 

Integrability of the subspace of one-forms can be 

checked by the Frobenius theorem below, where the 

symbol d  denotes the exterior derivative of the one-

form   and   means the exterior or wedge product. 
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Theorem 1 ([10]). The subspace  1span , ,    

is integrable if and only if for all 

1, ,i    

1d 0.i        

A sequence of subspaces 

0 1 2 :N N N         

of  is defined by 

 

 

0 1 1

1 1

span d , ,d ,d , ,d ,

, 1.

n m

k k k

x x u u

k  

  

   ∣
  (2) 

This sequence plays a key role in the analysis of 

various structural properties of nonlinear systems 

including accessibility and exact feedback 

linearization. Next, we recall the algebraic definition 

of accessibility. 

Definition 1. A function const   with arguments 

in  is said to be an autonomous variable for 

system (1) if there exist an integer 1   and a 

meromorphic function F  such that 
(1) ( )( , , , ) 0.F      

Note that the existence of the function   

represents the lack of controllability of the nonlinear 

system. If such   exists, then system (1) is not 

accessible. The latter means that there exists an 

autonomous subsystem, whose states cannot be 

influenced via any input signal. A practical condition 

for checking accessibility property of system (1) is 

formulated in the following theorem. 

Theorem 2 ([10]). System (1) is accessible iff 

 0 .   

If the system is accessible, then as the next step 

one is usually interested in designing of a suitable 

controller. A very powerful technique (when appli-

cable) is the exact state feedback linearization, which 

relies on the regular static state feedback ( , )u x v  

such that rank [ ( , ) / ]x v v m    and coordinate 

transformation ( ).x   Note that ( ) mv t   is a 

vector of new inputs of the system. The application of 

the state feedback linearization technique to the state 

equations (1) leads to a linear closed-loop system in 

Brunovsky (controller) canonical form 

1 1

1 1

1

1 2 1 2

1 1

1

m m

m m

m

k k

k k k k

k k mv v

   

   

 

  

 

 

 

 

 

with 1 mr r n    and 2 1,mk k k    see [11]. 

Since the closed-loop system is linear, it is possible to 

apply all the standard linear control methods to 

modify the designed controller in order to meet the 

required goals. Another benefit is that the stability 

property of the closed-loop system can be guaranteed 

via classical algorithms like pole placement. Note that 

accessibility is a necessary condition for feedback 

linearizability of a system. 

Theorem 3 ([2]). System (1) is linearizable by regular 

static state feedback if and only if 

 0   and ,k  1, , ,k N   are 

completely integrable. 

Note that the new state coordinates  , necessary 

for the static state feedback linearization of system (1), 

can be found via integration of the basis vectors of 

,k  1, , ,k N   constructed in a specific way. 

Figure 1 presents the summarized algorithm for 

computation of the coordinate transformation 

( )x   in the case of single-input single-output 

(SISO) systems. 

 

Figure 1. Computation of coordinate transformation 

The application of the coordinate transformation 

( )x  , obtained using the algorithm from Figure 1, 

to system (1) yields 

 

1 2

1

,

,

,

n n

n u

 

 

  









 

for which it is easy to construct the static state 

feedback by equating the right-hand side of the last 

equation to new input .v  Note that in the SISO case 

 1 1 1span d ,dn     whereas in the MIMO case to 

span 1n  one may need an additional vector 1d .  In 

such a case also 1  has to be considered as a state 

coordinate together with 1 ,  etc. In general, at each 

step one has to check whether 
n j

 is spanned only 

by the state coordinates, generated at previous steps 

and their derivatives or some new state coordinate is 

necessary to span .n j
 For more details, see the 

algorithm in [12]. 
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3. Symbolic computational tools 

Application of advanced theories, in general, 

requires specific knowledge of certain mathematical 

technicalities that complicates testing of novel ideas. 

The algebraic approach, described in Section 2, is of 

no exception. Technical areas develop so rapidly that 

information technologies have become the simplest 

and reliable way to transfer new knowledge into prac-

tice. In addition, since solutions of nonlinear control 

problems require a huge amount of symbolic compu-

tations, additional software assistance is of high impo-

rtance. Thus, the development of scientific software 

with a focus on possible practical applications 

becomes more important. This motivates different 

research groups to develop specific packages and even 

stand-alone applications. 

Thus, to make a smooth transition of algebraic 

framework toward practical applications, Computer 

Algebra System Mathematica-based symbolic 

package NLControl was created in the Institute of 

Cybernetics at Tallinn University of Technology [13], 

[14]. The package encapsulates developed theory 

providing powerful though simple enough way to 

tackle a wide range of nonlinear control problems. 

NLControl has a modular structure and consists of, 

except assistant functions, the following most 

important modules depicted in Error! Reference 

source not found.. 

 

Figure 2. Basic structure of NLControl package 

There are several possibilities to classify the 

implemented functions, in particular, according to: (i) 

tasks to be solved, (ii) time domain, (iii) mathematical 

tools applied, etc. However, the most natural way is to 

separate functions with respect to modules. The reason 

is that the main functions are implemented in such a 

manner that they can solve the same problem for 

systems defined in different time domains making this 

way the code more compact, see [15] or visit the 

project's web page [16]. 

4. Analysis and control of a Multi-Tank system 

The graphical representation of a Multi-Tank sys-

tem is presented in Figure 3. 

From Figure 3 one can see that the overall system 

consists of three serially connected water reservoirs 

that have different geometry. The physical meaning of 

parameters (omitted in Figure 3) are listed in Table 1, 

where 1,2,3i   indicates the number of a tank. 

 

Figure 3. Model of the Multi-Tank system 

Table 1. Nomenclature 

Parameters Physical description 

ix
 fluid level in the i th tank 

w  width of a tank 

iC
 resistance of the output orifice of the i th tank 

i  flow coefficient for the i th tank 

 

Some parameters in Table 1 have constant values 

(units are given in meters): 0.25,a  0.345,b 

0.1,c  0.364,R  0.35,h   and 0.035w  . Note 

that the maximal height of each tank is 0.35m.  

However, the maximal reachable height may vary with 

respect to safety requirements and experimental setup. 

The rest of parameters have to be identified 

experimentally. In addition, state variables and control 

signals have natural saturations due to the physical 

limitations of the system. Note that for the laminar 

flows the outflow rate from a tank is governed by the 

Bernoulli's law that corresponds to the case 1/ 2i  . 

In fact, this is a typical assumption made in the 

academic research. However, in case of real process 

such issues like turbulence and acceleration of the 

liquid in the tube cannot be usually neglected. 

Therefore, in more general cases (0,0.5]i    has 

to be assumed. 

The Multi-Tank system is equipped with valves 

and level sensors for each tank. The upper tank has a 

constant cross-sectional area. However, the middle 

and lower tanks have variable (conic and spheral) 

cross-sectional areas causing additional nonlinearities 

in the outflow. The system is equipped with direct 

current pump providing liquid transportation from the 

lowest water reservoir to the upper tank. The pump is 

supplied from the power interface by an appropriate 

pulse-width modulation control signal. The tank 

Core 

Analysis Modeling 

Synthesis 
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valves can be considered as flow resistors. Each pair 

(automatic and manual) of valves between tanks can 

be separately controlled changing this way the output 

flow and, if necessary, the number of inputs and 

outputs of the system. Thus, the system can be 

reconfigured with respect to the pre-specified 

requirements. Since the system has a flexible 

configuration, various models can be analyzed on the 

basis of this prototype. Furthermore, each tank has its 

own sensor for measuring water level. The plant is 

designed to operate with an external PC-based digital 

controller. The computer communicates with the level 

sensors, automatic valves and pump by a dedicated i/o 

board and the power interface. The i/o board is 

controlled by the real-time software which operates in 

Simulink on the basis of MATLAB Real-Time 

Windows Target environment. 

Due to the flexible structure of the system, 

numerous different combinations are possible. In what 

follows, the most important cases are presented. All 

real-life experiments were performed on the equip-

ment available in the laboratory at the Department of 

Computer Control, Tallinn University of Technology, 

see [17]. For more specific details and assumptions 

made for the model see the manual available at [18]. 

4.1. Pump-controlled scenario 

In order to control water level in a tank, we use 

settings listed in Table 2 for our experiments. 

Table 2. Pump-controlled scenario: configuration 

Tank # Pump Manual valve Automatic valve 

1 

varies 

fully opened closed 

2 fully opened closed 

3 fully opened closed 

 

The configuration presented in Table 2 leads to the 

so-called pump-controlled version of the system in 

which pump is used as a generator of the control ac-

tion (input signal). In this case, differential equations, 

describing the dynamics of the system, can be derived, 

assuming the laminar outflow rate of an ideal fluid 

from a tank, by means of mass balance as 

 

 

 
 

1

1 2

32

1 1 1

2 1 1 2 2

2

3 2 2 3 3
22

3

1

1
.

x u C x
aw

h
x C x C x

cwh bwx

x C x C x

w R R x



 



 

 


 

 

 (3) 

In principle, such configuration allows simultane-

ous control of water levels in several tanks. However, 

this type of control will barely be illustrative. There-

fore, in this subsection we restrict our attention to the 

case of SISO version. Next, we present a detailed 

analysis of the system and controller synthesis. 

Case 1: We start from the water level control in the 

upper tank, meaning that only the first equation of (3) 

is used 

 1

1

1
.x u C x

aw


   (4) 

First, we verify the accessibility (controllability) 

property of the system, since it is a necessary condi-

tion for a system to be linearizable. According to (2), 

the sequence k , 0k   can be calculated as follows 

 

 

 

0

1

2

span d ,d ,

span d ,

0 .

x u

x







  (5) 

From (5), we get that 2: {0}   . Therefore, 

according to Theorem 2, system (4) is accessible. In 

fact, this conclusion is not surprising, since the chosen 

configuration is nothing else than the first-order SISO 

differential equation having input as a separate 

variable. Obviously, 1  in (5) is completely 

integrable. Therefore, the conditions of Theorem 2 are 

satisfied and the system is linearizable via the static 

state feedback 1

1u awv C x


   and no coordinate 

transformation is necessary. Note that the feedback 

law is globally defined and does not bring any restric-

tions. After applying the static state feedback, we get 

the following closed-loop system .x v  Though this 

particular combination is relatively simple, we 

intended to demonstrate the possibilities of algebraic 

approach. In case of more complex configurations or 

systems this can significantly simplify analysis and 

controller synthesis. 

Next, the flow coefficient and resistance of the 

output orifice of the first tank were identified 

experimentally as 

1 0.3488   and 4 2

1 1.6809 10 m /s,C    

respectively, using MATLAB routine provided with 

the installation package. Note that the input signal is 

defined as 1 2 ,:u   where 

 4

1 ( ) 0 ( ) 1.2394 10u t u t     ∣  

and 

 2 ( ) 0 ( ) 1 .u t u t   ∣  

The input signal is scaled to simplify numerical 

calculations. 

It is well-known that majority of real systems 

suffer from a noisy data due to low precision of 

measuring sensors, external disturbances, etc. In case 

of Multi-Tank system, the additional noise appears, 

since sensors are placed close to automatic and 

manual valves. Note that such type of noise cannot be 

eliminated using only linear filtering methods. There-

fore, it was decided to employ an Extended Kalman 

Filter (EKF). The overall procedure consists of two 

major steps: prediction and correction. The application 
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of the EKF requires a discrete-time model of the tank 

system that, in general, can be derived, using Euler 

sampling method. Further, the EKF is applied to all 

tanks and used to improve the performance of the 

control algorithm. 

The reference signal v  was chosen as a piecewise 

constant function presented in Table 3. 

Table 3. Set points 

Value [m] Time interval [s] 

0.20  0 95t   

0.05  95 180t   

0.1  180 260t   

0.15  260 350t   

 

Note that v  was chosen intentionally this way to 

illustrate the ability of the proposed method to per-

form in the whole region of set points. The quality of 

control algorithm is depicted in Figure 4. 

 

Figure 4. Experimental results of the water level control  

in the first tank. The upper plot shows outputs  

(water level). The lower plot reflects the  

corresponding input signals 

Furthermore, the classical PID controller was 

chosen for comparison purposes. It was obtained using 

tools available in FOMCON package [19], which 

encompasses the main tuning functionality providing 

additional flexibility in terms of fractional-order 

modeling. The time-domain performance index ITAE 

(Integral Time Absolute Error) was used during the 

optimization based tuning procedure resulting in a 

compensator of the form  

1( ) 10 0.28498 / 0.41735 .Cp s s s    

It can be seen from Figure 4 that both control 

methods are capable of tracking the reference signal v  

and react correctly to the changes in a set point. 

Finally, it is important to stress that the same analytic 

controller works accurately on the whole region of set 

points unlike the PID controller, which has to be 

retuned for each working point in order to provide 

comparable performance quality. 

Case 2: Now, we proceed with analysis of the water 

level control in the second tank, meaning that the first 

and the second equations of (3) are used 

 

 

1

1 2

1 1 1

2 1 1 2 2

2

1

.

x u C x
aw

h
x C x C x

cwh bwx



 

 

 


  (6) 

In the same manner as in Case 1 we start our 

analysis from the accessibility property of the system. 

According to (2), the sequence ,k  0k   can be 

calculated as 

 

 

 

 

0 1 2

1 1 2

2 2

3

span d ,d ,d ,

span d ,d ,

span d ,

0 .

x x u

x x

x









 

Since  0 ,   the system (6) is accessible. 

Moreover, the subspace 2  is completely integrable. 

Therefore, the conditions of Theorem 3 are satisfied. 

Now, using Algorithm presented in Section 2, we 

get the coordinate transformation, given as 

 1 2

1 2

2 2 1 1 2 2

2

x

h
x C x C x

cwh bwx

 






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

 (7) 

and the static state feedback as 
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( ) ) ( )

(( 2) ) ( )

(( 1)

(

u aw C H bx cH C Hx

aw x bx cH H C Hx

C x x C H bx cH

abH C Hx aC x C Hx

bx cH aC Hx C Hx

bx



   

 

  



    

  





 




 








  



 

 

  

 2 ))) .)cH v 

 (8) 

From (7) and (8) one can find that the proposed 

control scheme is valid everywhere except when 

2 0x  . Note that one can use NLControl website to 

calculate the corresponding expressions using the 

function Linearization, which returns the coordinate 

transformation and the static state feedback. After 

applying the change of variables (7) and the static 

state feedback (8), system (6) transforms into the 

controller canonical form given as 

1 2

2

1

,

,v

y

 











. 
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Next, the flow coefficient and resistance of the 

output orifice of the second tank were determined 

experimentally as 

2 0.3664   and 4 2

2 1.6184 10 m /s,C    

respectively. The control system was validated using 

the reference signal v  presented in Table 4. 

Table 4. Set points 

Value [m] Time interval [s] 

0.08  0 80t   

0.13  80 150t   

0.09  150 250t   

 

Experimental results are depicted in Figure 6. In 

the similar manner as in Case 1 the PID controller was 

tuned using FOMCON package resulting in 

2 ( ) 47.529 0.35178 / 99.1 .Cp s s s    

One may see that the controller based on analytical 

approach provides a slightly better performance comp-

ared to 2 ( )Cp s  since the latter—the best conventional 

PID controller obtained for the problem—offers 

comparable performance qualities in terms of settling 

time and—to a lesser extent—set-point tracking at the 

expense of having an underdamped response. 

 

Figure 5. Water level control in the middle tank 

4.2. Valve-controlled scenario 

It is hard to use only valve-controlled version of 

the system. This is because one has to predefine the 

constant power for the pump. The latter is not a simple 

task, since inappropriate value will result in poor 

control results (for example, too small value yields 

lack of water). However, there exists a configuration 

interesting from the analysis point of view. Note that 

in case of valve-controlled system differential 

equations are very similar to (3) except that u  

becomes a fixed constant  : ( ) 0,1q u t    and 

,iC  for 1,2,3,i   can be used as control inputs 

instead. Consider settings (note that 3:v C  is an input 

of the system) listed in Table 5. 

Table 5. Valve-controlled scenario: configuration 

Tank # Pump Manual valve Automatic valve 

1 

constant 

fully opened closed 

2 fully opened closed 

3 closed varies 

 

Configuration presented in Table 5 yields 

 

 

 
 

1

1 2

32

1 1 1

2 1 1 2 2

2

3 2 2 3
22

3

1

1
.

x q C x
aw

h
x C x C x

cwh bwx

x C x vx

w R R x



 



 

 


 

 

 (9) 

The sequence k  can be calculated as 

 

 

 

 

0 1 2 3

1 1 2 3

2 1 2

3 1 2

span d ,d ,d ,d ,

span d ,d ,d ,

d ,d ,

d ,d : .

x x x u

x x x

x x

x x 







 

 

Though configuration presented in Table 5 at the 

first sight seems to be reasonable, according to 

Theorem 3, the system is not accessible. From 3  one 

can easily find the dynamics of autonomous 

subsystem, described by first two equations of (9), 

yielding that there is no possibility to influence 1x  and 

2x  via input signal, and the water in the lower tank is 

the only state that can be controlled. Though the same 

conclusion can be obtained from the physical 

meanings and description of the plant, the algebraic 

approach provides a compact way to understand the 

various properties of a system, in this particular case, 

accessibility. 

4.3. Pump/valve-controlled scenario 

Here, we want to cover the case of simultaneous 

control of water level in several tanks using pump and 

automatic valves. Consider settings listed in Table 6. 

Table 6. Pump/valve-controlled scenario: configuration 

Tank # Pump Manual valve Automatic valve 

1 

varies 

fully opened varies 

2 fully opened closed 

3 fully opened closed 

 

In case of pump/valve-controlled system, differen-

tial equations (3) can be extended as follows. Configu-

ration presented in Table 6 yields 
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 

 

1 1

1 1 2

1 1 2 1 1 1

2 2 1 1 1 2 2

2

1

.

x u u x C x
aw

h
x u x C x C x

cwh bwx

 

  

  

  


 (10) 

The sequence ,k  0k   can be calculated as 

 

 

 

0 1 2 1 2

1 1 2

2

span d ,d ,d ,d ,

span d ,d ,

0 ,:

x x u u

x x







 

 

yielding that system (10) is accessible. Moreover, the 

subspace 1  is completely integrable. Therefore, the 

conditions of Theorem 3 are satisfied. Observe that 

there is no need for coordinate transformation. Thus, 

we equate the right-hand sides of (10) to 1v  and 2 ,v  

respectively, and solve the corresponding equations 

with respect to 1u  and 2 ,u  yielding the static state 

feedback given as 

  

2

2 1

1

2

1 1 2 2 2

2 2 2 1 1 2 2

1

1
.

bx
u awv C x wv c

h

u hC x hC x wv ch bx
hx



 



 
    

 

   

 (11) 

Note that control law (11) is valid in the region 

where 1 0x  . Application of the feedback (11) 

transforms the state equations (10) into the form 

1 1 2 2, .x v x v   The parameters 1 2,   and 1 2,C C  

were already identified in the previous experiments. 

Outputs are chosen to be water levels in the first and 

second tanks, respectively, i.e., 1 1y x  and 2 2y x . 

Changes of set points are presented in Table 7. 

Table 7. Reference signals changes 

1v
 [m] 2v

 [m] Time instance [s] 

0.05  0.1  0  
0.05  0.15  95  
0.07  0.15  130  

 

The experimental results are depicted in Figure 6. 

It can be seen that the outputs of the system are 

capable of tracking the reference signals. 

5. Conclusions 

In this paper, the algebraic framework, based on 

the theory of differential one-forms, has been applied 

to analyze the Multi-Tank system [17]. This frame-

work allows one to study typical system properties, in 

particular, accessibility and feedback linearizability 

using the same mathematical tools. The intention was 

to illustrate the potential applicability of the frame-

work to the real-life problems. The water tank system 

was used as an example due to several reasons. In par-

ticular, this is a prototype of processes widely occur-

ring in chemical and food processing industry. More-

over, the system is used in various educational courses 

in different universities to illustrate the main theore-

tical and practical concepts of control theory. 

 

Figure 6. The upper plot represents experimental results  

of water levels in the first and second tanks.  

The lower plot depicts the corresponding  

control signals 
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