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Abstract. This paper describes a new two-task approach for extracting the centerline from simple 2D polygons. An 

algorithm of the first task, which generates a set of points for future centerline, is presented. The idea of the algorithm 

is to use the polygon hatching by parallel lines and creating paths from its middle points in different polygon rotations. 

The centerline is derived from the intersection points between these paths. The algorithm was developed for printed 

circuit board insulation process and its execution time for a few hundred polygons is less than one second. The 

algorithm is easy to understand and implement. 
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1. Introduction 

The CAD software prepares the specific layout 

data for the printed circuit board (PCB) prototypes. 

For this, instead of chemical etching technology a 

milling technology is widely used in insulating 

process. Insulate milling is the process of removing 

not needed copper from coated base material by 

surface milling according to calculated insulation 

channels around interconnected tracks, pads and other 

areas. The mandatory primary tool is used for the 

primary insulation channel around all layout copper. 

Typically, a universal milling tool with a diameter of 

about 0.2 mm is used. To improve soldering 

properties, generate a minimum distance or remove 

other undesirable residual copper, other additional 

insulation tracks or free areas can be used [17, 19]. 

Such PCBs are widely used in the medical, 

multimedia, computer and other equipment. 

Figure 1 shows a small PCB segment after 

insulation procedure. Pads and tracks are shown in 

grey color, blue paths are insulating channels.   

Figure 2 shows the same PCB segment but 

insulating channels are shown in true width. It is 

obviously seen that in some places the copper is not 

removed (white areas between grey pads and tracks). 

The reason for this is that there is not enough space 

for the primary milling tool. To process these 

remaining areas either a smaller tool with rather low 

durability or laser beam is used. But in both cases a 

centerline for the smaller tool (or laser beam) motion 

needs to be generated in each free area. 

 

Figure 1. Illustration of the insulation procedure 

The primary insulation channels can be generated 

by using the sequence of simple polygon operations 

“union + oversize by toolWidth/2 + outline”. Invo-

king additional polygon operations subtract and in-

tersection allows to prepare polygons for centerlines 

extraction (twelve black polygons in Figure 3). 

The fast insulation procedure allows a user to work 

in “semi-interactive” mode – to analyze results with a 

different kit of milling tools and select a more suitable 

variant. Of course, the desired layout in parallel is 

checked by “Design Rule Check” module, but the final 

estimation can be done only after the production of 

assay. Usually, a few hundred centerline polygons can 

be generated in the small PCB. It means that 
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centerline extraction time for one centerline polygon 

can be measured only in milliseconds. 

The centerline is also the key in many practical 

applications, such as path planning in robotic 

navigation, virtual endoscopy and road detection.  

The most common approaches for centerline 

extraction are based on topological thinning [5, 10], 

Euclidean distance transform (distance mapping) [2, 7, 

11, 12], simulation of the wave propagation [3, 8] and 

Voronoi diagrams [4, 13].  

The basic idea of thinning is iteratively to peel off 

the boundary voxels layer by layer (the procedure is 

very like of onion peeling). It takes very long time, 

because each time needs to ensure that its topological 

connection is not changed. 

In the distance transform approach, the minimum 

distance from inner voxels to surface voxels and end 

point of the navigation path are calculated. The point 

will be on the navigation path if its minimum distance 

to the surface is the largest one among the point set, in 

which the distances to the start point are equal. 

In the wave propagation technique, a front 

propagates from one node with specified cost function 

until the other node is reached and then a backtracking 

procedure is used to compute the desired centerline. 

 

 

Figure 2. Illustration of the copper areas 

 

Figure 3. Illustration of the centerline polygons 

The Voronoi diagram of a set of points is the set of 

edges that are equidistant from the two nearest points 

in the set. The edges of the Voronoi diagram of the 

vertices of a polygon that are interior to the polygon 

compose the Voronoi skeleton. 

A more detailed analysis of existing publications 

on centerline extraction can be found in [1, 6]. 

The main problem of all mentioned approaches is 

speed - they are time-consuming. Typical running 

times of these methods range between tens of seconds 

and hours per dataset, which is too slow for interactive 

application with thousand objects. The speed problem 

can partially be solved by using the graphics 

processing unit (GPU) [9].  

The centerline extracting method proposed in this 

paper is not related with any of the existing 

approaches and was developed for simple 2D 

polygons. The polygon consists of line and arc 

segments, has only one boundary and it doesn't cross 

over itself. To calculate a set of suitable points for 

future centerline takes only a few milliseconds for one 

polygon. 

The paper is organized as follows. Section 2 

explains the main tasks and steps of the centerline 

algorithm. Section 3 analyzes some implementation 

aspects of the proposed algorithm. Experimental 

experience and results are provided in section 4. 

Section 5 proposes a short discussion about extension 

of the proposed approach. Finally, some concluding 

remarks end the paper. 

2. Centerline algorithm 

The first task of the proposed centerline extraction 

approach is to calculate inside a polygon a set of 

points as more as possible compatible to the future 

centerline. The main algorithm steps of the first task 

are: 

Step 1. Hatching. Create a set of parallel hatch lines 

with fixed distance hatching_grid. This 

process is illustrated in Figure 4. 

 

 

Figure 4. Polygon hatch lines 

Step 2. Paths composition. Create a set of the simple 

paths from line segments only by using 

neighbors hatch lines middle points. If the 

distance between the neighbors middle points 

exceed the specified dLimit value, the 

composition of the path is stopped and the 
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current hatch lines middle point becomes a 

start point of the new path. The dLimit 

parameter prevents from cutting of composed 

path with the polygon contour. This process is 

illustrated in Figure 5 (three paths are 

composed).  

Step 3. Rotate the polygon by specified rotation_step 

angle and repeat Step 1–Step 2 until the last 

rotation angle is still less the 180 degree. 

Figure 6 shows hatch lines and corresponding 

paths when the polygon was rotated by 450. 

Step 4. Intersection points calculation. Calculate 

intersection points between all paths 

composed in Step 2. This process is 

illustrated in Figure 7. 

The second task of the proposed centerline 

extraction approach is to draw a centerline based on 

the results of the first task. The input data are: polygon 

start point, polygon end point and the set of 

intermediate intersection points from the first task. But 

this task is out of the scope of this paper.  

 

 

Figure 5. Illustration of the paths composition  

(composed 3 paths) 

 

 

Figure 6. Hatch lines and composed paths with 450 

 

 

Figure 7. Results after 0, 45, 90 and 135 degree rotations 

have been performed (rotation_step = 45) 

3. Some implementation notes  

1. Hatching. At least two hatching strategies can be 

used. 

1) Hatching of rotated polygon: 

 rotate the polygon by angle 

 θ += rotation_step; 

 generate lines parallel to x-axis (or y-axis) by 

using the hatching_grid; 

 use transformation and store resulting hatch 

lines in real coordinates according to the 

following formula: 

xt = cos(θ) * (xo - xr) – sin(θ) * (yo – yr) + xr, 

yt = sin(θ) * (xo - xr) + cos(θ) * (yo - yr) + yr,(1) 

where (xo, yo) is the original point, θ is the rotation 

angle, (xr, yr) is polygon rotation point (e.g. rotation 

around polygon center point or around 0/0 point) and 

(xt, yt) is already transformed (xo, yo) point, 

respectively. The formula (1) implements counter-

clockwise rotation (CCW). 

2) Hatching of initial polygon. The polygon is not 

rotated at all but hatch lines are generated with current 

rotation angle. The distance between hatch lines is 

specified by the same hatching_grid value. 

The complexity of the hatching step depends on 

how the hatch line middle point is calculated. A 

standard case is Line and Polygon intersection -

calculate hatch line intersection points with the 

polygon contour and take a center of each resulting 

line segment between neighbor’s intersection points. 

Indeed, these are simple line-line and line-arc 

intersection operations. The complexity of hatching 

step in the worst case is O(NM). Here N is the number 

of the hatch lines and M is the total number of line and 

circular arc segments on the polygon contour, 

respectively. Additional sorting of polygon contour 

segments can decrease this complexity. 

Note. If the length of hatch line is defined by the 

bounding-box of the polygon, then a few resulting 

hatch line segments can be composed (e.g. two 

segments for polygon of shape “V”). 

Another possibility is to use graphical operations 

of programming languages. For example, Java has 

class Area with intersection and other operations. 

2. Paths composition. This step is related to the time 

consuming 4-th step of the proposed algorithm 

(intersection points calculation). To reduce the 

complexity of Step 3, it is better to have more paths 

represented by two-point line instead of the paths with 

many intermediate points. This can be achieved by 

adding some additional conditions. The goal is to 

interrupt the creation of current path and start a new 

path. There are two possible solutions. 

1) Path with fixed length. When a number of 

points in the path reaches the specified limit, then the 

creation of the path is stopped. The path stays with all 

intermediate points, but shorter paths are better than 
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less but longer paths. The complexity of the paths 

composition is O(NK), where N is the number of the 

hatch lines and K is the number of composed paths. 

2) Check perpendicular distance on the fly:  

 each time after adding a new point in the 

current path calculate perpendicular distance of 

each already added point to line (Start-point, 

Last-added-point); 

 if any distance exceeds the given error 

tolerance, remove the last added point and stop 

the path creation; 

 remove all intermediate points from Start-point 

until End-point (convert the path into two-point 

line). 

The complexity of the paths composition in this 

case is O(NKL), where N is the number of the hatch 

lines, K is the number of composed paths and L is the 

number of points in the longest path, respectively. 

3. Calculation of paths intersection points.  

The constraint “path with two points only” in 

Step 2 allows the slow function “two paths intersec-

tion points” to be transformed into fast function “two 

lines intersection point”. 

By using the smaller rotation_step (e.g. 10 degree) 

there can be composed some almost parallel and 

intersected paths in the same polygon region. This fact 

will give a few intersection points with similar 

coordinates. These redundant intersection points can 

be eliminated by the introduction of additional 

parameter minAngle: if the angle between two paths at 

their intersection point is less than the minAngle, then 

the intersection point is skipped. Experiments showed 

that depending on the complexity of polygon shape 

minAngle value can vary from 5 to 15 degrees.  

The complexity of the step depends on the number 

of paths and the number of segments in each path and 

in the worst case is O(PK). Here P is the number of 

the composed paths and K is the number of line 

segments in the longest path, respectively. 

Using mas points instead of middle points 

The discussed path composition was based on the 

usage of hatch line’s middle point. When channel 

(polygon) contour is roof, then another path 

composition strategy can be used:  

 select an area, restricted by two neighbors 

hatch lines and two corresponding polygon 

contour segments between the hatch lines, 

respectively; 

 calculate a mass point of the selected area. 

The mass point (Cx, Cy), also known as the 

“centroid”, can be calculated as follows [18]: 

𝐶𝑥 =
1

6𝐴
∑(𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1

𝑖=0

 

𝐶𝑦 =
1

6𝐴
∑(𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1

𝑖=0

    (2) 

𝐴 =
1

2
∑  (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖) 𝑛−1

𝑖=0 . 

In the formula (2), the vertices are numbered in the 

order of their occurrence along the polygon's 

perimeter. The polygon is closed (the first point is 

repeated at the end). But the formula (2) is valid only 

for polygon from line segments. The insulate channel 

mainly consists of circular arc segments. Two 

solutions are possible: 

1. approximate each arc segment by a set of line 

segments; 

2. modify the formula (2) to fit for both line and 

arc segments. Figure 11 in Appendix shows 

the main piece of C++ code from mass point 

(Cx, Cy) calculation function, successfully 

used in [17].  

Some data formats, used in computer-aided design, 

besides the circular arcs support Bezier curves as well. 

Under the necessity the Bezier curve easily can be 

approximated by circular arcs or vice versa [14]. 

4. Experimental experience 

There are two important parameters in the 

proposed centerline algorithm – hatching_grid and 

rotation_step. The hatching_grid directly depends on 

the width of polygon the centerline to be generated. It 

should be selected with the ability that a few hatch 

lines will be done in the narrowest polygon place. On 

the other hand, too small hatching_grid impacts on 

hatching time. The optimal grid is 

hatching_grid = minWidth / 3 

where the minWidth is the narrowest place of the 

centerline polygon. Centerline points in Figure 7 were 

generated with hatching_grid 0.2 mm and minWidth 

0.58 mm. 

The rotation_step impacts on the number of 

composed paths (Step 2 of the algorithm). A smaller 

rotation_step creates more paths which in turn 

increases the number of their intersection points (Step 

3 of the algorithm). Optimal rotation_step is 45 and 30 

degrees. Figure 8 shows resulting intersection points, 

generated with hatching_grid 0.3 mm and 

rotation_step 30 degree.  

 

Figure 8. Paths intersection points: rotation_step = 30, 

hatching_grid = 0.3 mm 

Figure 9 shows the results for the layout segment 

with 12 polygons from Figure 3. 
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As it was mentioned before, the algorithm must 

provide information for centerline in short time. For 

example, the small PCB, whose segment was used for 

illustrations in Figure 1 - Figure 3, has 1144 pads, 

1767 tracks and 508 polygons were prepared for 

centerline extraction. Table 1 shows how total 

execution time depends on the number of polygons, 

hatching grid and rotation step. Some properties (total 

number of hatch lines, paths and intersection points) 

are provided in the table as well. The proposed 

algorithm was implemented in C++ and was run on a 

Pentium IV PC, 3.47GHz CPU and 8GB RAM. 

Additionaly, was tested a colon, used as the 

benchmark in [2, 15]. The centerline algorithm in [2] 

took 5 minutes, the centerline algorithm in [15] took 

16 seconds, respectively. The 2D shape of the colon 

and our result is shown in Figure 9.   

Centerline for road map segment with algorithm in 

[16] was generated in 468 seconds. The result of the 

proposed algorithm is shown in Figure 10.  

 

 

Figure 9. Paths intersection points: rotation_step = 45, 

hatching_grid = 0.005 mm, minWidth = 0,009 

 

 

Figure 9. Paths intersection points: rotation_step = 25, 

hatching_grid = 0.1 mm. Calculation time = 0.047 sec 

 

Figure 10. Paths intersection points: rotation_step = 30, 

hatching_grid = 0.02 mm. Calculation time = 0.23 sec 

 

 

Figure 10. Hatch lines and centerline points 

5. Discussion 

The algorithm calculates a set of points in a 

polygon and these points late will be used to construct 

a centerline between specified start and end points, 

respectively. The main data source is polygon hatch 

lines, created in a few different polygon rotations. 

Perhaps there might be other solutions how to apply 

these hatch lines. By visual inspection of the hatch 

lines it is clearly seen, that some middle points of the 

hatch lines already correspond with future centerline 

points – one only needs to take suitable hatch lines 

from every polygon rotation and skip not needed hatch 

lines (e.g., too long and too short). Figure 10 shows 

hatch lines, created with 45 degree rotation step. The 

middle points of the most suitable hatch lines are 

marked with dots. ‘S’ and ‘E’ mean centerline start 

and end points, respectively.  

Before doing the hatching, the polygon can be un-

dersized (“shrank”) by some value. Of course, this 

value must be less than 2* minWidth, otherwise the 

polygon will be split in a few separate sub-polygons. 

6. Concluding remarks  

In this paper, the new centerline extraction appro-

ach for simple 2D polygons (with non-intersecting 

lines but with arc segments) is discussed. The 

approach is not related with any of the existing 

approaches. It was developed for one of the PCB de-

sign tasks - insulate milling, but can be successfully 

used for other tasks on 2D shapes as well. The center-

line points calculation algorithm is fast and simple in 

both understanding and implementation sense. 
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Experiments with real PCB of multimedia devices 

proved the sufficient approach speed and quality. 

Calculation of the set of points for centerline takes up 

to one second for 500 polygons. Empirical results are 

presented in Table 1. Possible implementation variants 

and their complexity were analyzed for every step of 

the algorithm.  

Finally, the discussion about the extension of the 

proposed approach was started. 

 

Table 1. Execution speed 

Number of 

polygons 

hatching_grid 

(mm) 

rotation_step 

(degree) 

Number of 

hatch lines 

Number of 

paths 

Number of 

intersection 

points 

Calculation 

time 

( sec) 

12 0.005 45 764 132 173 0.024 

12 0.007 45 545 116 164 0.019 

12 0.005 30 815 195 358 0.036 

100 0.005 45 5908 1018 1367 0.088 

100 0.007 45 4222 925 1277 0.070 

100 0.005 30 6301 1548 2901 0.156 

508 0.005 45 34229 5492 7500 0.565 

508 0.007 45 24451 4857 6787 0.374 

508 0.005 30 36703 8132 20906 1.042 
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Appendix 

 

VERTEX *pv1 = pvStart; 

double A = 0.0; 

do { 

 double r2, angle; 

 VERTEX *pv2 = pv1->pNext; 

 double x1 = pv1->x; 

 double y1 = pv1->y; // (x1, y1) – start point of the line/arc  

 double x2 = pv2->x;  

 double y2 = pv2->y; // (x2, y2) – end point of the line/arc  

 if (pv1->pArc) { // Arc segment 

  double cpx = pv1->pArc->x; 

  double cpy = pv1->pArc->y; // (cpx, cpy) – center point of the arc 

  double t1 = atan2(y1 - cpy, x1 - cpx) ; 

  double t2 = atan2(y2 - cpy, x2 - cpx) ; 

  if (pv1->fCCW) { 

   while (t2 < t1) { t2 += 2*PI ; }  

  } else { 

   while (t1 < t2) { t1 += 2*PI ; }  

  }  

  angle = t2 - t1 ; 

  r2 = (cpx - x1)*(cpx - x1) + (cpy - y1)*(cpy - y1); 

  *Cx += (cpx*r2*angle - cpx*((y2 + cpy)*(x2 - cpx) - (y1 + cpy)*(x1 - cpx)) + 

    (y2 - y1)*((y2 - cpy)*(2*y2 + y1) + (y1 - cpy)*(y2 + 2*y1))/3.0)/2.0 ;  

  *Cy += (cpy*r2*angle + cpy*((y2 - cpy)*(x2 - cpx) - (y1 - cpy)*(x1 - cpx)) + 

    cpx*(y2 - y1)*(y2 + y1) - 2*(x2 - x1)*((x2 - cpx)*(x2 - cpx) +  

    (x2 - cpx)*(x1 - cpx) + (x1 - cpx)*(x1 - cpx))/3.0)/2.0 ; 

  A += r2*angle + cpx*(y2 - y1) - cpy*(x2 - x1); 

 } else { // Line segment 

  *Cx += (x1 - x2)*(x1*(2*y1 + y2) + x2*(y1 +2*y2))/6.0 ; 

  *Cy += (y2 - y1)*(x1*(2*y1 + y2) + x2*(y1 +2*y2))/6.0 ; 

  A += x1 * y2 - y1 * x2; 

 } 

 pv1 = pv2; 

} while (pv1 != pvStart); // Start vertex is duplicated at the end 

A /= 2.0; 

*Cx /= A; 

*Cy /= A; 

Figure 11. A main fragment from the mass point calculation function 


