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Abstract. In this paper, a novel wavelet-based approach to the detection of defects in grey-level texture images is 

proposed. This new approach (system) explores specific properties of the discrete wavelet transform (DWT), evaluates 

the statistical analysis results associated with well-defined and task-oriented subsets of DWT spectral coefficients, and 

generates defect detection criteria which, in their turn, evaluate many-sided nature of potential defects in texture 

images and leave space for controlling the risk, i.e. for controlling the percentage of false positives and/or false 

negatives in a particular class of texture images. The experimental results demonstrating the use of the proposed 

system for the visual inspection of ceramic tiles, obtained from the real factory environment, and textile fabric scraps 

are also presented. 
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1. Introduction 

Without any doubt, visual inspection constitutes a 

substantial part of quality control in industry. For 

many decades, this job has been relied upon human 

inspectors. However, the high cost and low efficiency 

of human visual inspection has led to the development 

of online visual-based systems capable to enhance not 

only the quality control but also the marketing of the 

products. 

Detection of defects in texture surfaces, such as 

steel plates, weldment, ceramic tiles, fabric, etc., is an 

important area of automated industrial inspection 

systems. Numerous methods and approaches have 

been proposed for performing this task [1-5]. With 

reference to many texture analysis survey papers, the 

texture image analysis techniques, used for visual 

defect inspection, can be categorized as follows: 

statistical approach, structural approach, filter-based 

approach and the model-based approach. 

The statistical texture analysis methods concen-

trate on the spatial distribution values. Quite a number 

of statistical texture features have been proposed, 

namely: histogram statistics (mean, standard devia-

tion, median, correlation coefficient, various metrics, 

etc.), co-occurrence matrices, autocorrelation, local 

binary patterns, etc., [6-10]. The statistical analysis 

techniques are characterized by low cost, invariance to 

translation and rotation. Among the shortcomings of 

the approach one can mention the great number of 

grey levels in a texture image and irregular 

arrangement of textural elements. 

In structural texture inspection approach, texture is 

characterized by texture elements (primitives) and the 

spatial arrangement of these primitives. Firstly, the 

texture primitives are extracted, secondly, the 

so-called spatial placement rules are modelled and 

generalized. This works well when analysing artificial 

textures. However, to analyse the images with 

inconspicuous textural rules, the structural method 

cannot effectively obtain the textural primaries and 

describe their arrangement rules. Some interesting 

results on the matter can be found in [11-13]. 

In filter-based approach (Gabor filter, Fourier 

analysis, etc.), the main idea leans upon applying filter 

banks to texture images and computing the energy of 

filter responses. Based on this idea, the defect 

detection methods can be divided into spatial, 

frequency and joint spatial/spatial-frequency domain 

techniques. To extract edges, lines, isolated dots, etc. 

in the texture image, various filter banks have been 

explored, namely: Sobel, Canny, Laplacian, Gaussian, 

FIR, etc. If no suitable kernel can be found in a spatial 

domain, filtering of the texture image has been 

performed in a frequency domain (Fourier and Gabor 

transforms) [14-19]. The main vulnerability of the 
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above techniques is their high dependence on the 

repetitive and regular nature of texture images. 

The model-based methods include, among many 

others, fractal models, autoregressive models, random 

field models, texem models, etc. Despite the novelty 

and originality of the ideas employed, these methods 

have limited areas of application. The more detailed 

information on the latter approach can be found in 

[20-24]. 

In the last decade, new achievements in the area 

distinguish themselves with wide usage of discrete 

wavelet transforms and application of recently 

developed image processing techniques (edge and 

corner detectors, morphological operations, optimal 

Gabor wavelet filters, artificial neural networks, etc.) 

[25-30]. 

In this paper, we present a new defect detection 

system for grey-level texture images. The 

characteristic feature of the proposed system is the 

usage of different scanning filters (two-dimensional 

Haar wavelets) which are applied in sequence to the 

texture image under investigation.   

The rest of this paper is organized as follows. In 

Section 2, the necessary theoretical background used 

to developing the above defect detection system are 

presented, namely: discrete Haar wavelet transform 

with its properties and computational schemes, 

statistical analysis techniques applied to texture 

images in the Haar wavelet domain and generation of 

the parameterized defect detection criteria for grey-

level texture images. In Section 3, the experimental 

analysis results, including two classes of texture 

images (ceramic tiles and fabric scraps, both taken 

from real industrial environment) are presented and 

discussed. Some commentary on the applicability and 

flexibility of the developed defect detection system are 

given in Section 4. 

2. Implementing defect detection system for 

texture images 

The newly developed defect detection system for 

texture images explores specific properties of the 

discrete Haar wavelet transform, not only generates 

defect detection criteria but also leaves space for 

ensuring flexibility of these criteria. 

The choice of Haar wavelets was governed, 

mainly, by two factors: firstly, Haar wavelets are 

“square-shaped”, i.e. are not continuous. This fact is 

an advantage when analysing signals (images) with 

sudden transitions (contrast changes), and the defect 

detection process is the very case; secondly, the 

discrete Haar wavelet transform is fully localized in 

space (Subsection 2.2), and this is weighty for locating 

defects in the defective texture images. 

2.1. Computing the discrete Haar wavelet 

transform 

The one-dimensional discrete wavelet transform 

(DWT) itself represents an iterative procedure, each 

iteration of the DWT applies the scaling function (the 

low-frequency filter) and the wavelet function (the 

high-frequency filter) to the data input. If the original 

digital signal ( (0) (1) ( 1))TX X X X N   has N  

( 2 ,nN   N)n  values, then, on the i-th (

{1,2, , }i n ) iteration, two intermediate data 

vectors: 

( ) ( ) ( ) ( ) ( )

0 1 2 2 1
( ) ,n i

i i i i i TS s s s s  
  

( ) ( ) ( ) ( ) ( )

0 1 2 2 1
( ) ,n i

i i i i i TD d d d d  
  

representing the result of application of the low-

frequency filtering coefficients and the high-frequency 

filtering coefficients to ( 1)iS   ( {1,2, , })i n , 

respectively, are obtained (here, (0)S X , i.e. 
(0) ( )ks X k , for all 0,1, , 1k N  ). 

Theoretically, the i-th ( {1,2, , }i n ) iteration of 

the above computational procedure can be realized 

using the DWT matrix DWTT  of order ( 1)n i  , i.e. 

( )
( 1)

( )
( 1) .

i
i

DWT i

S
T n i S

D

  
     

 
 (1) 

Here we observe that ( ) ( )

0( )n nS s  and 

( ) ( )

0( )n nD d . 

The internal structure of the matrix 

( 1)DWT DWTT T n i   , {1, 2, , }i n , depends, 

mainly, on the coefficient values of scaling and 

wavelet functions of a particular DWT. For instance, 

in the case of the discrete Haar wavelet transform 

(HT), the scaling function coefficients are - 

0 1 2h   and 
1 1 2h  , while the wavelet function 

coefficient values are - 
0 1 1 2g h   and 

1 0 1 2g h    . So, the HT matrix of size 2 2n n  

takes the form: 

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 0 1 11
( ) ,

1 1 0 0 0 0 02

0 0 1 1 0 0 0

0 0 0 0 0 1 1

HTT n

 
 
 
 
 
 


 
 

 
 
 
  

 

where 1, 2,n  . 

Thus, the discrete HT spectrum Y  of the digital 

signal X  is obtained in n  iterations and takes the 

form: 



Gintarė Vaidelienė, Jonas Valantinas, Petras Ražanskas 

216 

( ) ( ) ( 1) ( 1) ( 2) ( 2) ( 2) ( 2)

0 0 0 1 0 1 2 3

(1) (1) (1)

0 1 2 1

( (0) (1) (2) ( 1))

( ...

) .

T

n n n n n n n n

T

N

Y Y Y Y Y N

s d d d d d d d

d d d

     



  

  (2) 

The relationship between ( )Y k  (

{1,2, , 1}k N  ) and ( )i

jd  ( {1,2, , }i n , 

{0,1, ,2 1}n ij   ) is given by: 2n ik j  , 

provided 12 2n i n ik    ; in particular, ( )

0(0) nY s . 

In practice, the discrete HT spectrum Y  

(expression (2)) of the data vector X  of size 2nN   (

Nn ) is found as follows: 

 ( ) ( 1) ( 1) ( 1) ( 1)

0 2 1 2 1 2 2 1

1

2

i i i i i

k k k k ks h s h s s s   

       , 

 ( ) ( 1) ( 1) ( 1) ( 1)

0 2 1 2 1 2 2 1

1

2

i i i i i

k k k k kd g s g s s s   

       , (3) 

for all 0,1, ,2 1n ik    and {1,2, , }i n . 

The inverse HT is defined by: 

 ( 1) ( ) ( )

2

1

2

i i i

k k ks s d   ,  

 ( 1) ( ) ( )

2 1

1

2

i i i

k k ks s d

   , (4) 

where 0,1, ,2 1n ik    and {1,2, , }i n . 

Also, in order to compute the discrete HT 

spectrum of a two-dimensional digital image X  of 

size 1 2N N  ( 2 ,in

iN  N, 1,2)in i  , the one-

dimensional HT should be applied 1 2N N  times, i.e. 

2N  times along the first spatial axis and 1N  times 

along the second spatial axis. 

To become familiarized with some other discrete 

wavelet transforms (Le Gall wavelet transform, 

Daubechies D4 transform, Cohen-Daubechies-

Feauveau (CDF) 9/7, etc.) and their matrices, the 

reader is referred to (Cohen et al., 1992; Adams and 

Kossentine, 2000; open internet resources). 

2.2. Statistical analysis of defect-free texture images 

in the Haar spectral domain 

Now, let 1 2[ ( , )]X X m m  be a two-dimensional 

grey-level texture image of size N N  ( 2nN  , 

Nn ) and let 1 2[ ( , )]Y Y k k  be its two-dimensional 

discrete HT spectrum. 

Consider a wavelet coefficient 1 2( , )Y k k , 1k , 

2 {1,2, , 1}k N  . Evidently, indices 1k  and 2k  can 

be presented in the form: 1

1 12
n i

k j


  , 2

2 2
n i

k


 

2 ,j  where 1 2, {1,2, , }i i n , 1

1 {0,1, ,2 1}
n i

j


  , 

2

2 {0,1, ,2 1}
n i

j


  . Also, it can be proved that the 

coefficient 1 2( , )Y k k  is associated with the image 

block 1 2( , )

1 2[ ( , )]
k k

X X m m , where 
1 21 2( , ) k km m V V   

and { 2 , 2 1, , ( 1)2 1}r r r

r

i i i

k r r rV j j j    , 1, 2r  . 

In other words, numerical value of 1 2( , )Y k k  is 

uniquely specified by the pixel values of the block 
1 2( , )k k

X . 

In forming and generating defect detection criteria 

for texture images, the key point is the partitioning of 

the whole set of HT spectral coefficients into non-

overlapping regions (0,0) , 1( ,0)i , 2(0, )i  and 

1 2( , )i i , where 1 2, {1,2, , }i i n  (Fig. 1, a). Numeri-

cal values of spectral coefficients 1 2( , )Y k k , falling 

into a particular region, i.e. characterized by the same 

index values 1i  and 2i , are specified uniquely by non-

overlapping image blocks 1 2( , )k k
X  which cover the 

whole image 1 2[ ( , )]X X m m . To say more, the com-

putational scheme (“pattern”) for all spectral coeffi-

cients, attached to the same region, is one and the 

same (Fig. 1, b). 

Now, suppose 1 2{ , , , }rX X X  is a collection of 

defect-free texture images (good samples, randomly 

selected from some total population X  of non-

defective texture images) of size N N  ( 2nN  , 

Nn ) and 1 2{ , , , }rY Y Y  is the corresponding set of 

their discrete HT spectra. In implementing the defect 

detection criteria for texture images, the following 

algorithmic steps should be realized: 

1. For all 1, 2, ,s r , compute the mean value of 

HT spectral coefficients falling into the regions 

(0,0) , 1( ,0)i , 2(0, )i  and 1 2( , )i i  

1 2( , {1,2, , })i i n : 

(0,0) | (0,0) |s sY Y , 

1

1

1

2 1

1 12
0

1
( ,0) | ( ,0) |,

2

n i

s sn i
j

Y i Y k







 
 

2

2

2

2 1

2 22
0

1
(0, ) | (0, ) |,

2

n i

s sn i
j

Y i Y k







 
 

2 1

1 2

2 1

2 1 2 1

1 2 1 22
0 0

1
( , ) | ( , ) |.

2

n i n i

s sn i i
j j

Y i i Y k k

 
 

 
 

    

2. For each region (0,0) , 1( ,0)i , 2(0, )i  and 

1 2( , )i i  ( 1 2, {1,2, , }i i n ), using the simple 

samples: 

1 2( (0,0), (0,0), , (0,0)),rY Y Y  

1 1 2 1 1( ( ,0), ( ,0), , ( ,0)),rY i Y i Y i  

1 2 2 2 2( (0, ), (0, ), , (0, )),rY i Y i Y i  

1 1 2 2 1 2 1 2( ( , ), ( , ), , ( , )),rY i i Y i i Y i i  

and applying the statistical analysis methods, state the 

statistical hypotheses on the type of the distribution 

(normal, lognormal, exponential, etc.) of the mean 
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values (random variables) (0,0)Y , 
1( ,0)Y i , 

2(0, )Y i  

and 
1 2( , )Y i i , representing the same regions of the 

total population X . 

3. Depending on the type of the distribution 

(Step 2) and a priori prescribed probability p  (

[0.1, 0.99]p ), evaluate the so-called  -intervals 

(0,0)pI , 
1( ,0)pI i , 

2(0, )pI i  and 
1 2( , )pI i i , for the 

mean values of the total population X , associated 

with one or another region, namely: 

 in the case of the normal distribution, 

~ ( , )Y N m  , we have: ( , )pI m t m t      , 

i.e.  

{ } ,P m t Y m t p         

where 1

0 ( 2)t p  and 
2 2

0
0

1
( )

2

t
xt e dx



    is  

the Laplace function; 

 in the case of the lognormal distribution, 

~ ln ( , )Y N m  , we have: ( , )t t

pI m m   , 

i.e.  

{ } ,t tP m Y m p      

where 1

0 ( 2)t p ; in practice, for better perfor-

mance, the long tails of this distribution are truncated 

by the value  max max | 1,2,...,jY Y j r  . 

 in the case of the exponential distribution, 

~ ( )Y E  , we have: [0, )pI t   , i.e.  

{0 } ,P Y t p    

where ln (1 )t p    and 1  . 

 

    

 (a) (b) 

Figure 1. Discrete Haar wavelet transform (N = 4): (a) Regions of Haar spectral coefficients, characterized  

by the same computational scheme; (b) Evaluating Haar spectral coefficients (pixel  

values, falling into the black area of the image block, are subtracted from  

those falling into the respective grey area; the algebraic sum then  

is multiplied by the scalar, located above) 

 

Table 1. Defect detection criterion for a fixed value of probability p 

(0,0)pI  (0, )pI n  (0, 1)pI n ) … 2(0, )pI i  … (0,1)pI  

( ,0)pI n  ( , )pI n n  ( , 1)pI n n  … 2( , )pI n i  … ( ,1)pI n  

( 1,0)pI n  ( 1, )pI n n  ( 1, 1)pI n n   … 2( 1, )pI n i  … ( 1,1)pI n  

… … … … … … … 

1( ,0)pI i  
1( , )pI i n  

1( , 1)pI i n  … 1 2( , )pI i i  … 1( ,1)pI i  

… … … … … … … 

(1,0)pI  (1, )pI n  (1, 1)pI n  … 2(1, )pI i  … (1,1)pI  
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2.3. Generating the defect detection criteria for 

texture images 

Using statistical analysis results (Subsection 2.2), 

the defect detection criteria (for a particular class of 

texture images of size  𝑁 × 𝑁 , 𝑁 = 2𝑛 ,  𝑛 ∈ N ), 

corresponding to a priori prescribed values of the 

probability ,p  [0.1, 0.99]p , are formed (Table 1). 

Now, suppose that testX  is a test texture image of 

size 𝑁 × 𝑁  (𝑁 = 2𝑛 , 𝑛 ∈ N) and 𝑌𝑡𝑒𝑠𝑡  is its discrete 

Haar spectrum. Also, suppose that the probability p , 

minimizing removal of actually defect-free samples, is 

fixed. Then, the mean values (0,0)testY , 
1( ,0)testY i , 

2(0, )testY i  and 
1 2( , )testY i i  are calculated, for all regions 

(0,0) , 1( ,0)i , 2(0, )i  and 1 2( , )i i  ( 1 2,i i 

{1,2, , }n ), respectively. Finally, the defect detection 

criterion, corresponding to the probability p , is 

selected. 

The test texture image 𝑋𝑡𝑒𝑠𝑡  is assumed to be 

defect-free, provided the total number of calculated 

mean values falling into the due  -intervals (Table 1) 

is not less than 𝑝(𝑛 + 1)2. Otherwise, the test image 

𝑋𝑡𝑒𝑠𝑡 is assumed to be defective. 

Manipulating between the values of the probability 

p , we can increase (decrease) the number of false 

positives (FP), as well as that of false negatives (FN), 

i.e. we are able to control the risk boundary. 

In some cases, the overall performance of the 

developed defect detection system can be improved by 

exploring an appropriately chosen subset of  -

intervals (Table 1). For instance, the usage of  -

intervals 
1 2( , )p pI I i i , with 1 2, {0, , 1,..., }i i m m n   

(1 )m n  , does not provide comparison (in the 

defect detection process) of less than 2m
 

neighbouring pixels of the texture image, in both the 

vertical and the horizontal directions. 

3. Experimental analysis results 

The proposed defect detection method (system) for 

texture images was implemented in MatLab. Compu-

ter simulation was performed on a PC with CPU Intel 

Core i5-4200 U CPU@2.36Hz, 8GB of memory. 

To test performance of the system, first of all, we 

used a set of defect-free ceramic tile images of size 

256×256 (100 samples) and a set of defective tile 

images of size 256×256 (100 samples), obtained from 

the real factory environment. Some typical samples 

are presented in Fig. 2. 

 
 

    

(a) (b) 

Figure 2. Typical samples of ceramic tiles: (a) defect-free texture images; (b) defective texture images 

 

Figure 3. Dependence of system’s performance (ceramic tiles) on the value of probability p 

mailto:CPU@2.36Hz
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To form defect detection criteria for a priori 

prescribed values of the probability 𝑝  (Subsection 

2.3), 50 defect-free texture images (out of 100) were 

selected at random. Five experiments were carried out 

to tune the parameters involved in the defect detection 

procedure and to evaluate the overall performance of 

the system in terms of the defect detection success rate 

(accuracy). For each experiment, 50 defect-free 

ceramic tile images and 50 defective tile images were 

selected randomly. 

Experimental analysis results, covering the said five 

experiments and reflecting dependence of the averaged 

values of the system’s performance parameters TP, FP, 

TN and FN on the value of probability p ,

[0.1, 0.99]p , are presented in Fig. 3 (TP – true 

positives, i.e. the percentage of actually defective 

images detected as defective; FP – false positives, i.e. 

the percentage of actually defect-free images detected 

as defective; TN – true negatives, i.e. the percentage of 

actually defect-free images detected as defect-free; FN 

– false negatives, i.e. the percentage of actually 

defective images detected as defect-free). 

As it can be seen (Fig. 3), the best classification 

results, in terms of the defect detection success rate 

(accuracy), are achieved for [0.95, 0.99]p . In 

particular (Table 2), the accuracy is 0.95-0.98, for  

p = 0.99, and 0.93-0.98, for p = 0.95.  

In Fig. 4, dependence of some secondary 

performance parameters (specificity = TN/(TN+FP), 

sensitivity = TP/(TP+FN), accuracy = (TP+TN)/(TP+ 

TN+FP+FN)) on the value of p , [0.1, 0.99]p , is 

shown. Worth emphasizing, if we are interested in the 

selection of high quality products (ceramic tiles), i.e. 

in sorting out all defective tiles, even at the expense of 

some defect-free tiles, we need to choose the value of 

p  from the interval [0.2, 0.4] , since the 

corresponding values of sensitivity are close to 1 

(Fig. 4). 

To illustrate potentiality of the system, a class of 

textile fabric scraps, from the joint-stock company 

“Kauno Baltija” (one of the biggest and oldest 

manufacturers of ladies outwear in Lithuania), has 

been selected and prepared by hand to obtain texture

 

Table 2. Classification of ceramic tile images 

Probability,  

p 

The serial number of an experiment 

1 2 3 4 5 

0.99 

TP 96 % 94 % 96 % 98 % 94 % 

FP 6 % 4 % 0 % 4 % 0 % 

TN 94 % 96 % 100 % 96 % 100 % 

FN 4 % 6 % 4 % 2 % 6 % 

0.95 

TP 96 % 92 % 94 % 96 % 92 % 

FP 4 % 6 % 0 % 4 % 2 % 

TN 96 % 94 % 100 % 96 % 98 % 

FN 4 % 8 % 6 % 4 % 8 % 

0.90 

TP 88 % 90 % 94 % 94 % 94 % 

FP 6 % 6 % 2 % 6 % 2 % 

TN 94 % 94 % 98 % 94 % 98 % 

FN 12 % 10 % 6 % 6 % 6 % 

 

 

Figure 4. Dependence of secondary system’s performance parameters (ceramic tiles) on the value of probability p 
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images of size 256×256 (100 defect-free samples and 

60 defective samples; Fig. 5). As in the case of 

ceramic tiles, five experiments were carried out. For 

each experiment, 30 defect-free fabric images and 30 

defective ones were selected randomly. The 

experimental results (Table 3) were obtained using the 

criterion values (Section 2.3) 
1 2( , )p pI I i i , 

1 2, {0,2,3,4,5,6,7,8}i i  . It should be emphasized 

that, for this particular class of texture images, 

acceptable values of system’s performance parameters 

(sensitivity, accuracy; Table 3, Fig. 6) are achieved 

with  [0.975, 0.99]p . Also, experimental analysis 

results show that specificity values remain to be very 

high for [0.1, 0.875]p . The defect detection rate 

(accuracy), on an average, equals (Table 3): 0.823, for 

p = 0.99; 0.931, for p = 0.975; 0.864, for p = 0.90. 

 

    

(a) (b) 

Figure 5. Real fabric samples: (a) defect-free fabric images; (b) defective fabric images 

Table 3. Classification of fabric images 

Probability,  

p 

The serial number of an experiment 

1 2 3 4 5 

0.99 

TP 90 % 97 % 97 % 90 % 93 % 

FP 27 % 27 % 27 % 33 % 30 % 

TN 73 % 73 % 73 % 67 % 70 % 

FN 10 % 3 % 3 % 10 % 7 % 

0.975 

TP 87 % 93 % 90 % 87 % 90 % 

FP 3 % 3 % 3 % 7 % 0 % 

TN 97 % 97 % 97 % 93 % 100 % 

FN 13 % 7 % 10 % 13 % 10 % 

0.90 

TP 73 % 77 % 77 % 73 % 77 % 

FP 0 % 3 % 3 % 7 % 0 % 

TN 100 % 97 % 97 % 93 % 100 % 

FN 27 % 23 % 23 % 27 % 23 % 

 

 

Figure 6. Dependence of secondary system’s performance parameters (fabric scraps) on the value of probability p 
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Finally, we note that comparison of the above 

results with analogous results obtained using other 

approaches and other defect detection schemes is 

complicated enough. The necessary precondition, for 

the developers, is to explore precisely the same 

training texture image database. Otherwise, the 

comparison is of little value. On the other hand, in 

[31], the defect detection rate (accuracy) in pavement 

images (using segmentation) is 0.93, in all the 

samples. The averaged accuracy of recognition 

algorithms [5], applied to ceramic surface cracks and 

breaks, equals 0.82 and 0.94, respectively. In [32], the 

usage of infrared images and artificial neural networks 

ensures the accuracy of 0.95, for the class of ceramic 

tile images. 

Consequently, the defect detection success rate 

(accuracy) achieved in our experiments (in the case of 

ceramic tiles, greater than 0.95, for all experiments; 

Table 2) allows us to state that the developed Haar 

wavelet-based defect detection system for texture 

images is worth attention. 

Since the above defect detection system has been 

developed for real-time applications, the image 

processing time expenditures cannot be ignored. We 

have found out that, for both classes of texture images, 

the time needed to test a single image, for a particular 

value of the parameter p , equals (on average) 0.028 s. 

The time is doubled (tripled) if the testing includes 

two (three) values of p. 

These values reflect the computational complexity 

of the testing process, associated with a single test 

image 𝑋𝑡𝑒𝑠𝑡  of size N N  ( 2nN  , Nn ), which 

includes finding the discrete Haar spectrum 𝑋𝑡𝑒𝑠𝑡  of 

testX , computation of averaged values 
1 2( , )testY i i  for 

each region 1 2( , )test i i  ( 1 2, {0,1, , }i i n ) and testing 

averaged values 
testY  of falling into corresponding 

sigma intervals 
pI , and turns out to be of the order 

O(9𝑁2). 

In connection with this, let us note that generation 

of the defect detection criteria, for a particular class of 

texture images, is performed at a preliminary stage of 

the whole defect detection process, and its computa-

tional complexity is of little value. In our case 

(Section 3), the time expenditures, associated with this 

stage (for a fixed value of probability p ), equal 

3.932 s. 

4. Conclusion 

In this paper, a novel wavelet-based defect 

detection system for texture images is proposed. The 

proposed system (approach) explores space 

localization properties of the two-dimensional discrete 

Haar wavelet transform. The characteristic feature of 

the approach is simultaneous application of different 

scanning (Haar wavelet) filters to texture images. The 

latter circumstance provides the developer with the 

possibility to construct parameter dependent decision 

criteria. The test texture image, falling into a particular 

class of texture images, is assumed to be defect-free, 

for a fixed value of probability (parameter) p , if and 

only if a priori prescribed percentage of values of the 

decision criterion are satisfied. 

The experimental analysis results, demonstrating 

the use of the proposed defect detection system for the 

visual inspection of ceramic tiles obtained from the 

real factory environment, showed that the detection 

success rate (accuracy) of the system for this 

particular class of texture images is 0.95-0.98, 

provided the value of the probability p  equals 0.99. 

When compared to other approaches, the proposed 

system outperforms them in more than 4 %. Besides, 

the single test image processing time, on an average, 

equals 0.028 s. 

In the case of fabric scraps inspection, the defect 

detection accuracy is quite acceptable and equals 

0.931, the value of probability being 0.975. 

Finally, let us observe that, for a concrete class of 

texture images, the task-oriented adaptation of the 

proposed system is necessary. The nature of texture 

images, falling into one or the other class, cannot be 

ignored, i.e. in each case not only numerical values of 

the parameter p  but also the subsets of sigma 

intervals (criterion for testing) should be selected 

properly. 

In the short term, similar research concerning 

applicability of discrete wavelet transforms of higher 

orders (Le Gall, Daubechies, etc.), as well as analysis 

of defect localization aspects, is supposed. 
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