
254

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2016, T. 45, Nr. 3

A Simple Centerline Extraction Approach for 2D Polygons

Aleksas Riškus, Armantas Ostreika, Antanas Lenkevičius, Vytautas Bukšnaitis

Department of Multimedia Engineering, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania

e-mail: armantas.ostreika@ktu.lt

 http://dx.doi.org/10.5755/j01.itc.45.3.12964

Abstract. This paper describes a new two-task approach for extracting the centerline from simple 2D polygons. An

algorithm of the first task, which generates a set of points for future centerline, is presented. The idea of the algorithm

is to use the polygon hatching by parallel lines and creating paths from its middle points in different polygon rotations.

The centerline is derived from the intersection points between these paths. The algorithm was developed for printed

circuit board insulation process and its execution time for a few hundred polygons is less than one second. The

algorithm is easy to understand and implement.

Keywords: Centerline; extraction; polygon; hatching; pcb; multimedia.

1. Introduction

The CAD software prepares the specific layout

data for the printed circuit board (PCB) prototypes.

For this, instead of chemical etching technology a

milling technology is widely used in insulating

process. Insulate milling is the process of removing

not needed copper from coated base material by

surface milling according to calculated insulation

channels around interconnected tracks, pads and other

areas. The mandatory primary tool is used for the

primary insulation channel around all layout copper.

Typically, a universal milling tool with a diameter of

about 0.2 mm is used. To improve soldering

properties, generate a minimum distance or remove

other undesirable residual copper, other additional

insulation tracks or free areas can be used [17, 19].

Such PCBs are widely used in the medical,

multimedia, computer and other equipment.

Figure 1 shows a small PCB segment after

insulation procedure. Pads and tracks are shown in

grey color, blue paths are insulating channels.

Figure 2 shows the same PCB segment but

insulating channels are shown in true width. It is

obviously seen that in some places the copper is not

removed (white areas between grey pads and tracks).

The reason for this is that there is not enough space

for the primary milling tool. To process these

remaining areas either a smaller tool with rather low

durability or laser beam is used. But in both cases a

centerline for the smaller tool (or laser beam) motion

needs to be generated in each free area.

Figure 1. Illustration of the insulation procedure

The primary insulation channels can be generated

by using the sequence of simple polygon operations

“union + oversize by toolWidth/2 + outline”. Invo-

king additional polygon operations subtract and in-

tersection allows to prepare polygons for centerlines

extraction (twelve black polygons in Figure 3).

The fast insulation procedure allows a user to work

in “semi-interactive” mode – to analyze results with a

different kit of milling tools and select a more suitable

variant. Of course, the desired layout in parallel is

checked by “Design Rule Check” module, but the final

estimation can be done only after the production of

assay. Usually, a few hundred centerline polygons can

be generated in the small PCB. It means that

A Simple Centerline Extraction Approach for 2D Polygons

255

centerline extraction time for one centerline polygon

can be measured only in milliseconds.

The centerline is also the key in many practical

applications, such as path planning in robotic

navigation, virtual endoscopy and road detection.

The most common approaches for centerline

extraction are based on topological thinning [5, 10],

Euclidean distance transform (distance mapping) [2, 7,

11, 12], simulation of the wave propagation [3, 8] and

Voronoi diagrams [4, 13].

The basic idea of thinning is iteratively to peel off

the boundary voxels layer by layer (the procedure is

very like of onion peeling). It takes very long time,

because each time needs to ensure that its topological

connection is not changed.

In the distance transform approach, the minimum

distance from inner voxels to surface voxels and end

point of the navigation path are calculated. The point

will be on the navigation path if its minimum distance

to the surface is the largest one among the point set, in

which the distances to the start point are equal.

In the wave propagation technique, a front

propagates from one node with specified cost function

until the other node is reached and then a backtracking

procedure is used to compute the desired centerline.

Figure 2. Illustration of the copper areas

Figure 3. Illustration of the centerline polygons

The Voronoi diagram of a set of points is the set of

edges that are equidistant from the two nearest points

in the set. The edges of the Voronoi diagram of the

vertices of a polygon that are interior to the polygon

compose the Voronoi skeleton.

A more detailed analysis of existing publications

on centerline extraction can be found in [1, 6].

The main problem of all mentioned approaches is

speed - they are time-consuming. Typical running

times of these methods range between tens of seconds

and hours per dataset, which is too slow for interactive

application with thousand objects. The speed problem

can partially be solved by using the graphics

processing unit (GPU) [9].

The centerline extracting method proposed in this

paper is not related with any of the existing

approaches and was developed for simple 2D

polygons. The polygon consists of line and arc

segments, has only one boundary and it doesn't cross

over itself. To calculate a set of suitable points for

future centerline takes only a few milliseconds for one

polygon.

The paper is organized as follows. Section 2

explains the main tasks and steps of the centerline

algorithm. Section 3 analyzes some implementation

aspects of the proposed algorithm. Experimental

experience and results are provided in section 4.

Section 5 proposes a short discussion about extension

of the proposed approach. Finally, some concluding

remarks end the paper.

2. Centerline algorithm

The first task of the proposed centerline extraction

approach is to calculate inside a polygon a set of

points as more as possible compatible to the future

centerline. The main algorithm steps of the first task

are:

Step 1. Hatching. Create a set of parallel hatch lines

with fixed distance hatching_grid. This

process is illustrated in Figure 4.

Figure 4. Polygon hatch lines

Step 2. Paths composition. Create a set of the simple

paths from line segments only by using

neighbors hatch lines middle points. If the

distance between the neighbors middle points

exceed the specified dLimit value, the

composition of the path is stopped and the

A. Riškus, A. Ostreika, A. Lenkevičius, V. Bukšnaitis

256

current hatch lines middle point becomes a

start point of the new path. The dLimit

parameter prevents from cutting of composed

path with the polygon contour. This process is

illustrated in Figure 5 (three paths are

composed).

Step 3. Rotate the polygon by specified rotation_step

angle and repeat Step 1–Step 2 until the last

rotation angle is still less the 180 degree.

Figure 6 shows hatch lines and corresponding

paths when the polygon was rotated by 450.

Step 4. Intersection points calculation. Calculate

intersection points between all paths

composed in Step 2. This process is

illustrated in Figure 7.

The second task of the proposed centerline

extraction approach is to draw a centerline based on

the results of the first task. The input data are: polygon

start point, polygon end point and the set of

intermediate intersection points from the first task. But

this task is out of the scope of this paper.

Figure 5. Illustration of the paths composition

(composed 3 paths)

Figure 6. Hatch lines and composed paths with 450

Figure 7. Results after 0, 45, 90 and 135 degree rotations

have been performed (rotation_step = 45)

3. Some implementation notes

1. Hatching. At least two hatching strategies can be

used.

1) Hatching of rotated polygon:

 rotate the polygon by angle

 θ += rotation_step;

 generate lines parallel to x-axis (or y-axis) by

using the hatching_grid;

 use transformation and store resulting hatch

lines in real coordinates according to the

following formula:

xt = cos(θ) * (xo - xr) – sin(θ) * (yo – yr) + xr,

yt = sin(θ) * (xo - xr) + cos(θ) * (yo - yr) + yr,(1)

where (xo, yo) is the original point, θ is the rotation

angle, (xr, yr) is polygon rotation point (e.g. rotation

around polygon center point or around 0/0 point) and

(xt, yt) is already transformed (xo, yo) point,

respectively. The formula (1) implements counter-

clockwise rotation (CCW).

2) Hatching of initial polygon. The polygon is not

rotated at all but hatch lines are generated with current

rotation angle. The distance between hatch lines is

specified by the same hatching_grid value.

The complexity of the hatching step depends on

how the hatch line middle point is calculated. A

standard case is Line and Polygon intersection -

calculate hatch line intersection points with the

polygon contour and take a center of each resulting

line segment between neighbor’s intersection points.

Indeed, these are simple line-line and line-arc

intersection operations. The complexity of hatching

step in the worst case is O(NM). Here N is the number

of the hatch lines and M is the total number of line and

circular arc segments on the polygon contour,

respectively. Additional sorting of polygon contour

segments can decrease this complexity.

Note. If the length of hatch line is defined by the

bounding-box of the polygon, then a few resulting

hatch line segments can be composed (e.g. two

segments for polygon of shape “V”).

Another possibility is to use graphical operations

of programming languages. For example, Java has

class Area with intersection and other operations.

2. Paths composition. This step is related to the time

consuming 4-th step of the proposed algorithm

(intersection points calculation). To reduce the

complexity of Step 3, it is better to have more paths

represented by two-point line instead of the paths with

many intermediate points. This can be achieved by

adding some additional conditions. The goal is to

interrupt the creation of current path and start a new

path. There are two possible solutions.

1) Path with fixed length. When a number of

points in the path reaches the specified limit, then the

creation of the path is stopped. The path stays with all

intermediate points, but shorter paths are better than

A Simple Centerline Extraction Approach for 2D Polygons

257

less but longer paths. The complexity of the paths

composition is O(NK), where N is the number of the

hatch lines and K is the number of composed paths.

2) Check perpendicular distance on the fly:

 each time after adding a new point in the

current path calculate perpendicular distance of

each already added point to line (Start-point,

Last-added-point);

 if any distance exceeds the given error

tolerance, remove the last added point and stop

the path creation;

 remove all intermediate points from Start-point

until End-point (convert the path into two-point

line).

The complexity of the paths composition in this

case is O(NKL), where N is the number of the hatch

lines, K is the number of composed paths and L is the

number of points in the longest path, respectively.

3. Calculation of paths intersection points.

The constraint “path with two points only” in

Step 2 allows the slow function “two paths intersec-

tion points” to be transformed into fast function “two

lines intersection point”.

By using the smaller rotation_step (e.g. 10 degree)

there can be composed some almost parallel and

intersected paths in the same polygon region. This fact

will give a few intersection points with similar

coordinates. These redundant intersection points can

be eliminated by the introduction of additional

parameter minAngle: if the angle between two paths at

their intersection point is less than the minAngle, then

the intersection point is skipped. Experiments showed

that depending on the complexity of polygon shape

minAngle value can vary from 5 to 15 degrees.

The complexity of the step depends on the number

of paths and the number of segments in each path and

in the worst case is O(PK). Here P is the number of

the composed paths and K is the number of line

segments in the longest path, respectively.

Using mas points instead of middle points

The discussed path composition was based on the

usage of hatch line’s middle point. When channel

(polygon) contour is roof, then another path

composition strategy can be used:

 select an area, restricted by two neighbors

hatch lines and two corresponding polygon

contour segments between the hatch lines,

respectively;

 calculate a mass point of the selected area.

The mass point (Cx, Cy), also known as the

“centroid”, can be calculated as follows [18]:

𝐶𝑥 =
1

6𝐴
∑(𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1

𝑖=0

𝐶𝑦 =
1

6𝐴
∑(𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1

𝑖=0

 (2)

𝐴 =
1

2
∑ (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖) 𝑛−1

𝑖=0 .

In the formula (2), the vertices are numbered in the

order of their occurrence along the polygon's

perimeter. The polygon is closed (the first point is

repeated at the end). But the formula (2) is valid only

for polygon from line segments. The insulate channel

mainly consists of circular arc segments. Two

solutions are possible:

1. approximate each arc segment by a set of line

segments;

2. modify the formula (2) to fit for both line and

arc segments. Figure 11 in Appendix shows

the main piece of C++ code from mass point

(Cx, Cy) calculation function, successfully

used in [17].

Some data formats, used in computer-aided design,

besides the circular arcs support Bezier curves as well.

Under the necessity the Bezier curve easily can be

approximated by circular arcs or vice versa [14].

4. Experimental experience

There are two important parameters in the

proposed centerline algorithm – hatching_grid and

rotation_step. The hatching_grid directly depends on

the width of polygon the centerline to be generated. It

should be selected with the ability that a few hatch

lines will be done in the narrowest polygon place. On

the other hand, too small hatching_grid impacts on

hatching time. The optimal grid is

hatching_grid = minWidth / 3

where the minWidth is the narrowest place of the

centerline polygon. Centerline points in Figure 7 were

generated with hatching_grid 0.2 mm and minWidth

0.58 mm.

The rotation_step impacts on the number of

composed paths (Step 2 of the algorithm). A smaller

rotation_step creates more paths which in turn

increases the number of their intersection points (Step

3 of the algorithm). Optimal rotation_step is 45 and 30

degrees. Figure 8 shows resulting intersection points,

generated with hatching_grid 0.3 mm and

rotation_step 30 degree.

Figure 8. Paths intersection points: rotation_step = 30,

hatching_grid = 0.3 mm

Figure 9 shows the results for the layout segment

with 12 polygons from Figure 3.

A. Riškus, A. Ostreika, A. Lenkevičius, V. Bukšnaitis

258

As it was mentioned before, the algorithm must

provide information for centerline in short time. For

example, the small PCB, whose segment was used for

illustrations in Figure 1 - Figure 3, has 1144 pads,

1767 tracks and 508 polygons were prepared for

centerline extraction. Table 1 shows how total

execution time depends on the number of polygons,

hatching grid and rotation step. Some properties (total

number of hatch lines, paths and intersection points)

are provided in the table as well. The proposed

algorithm was implemented in C++ and was run on a

Pentium IV PC, 3.47GHz CPU and 8GB RAM.

Additionaly, was tested a colon, used as the

benchmark in [2, 15]. The centerline algorithm in [2]

took 5 minutes, the centerline algorithm in [15] took

16 seconds, respectively. The 2D shape of the colon

and our result is shown in Figure 9.

Centerline for road map segment with algorithm in

[16] was generated in 468 seconds. The result of the

proposed algorithm is shown in Figure 10.

Figure 9. Paths intersection points: rotation_step = 45,

hatching_grid = 0.005 mm, minWidth = 0,009

Figure 9. Paths intersection points: rotation_step = 25,

hatching_grid = 0.1 mm. Calculation time = 0.047 sec

Figure 10. Paths intersection points: rotation_step = 30,

hatching_grid = 0.02 mm. Calculation time = 0.23 sec

Figure 10. Hatch lines and centerline points

5. Discussion

The algorithm calculates a set of points in a

polygon and these points late will be used to construct

a centerline between specified start and end points,

respectively. The main data source is polygon hatch

lines, created in a few different polygon rotations.

Perhaps there might be other solutions how to apply

these hatch lines. By visual inspection of the hatch

lines it is clearly seen, that some middle points of the

hatch lines already correspond with future centerline

points – one only needs to take suitable hatch lines

from every polygon rotation and skip not needed hatch

lines (e.g., too long and too short). Figure 10 shows

hatch lines, created with 45 degree rotation step. The

middle points of the most suitable hatch lines are

marked with dots. ‘S’ and ‘E’ mean centerline start

and end points, respectively.

Before doing the hatching, the polygon can be un-

dersized (“shrank”) by some value. Of course, this

value must be less than 2* minWidth, otherwise the

polygon will be split in a few separate sub-polygons.

6. Concluding remarks

In this paper, the new centerline extraction appro-

ach for simple 2D polygons (with non-intersecting

lines but with arc segments) is discussed. The

approach is not related with any of the existing

approaches. It was developed for one of the PCB de-

sign tasks - insulate milling, but can be successfully

used for other tasks on 2D shapes as well. The center-

line points calculation algorithm is fast and simple in

both understanding and implementation sense.

A Simple Centerline Extraction Approach for 2D Polygons

259

Experiments with real PCB of multimedia devices

proved the sufficient approach speed and quality.

Calculation of the set of points for centerline takes up

to one second for 500 polygons. Empirical results are

presented in Table 1. Possible implementation variants

and their complexity were analyzed for every step of

the algorithm.

Finally, the discussion about the extension of the

proposed approach was started.

Table 1. Execution speed

Number of

polygons

hatching_grid

(mm)

rotation_step

(degree)

Number of

hatch lines

Number of

paths

Number of

intersection

points

Calculation

time

(sec)

12 0.005 45 764 132 173 0.024

12 0.007 45 545 116 164 0.019

12 0.005 30 815 195 358 0.036

100 0.005 45 5908 1018 1367 0.088

100 0.007 45 4222 925 1277 0.070

100 0.005 30 6301 1548 2901 0.156

508 0.005 45 34229 5492 7500 0.565

508 0.007 45 24451 4857 6787 0.374

508 0.005 30 36703 8132 20906 1.042

References

[1] O.K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen–Or,

T.-Y. Lee. Skeleton Extraction by Mesh Contraction.

ACM Transactions on Graphics, 2008, Vol. 27, No. 3,

-10.

[2] I. Bitter, M. Sato, M. Bender, K. McDonnel, A.

Kaufman, M. Wan. CEASAR: A Smooth, Accurate

and Robust Centerline Extraction Algorithm. In: Proc.

IEEE Visualization, 2000, pp. 45-52.

[3] H. Blum. A Transformation for Extracting

NewDescriptors of Shape. Models for the perception of

speech and visual form, MIT Press, 1967, 362–380.

[4] T. K. Dey and W. Zhao. Approximate medial axis as

a Voronoi subcomplex. Computer-Aided Design, 2004,

Vol. 36, No. 2, 195–202.

[5] M. Ding, R. Tong, S. Liao, J. Dong. An extension to

3D topological thinning method based on LUT for

colon centerline extraction. Computer Methods and

Programs in Biomedicine, 2009, Vol. 94, No. 1, 39–

47.

[6] D. Jiménez, D. Labate, I.A. Kakadiaris, M.

Papadakis. Improved Automatic Centerline Tracing

for Dendritic and Axonal Structures. Neuroinformatics,

2015, Vol. 13, No. 2, 227-244.

[7] S. Ferchichi, S. Wang, S. Grira. New algorithm to

extract centerline of 2D objects based on clustering. In:

The International Conference on Image Analysis and

Recognition, 2007, Vol. 4633, pp. 364–374.

[8] M.S. Hassouna, A.A. Farag. Robust centerline

extraction framework using level sets. In: Proceedings

of IEEE Conference on Computer Vision and Pattern

Recognition, 2005, pp. 458–465.

[9] B. Liu, A.C. Telea, J. B. T. M. Roerdink, G. J.

Clapworthy, D. Williams, P. Yang, F. Dong, V.

Codreanu, A. Chiarini. Parallel Centerline Extraction

on the GPU. Computers & Graphics, 2014, Vol. 41,

72–83.

[10] M. C. Ma, M. Sonka. A fully parallel 3d thinning

algorithm and its applications. Computer Vision and

Image Understanding, 1996, Vol. 64, No. 3, 420–433.

[11] D.S. Paik, C.F. Beaulieu, R.B. Jeffery, G.D. Rubin,

S. Napel. Automated Flight Path Planning for Virtual

Endoscopy. Medical Physics, 1998, Vol.25, No. 5,

629-637.

[12] Y. Peng, J. Shi. A new fast algorithm for extracting

center path. In: Proceedings of SPIE-The International

Society for Optical Engineering, 2003, Vol. 5286,

Issue 2, pp. 735-740.

[13] O. Sharma, F. Anton, D. Mioc. Level Sets and

Voronoi based Feature Extraction from any Imagery.

In: GEOProcessing 2012, The Fourth International

Conference on Advanced Geographic Information

Systems, Applications, and Services, 2012, pp. 89-97.

[14] A. Riškus, G. Liutkus. An Improved Algorithm for

the Approximation of a Cubic Bezier Curve and its

Application for Approximating Quadratic Bezier

Curve. Information Technology and Control, 2013,

Vol. 42, No. 4, 303-308.

[15] M. Wan, F. Dachille, A. Kaufman. Distance-field

based skeletons for virtual navigation. In: Proc. IEEE

Visualization, 2001, pp. 239-245.

[16] P. Yuqing, C. Wenchao, S. Yehua. The shortest

hypotenuse-based centerline generation algorithm.

IJCSNS International Journal of Computer Science

and Network Security, 2009, Vol. 9, No. 8, 155–159.

[17] CircuitCAM. Available from WWW:

< http://www.circuitcam.com/ >

[18] P. Bourke. Calculating the area and centroid of a

polygon. Available from WWW:

http://paulbourke.net/geometry/polygonmesh>

[19] Milling and Drilling of Printed Circuit Boards.

Available from WWW: http://www.lpkf.com

Received August 2015.

http://link.springer.com/journal/12021/13/2/page/1

A. Riškus, A. Ostreika, A. Lenkevičius, V. Bukšnaitis

260

Appendix

VERTEX *pv1 = pvStart;

double A = 0.0;

do {

 double r2, angle;

 VERTEX *pv2 = pv1->pNext;

 double x1 = pv1->x;

 double y1 = pv1->y; // (x1, y1) – start point of the line/arc

 double x2 = pv2->x;

 double y2 = pv2->y; // (x2, y2) – end point of the line/arc

 if (pv1->pArc) { // Arc segment

 double cpx = pv1->pArc->x;

 double cpy = pv1->pArc->y; // (cpx, cpy) – center point of the arc

 double t1 = atan2(y1 - cpy, x1 - cpx) ;

 double t2 = atan2(y2 - cpy, x2 - cpx) ;

 if (pv1->fCCW) {

 while (t2 < t1) { t2 += 2*PI ; }

 } else {

 while (t1 < t2) { t1 += 2*PI ; }

 }

 angle = t2 - t1 ;

 r2 = (cpx - x1)*(cpx - x1) + (cpy - y1)*(cpy - y1);

 *Cx += (cpx*r2*angle - cpx*((y2 + cpy)*(x2 - cpx) - (y1 + cpy)*(x1 - cpx)) +

 (y2 - y1)*((y2 - cpy)*(2*y2 + y1) + (y1 - cpy)*(y2 + 2*y1))/3.0)/2.0 ;

 *Cy += (cpy*r2*angle + cpy*((y2 - cpy)*(x2 - cpx) - (y1 - cpy)*(x1 - cpx)) +

 cpx*(y2 - y1)*(y2 + y1) - 2*(x2 - x1)*((x2 - cpx)*(x2 - cpx) +

 (x2 - cpx)*(x1 - cpx) + (x1 - cpx)*(x1 - cpx))/3.0)/2.0 ;

 A += r2*angle + cpx*(y2 - y1) - cpy*(x2 - x1);

 } else { // Line segment

 Cx += (x1 - x2)(x1*(2*y1 + y2) + x2*(y1 +2*y2))/6.0 ;

 Cy += (y2 - y1)(x1*(2*y1 + y2) + x2*(y1 +2*y2))/6.0 ;

 A += x1 * y2 - y1 * x2;

 }

 pv1 = pv2;

} while (pv1 != pvStart); // Start vertex is duplicated at the end

A /= 2.0;

*Cx /= A;

*Cy /= A;

Figure 11. A main fragment from the mass point calculation function

