
164

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2016, T. 45, Nr. 2

Siebog: an Enterprise-Scale Multiagent Middleware

Dejan Mitrović1, Mirjana Ivanović1, Milan Vidaković2, Zoran Budimac1,

Jovana Vidaković1

1Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad,

Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

e-mail: dejan@dmi.uns.ac.rs, mira@dmi.uns.ac.rs, zjb@dmi.uns.ac.rs, jovana@dmi.uns.ac.rs

2Faculty of Technical Sciences, University of Novi Sad,

Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

e-mail: minja@uns.ac.rs

 http://dx.doi.org/10.5755/j01.itc.45.2.12621

Abstract. This paper presents a new multiagent middleware named Siebog, made to provide high performance and

platform independence for software agents. This framework was built by combining the features of the Radigost and

XJAF agent frameworks. It provides an infrastructural support for both client-side and server-side agents. The client-

side agents are written in JavaScript and can be executed on a wide variety of software and hardware platforms,

including desktops, smartphones and tablets, and Smart TVs. The server-side agents, on the other hand, can harness the

benefits of clustered environments, and rely on automated load-balancing and fault-tolerance for the uninterrupted

delivery of services. The two sides of Siebog have been integrated in a way that enables cross-platform messaging,

agent code sharing, and even heterogeneous agent mobility.

Keywords: clustered computing; HTML5; Java EE; multiagent middleware; software agents.

1. Introduction

For modern agent middlewares it is not enough

just to support software agent lifecycle. Platform

independence and high performance of agents utilized

through distributed computing has become mandatory

feature for agent middlewares. In this paper, we

present a novel multiagent middleware that offers

those new features by using the state-of-the-art

technologies. The name of the presented multiagent

middleware is Siebog and it has been developed from

two previously developed frameworks: Radigost and

XJAF.

Radigost framework offers JavaScript-based

agents which can execute on large number of

platforms, including smartphones, smart TVs,

desktops, tablets, etc. On the other hand, XJAF can be

used as a clustered environment for the server-based

agents. In papers [1], [2], we have shown that Siebog

achieves better performances and uses more advanced

technologies than other existing agent middlewares.

1.1. Origins of the Siebog middleware

During the last decade, the web has become an im-

portant software platform. It has gradually evolved

into an environment capable of providing functiona-

lities previously available in desktop applications only.

One of the driving forces behind the proliferation

of web applications has been the HTML5 standard,

and its support on a variety of hardware and software

platforms, including mobile devices [3]. Among the

many HTML5-related specifications, two are of the

special importance for the work presented in this

paper: Web Workers and the WebSocket protocol. Web

Workers provide true multi-threading in JavaScript,

along with a ready-made messaging infrastructure for

asynchronous communication. The WebSocket

protocol, on the other hand, provides full-duplex

communication over a single channel. It enables web

application servers to push information to remote

clients, offering an alternative to usual pull approach.

In line with these advances, we have developed

Radigost, a purely web-based multiagent middleware

designed to harness the numerous benefits of HTML5

[4], [5]. The platform is divided into two major parts:

a client and a server. The client side and the agents

themselves are implemented in JavaScript and

executed inside of a web browser. The server side

provides support for more complex features, such as

the agent state persistence, discussed later.

Siebog: an Enterprise-Scale Multiagent Middleware

165

Improvements brought by HTML5 on the client

have been supported by corresponding server-side

technologies. The Enterprise Edition of Java (Java

EE) represents one of the most widely used

technologies for server-side software development. It

offers a wide range of technical solutions suitable for

developing scalable and reliable software system. As

such, it represents an excellent platform for

developing multiagent systems.

Extensible Java EE-based Agent Framework

(XJAF) is our additional multiagent middleware built

using technical solutions of Java EE [6], [7]. One of

the main goals of XJAF is to demonstrate how

standard Java EE technologies can be used to

implement many functional requirements imposed on

multiagent middleware. For example, the Java

Message Service makes it very easy to implement

asynchronous inter-agent communication, without

“reinventing the wheel.” Recent developments have

been focused on executing XJAF on top of computer

clusters, providing high-availability of deployed

multiagent applications [1].

Obviously, both Radigost and XJAF serve similar

purposes. Both are designed to support modern, web-

based enterprise applications, with Radigost being

dedicated to the client-side, and XJAF dedicated to the

server-side agent execution. Therefore, an integration

of the two systems represents the next natural step.

This paper presents Siebog, an enterprise-scale

multiagent middleware built by combining Radigost

and XJAF into a unified multiagent framework. This

approach offers a number of advantages over existing

multiagent solutions.

First of all, on the client side, our system is

platform-independent. As shown in [4], [5], its agents

can be executed, without any modifications, on

desktop computers, smartphone and tablet devices,

and Smart TVs. In addition, no prior installation or

configuration steps are required. This is beneficial to

both agent developers, because of the write once, run

anywhere approach, and to end-users, since they can

utilize the benefits of the agent technology in the most

convenient manner. Finally, its client-side runtime

performance is comparable to that of a classical,

desktop multiagent platform [5].

On the server side, the main features of Siebog

include scalability and fault-tolerance. Siebog

automatically distributes agents among available

cluster nodes, supporting large agent societies [1]. In

addition, the internal state of each agent is replicated

across the cluster. In case its host becomes

unavailable, the agent can continue its operations on

one of the remaining nodes.

As shown in Section 5, this range of functionalities

is not available in any existing multiagent solution.

During the development of both Radigost and XJAF,

and now Siebog, a strong emphasis has been put on

standards compliance. This increases the

interoperability of Siebog and non-agent-based

enterprise solutions. The learning curve is also flatter

for developers familiar with web and enterprise

software technologies.

Having in mind above-mentioned advantages of

our Siebog system, it offers great opportunities and

possibilities to be used in wide range of contemporary

applications. Some of them are briefly mentioned

below. For example, it can support virtual assistants

[8] which, thanks to the use of modern technologies,

can easily be integrated with popular cloud-based

services (i.e., online calendars and schedulers).

Similarly, due to the cross-platform nature of its client

side, Siebog can support the development of smart

environments (e.g., buildings, industrial installations,

etc.) [8]. Our system can also be used to develop

adaptive, personalized web-based e-learning

environments [10]. Finally, due to its highly

distributed nature and obtaining high-performances,

Siebog is especially useful in applications that need to

launch large numbers of agents (e.g., swarm

intelligence [11]).

Siebog is released as free software, under the

generous Apache License version 2.0, and placed on

the GitHub [12]. It is actively used for scientific

purposes [1], [2], [4], [5], [6], [7] as well as for

educational purposes [13].

The rest of the paper is organized as follows.

Section 2 presents a brief overview of XJAF and

Radigost and their functionalities. The details about

Siebog, its architecture and internal organization, are

given in Section 3. Section 4 presents a case study that

demonstrates the main benefits of Siebog. Related

work is discussed in Section 5, while the final

conclusions and future research directions are given in

Section 6.

2. Overviews of XJAF and Radigost

XJAF and Radigost represent the building blocks

of the new Siebog multiagent middleware. Therefore,

to fully understand the characteristics and

functionalities of Siebog, some basic insight into the

two sub-systems is required. This section highlights

the most important features of XJAF and Radigost.

For more information, see [4], [5], [7].

2.1. XJAF middleware

As noted earlier, Java EE includes a wide range of

technologies that can be used to realize many

functional requirements of a multiagent middleware.

Example technologies include [14]: Enterprise

JavaBeans (EJBs), server-side components that

implement the applications’ business logic, Java

Message Service (JMS), an API for asynchronous

messaging between loosely coupled components, and

Java Naming and Directory Interface, a directory

service.

XJAF is a multiagent middleware that builds on

top of Java EE [6], [7]. The focus is on using existing

standardized and well-tested technologies for

D. Mitrović, M Ivanović, M Vidaković, Z Budimac, J Vidaković

166

enterprise application development. In this way, XJAF

and its agents can be integrated into existing enterprise

applications with the minimum amount of effort.

In addition to aforementioned technologies, Java

EE offers an extensive support for clustered

computing and the deployment of scalable and fault-

tolerant applications. Obviously, XJAF successfully

exploits this fact. It uses a computer cluster in order to

achieve two important functionalities: agent load-

balancing and state replication and failover. Load-

balancing is concerned with distributing running

agents across cluster nodes, and sharing the

computational load. The state replication process

copies the agent’s internal state to a pre-defined

number of backup nodes. In case the agent’s host node

becomes unavailable, the failover process will

transparently restore the agent on one of the remaining

nodes.

XJAF consists of a number of components called

managers. In the latest incarnation of the system [1],

three managers are available: Connection Manager,

Agent Manager, and Message Manager. The

Connection Manager is in charge of connecting XJAF

clusters into a single computational network.

The Agent Manager controls the agents’ life-cycles

and maintains the directory of deployed and running

agents. Internally, it maps agents to EJB components,

and then passes them on to the enterprise application

server. The server, in turn, provides a number of

features, including concurrent access control,

transaction management, and state replication and

failover described earlier.

Finally, the Message Manager provides the inter-

agent messaging infrastructure. Again, internally it

relies on the JMS for asynchronous and reliable

message delivery and processing.

Performance evaluation results presented in [1]

outline one possible use case for XJAF. That is, our

system is well-suited for applications that need to

deploy and run large populations of agents in

computer clusters. However, being built on Java EE

standards, XJAF might help to bridge the gap between

existing enterprise solutions and the agent technology.

2.2. Radigost platform

As a multiagent platform, Radigost provides an

architectural support for the execution and interaction

of its agents. Its core functionalities include agent life-

cycle management, a communication infrastructure,

and a yellow-pages service. For example, agents can

find other (active or inactive) agents, spawn new agent

instances, and interact with agents running not only

within the system boundaries, but also in third-party

multiagent solutions.

Being a JavaScript application, the life-cycle of an

agent is inherently tied to its host web page. However,

many targeted web applications, such as online e-

learning and tutoring systems, require long-running,

ongoing interaction with end-users. One of the key

features of Radigost is, therefore, the support of agent

state persistence. The state is restored during the agent

initialization (i.e., once the user loads the host web

page), and also stored on a remote persistence server

during the finalization (i.e., when the user closes the

web page). From the agent’s point of view, the entire

process is performed transparently. The runtime state

is an arbitrary data structure, and depends on the

actual needs of the agent.

One of the key features of agents is a social

interaction. In Radigost, this interaction is achieved

through asynchronous message exchange. For

maximum performance and interoperability, the

platform utilizes the existing, standardized messaging

infrastructure of Web Workers.

The general architecture of Radigost is shown in

Figure 1. The platform includes a client and a server

side. The client side is executed inside of a web

browser, and is comprised of agents and a client

library. The client library exposes most of the

platform’s functionalities to agents and agent

developers. For example, it provides the Agent

prototype which defines the default functionalities for

all agents. It also includes the necessary functions that

support the inter-agent communication through

message exchange. Finally, in addition to inter-agent

messaging, the library provides a support for

communication between an agent and the client

application (e.g., the web page), realized through the

well-known Observer software design pattern.

Figure 1. General architecture of Radigost [5]

The server-side of Radigost includes three core

components: State Manager, Directory Facilitator,

and Gateway. State Manager enables previously

described agent state persistence. Directory Facilitator

implements the standard yellow-pages service. It

enables agents to register and publish descriptions of

their functionalities, and to search for other registered

agents.

The final server-side component of Radigost is

Gateway. It adds the interoperability to our system,

enabling its agents to seamlessly interact with agents

deployed in third-party multiagent solutions, such as

JADE [15]. The Gateway itself consists of two

specialized sub-components: Bridge and Socket.

Bridge performs on-the-fly agent name mappings and

transformations of FIPA ACL messages. It needs to be

re-implemented for each supported third-party

multiagent solution.

Siebog: an Enterprise-Scale Multiagent Middleware

167

The Socket component represents a channel for the

flow of messages between Radigost and third-party

agents. Socket relies on the WebSocket protocol,

enabling full-duplex communication: for example, not

only can Radigost agents send messages to JADE

agents, but JADE agents can also initiate the

interaction with any Radigost agent running in any

connected client. This feature is very important, as it

increases the practical applicability of our system in a

significant way.

3. The Siebog multiagent middleware

Siebog is a multiagent middleware built by inte-

grating XJAF and Radigost into a single framework.

In this way, it can harness the benefits of both sys-

tems. For example, it can provide a clustered compu-

ting on the server, and assure the platform-indepen-

dence on the client side. All of its internal components

are standards-compliant and can easily interact with or

be integrated into existing web and enterprise software

systems. For example, Siebog agents can publish their

functionalities in a form of web services, and can

easily invoke other EJB components or perform

object-relational mapping.

Besides functionalities that are directly extracted

from its individual components, Siebog has several

other important features, including the following:

 Cross-platform messaging: Radigost agents can

communicate with XJAF agents in the same way

as with Radigost agents, and vice-versa.

 Code sharing: an agent written once can be

executed both on Radigost (client-side) and XJAF

(server-side).

 Heterogeneous agent mobility: an agent can freely

move between the Radigost client and the XJAF

server. This migration is achieved indirectly,

through the internal state transfers.

This section provides more details about the

features of Siebog, and describes its architecture and

internal organization.

3.1. Software integration patterns

Heterogeneous system integration is a common

and well-understood problem. Several integration

patterns have emerged over time, including the Shared

Database, Message-Oriented Middleware, and Remote

Procedure Invocation patterns [16]. Shared Database

is applicable when different sub-systems need to share

the data, but otherwise operate independently of each

other. The database is directly accessible by all

components, and usually provides a single schema.

The Message-Oriented Middleware pattern offers the

greatest degree of component independence [16].

Different parts of the system exchange messages,

carrying (usually) small packets of information, in an

asynchronous manner.

Remote Procedure Invocation enables heteroge-

neous sub-systems of the overall application to share

their functionalities, rather than data [16]. The public

functionality of each sub-system is exposed using an

agreed-upon format. During the invocation, all

internal communication (i.e., within a sub-system) is

automatically transformed into a standardized external

protocol. Over time, Remote Procedure Invocation has

been realized in a number of concrete forms, including

CORBA, Java RMI, and web services, where web

services currently represent the most widely-used

approach.

In the case of Radigost and XJAF, the integration

approach is mainly dictated by their underlying imple-

mentation technologies. The most natural and straight-

forward way of integrating the JavaScript-based

Radigost and the Java EE-based XJAF is to use web

services. Although in Radigost especially a strong

emphasis has been put on interoperability, a tighter

integration through this layer is more beneficial in the

long run. By replacing the previously described Gate-

way component with a web services-based layer, the

two systems can:

 Cooperate more efficiently, e.g., by eliminating the

need for agent name mappings and message

transformations;

 Achieve a greater level of interoperability, through

e.g., agent mobility; and

 Offer simplified agent development process

through code sharing: an agent written once can be

executed, without modifications, on any of the two

systems.

Interoperability with third-party multiagent

solutions is still planned, but it will be redesigned as

part of XJAF.

3.2. XJAF as a web-service oriented architecture

The main goal of web services is to provide

machine-to-machine communication. In general, a

web service consists of an interface understandable by

machines (and humans), and a communication proto-

col. The first step in developing Siebog is, therefore,

to provide web service-based interfaces for XJAF

managers. This, however, can be achieved in different

ways.

XML web services represent one of the two

competing approaches for developing and using web

services. It encompasses a wide range of standards and

specifications, covering interface definition, descrip-

tion and discovery, communication, security, etc.

Communication is, in most cases, performed using

XML-encoded messages transmitted over HTTP,

although other approaches are possible as well.

Unfortunately, the sheer amount of (sometimes

conflicting) standards and specifications related to

XML web services has turned out to be their weakest

point, preventing them from gaining much traction in

the developer community.

Representational state transfer (REST) is a more

recent, alternative design approach for applications

based on web services [17]. It uses the four HTTP

D. Mitrović, M Ivanović, M Vidaković, Z Budimac, J Vidaković

168

operations – GET, POST, PUT, and DELETE – to

query and manipulate resources. Resources

themselves are represented using Uniform Resource

Identifiers (URIs). REST is a “standard-less” set of

architectural design principles and constraints. The

Stateless constraint, for example, states that all

communication between the client and the server is

stateless, in the sense that the server should not store

any contextual information about the client [17]. Web

services that adhere to all of REST principles and

constraints are often referred-to as RESTful.

It is worth noting that an older version of XJAF

has been also provided in a form of a web service-

oriented architecture, with its managers designed as

XML web services [6]. However, RESTful web

services represent a “better fit” for the intended

purpose of integrating JavaScript and Java EE

systems. They are much easier to use from the

JavaScript client, especially when JavaScript Object

Notation (JSON) format is used to represent objects.

In addition, RESTful services provide better

performance, due to less runtime overhead [18].

Since EJBs are used to implement major parts of

XJAF, including the managers, the process of

transforming them to RESTful web services is

straightforward. This is one example of how the

standards-compliance can bring benefits to software

development. The majority of work has consisted on

annotating the appropriate parts of code. Custom (de-

)serializations for JSON messages had to be provided

in some cases (e.g., for objects representing FIPA ACL

messages), but the entire process was completed

without any technical difficulties.

Table 1 outlines the proposed REST interface of

the agent manager. Its base URI is “/agents“, and in

all cases the input arguments and return values are

represented as JSON-formatted strings.

Table 1. Part of the agent manager's REST API. All methods

consume and produce objects of type application/json. Parts

of URIs enclosed in curly braces represent variables

Method URI Description

GET /classes
Returns the list of

available agent classes.

GET /running

Returns the list of

running agents (their

AIDs).

PUT
/running/

{agClass}/{name}

Runs a new agent of

the given class, and

with the given runtime

name.

DELETE /running/{aid}
Stops the agent with

the given AID.

Although managers have been re-designed as

RESTful web services, internal Java components, such

as agents, still invoke them as regular EJBs. This is

because EJB invocations incur far less overhead than

REST interfaces. For example, when both the agent

and the manager are located on the same machine

(which is the usual case), no serialization of method

parameters is required. Luckily, REST interface

definitions can be mixed in with regular EJB method

implementations.

3.3. Integrating server-side components

Within the Siebog middleware, the focus of Radi-

gost is solely on the client-side agent execution. At the

same time, there is some overlap in functionalities bet-

ween existing server-side Radigost components shown

earlier in Figure 1 and XJAF managers. For example,

the Directory Facilitator component in Radigost shares

functionalities with the XJAF’s Agent Manager.

In the process of integrating the two systems, a

new XJAF manager, named WebClient Manager, is

introduced. The new manager acts as a layer between

Radigost on the client, and XJAF on the server side. It

provides two main functionalities.

First, the WebClient Manager acts as a WebSocket

server endpoint. It delivers all messages from server-

side XJAF components (incl. agents) to client-side

agents. Secondly, the new manager takes over the role

of the State Manager in the original Radigost

configuration. That is, its REST API can be used to

persist the runtime state of a Radigost agent, and later

restore it (e.g. when the user reloads the web page).

Out of the remaining server-side components

shown in Figure 1, Directory Facilitator has been fully

replaced by the Agent Manager, while the concrete

realization of the Gateway component within the

Siebog architecture has been left for further

development.

The final proposed architecture of Siebog is shown

in Figure 2. Its client-side devices use the Agent

Manager as the directory service. Also, whenever an

agent is created on the client, its stub counterpart will

be placed on the server. To external entities, a stub

appears as a regular XJAF agent, but any messages

sent to it will be forwarded to the client agent.

Figure 2. Architecture of the Siebog multiagent middleware

The use of stubs does not introduce more

computational overhead than necessary. In the client-

server agent communication, messages have to be

Siebog: an Enterprise-Scale Multiagent Middleware

169

transferred as JSON strings. Instead of having a

centralized repository of client-side agents, which acts

as a message (de-)serializer, a more efficient approach

is used (e.g., no bottlenecks, no single point of failure,

etc.). Since the agent identifier on the client (among

other things) incorporates the browser session

identifier, it is impossible for two different client-side

agents to reference the same server-side stub.

Server-to-client messaging is achieved through the

newly introduced WebClient Manager, and over the

WebSocket protocol. Client-to-server messaging is

performed through the Message Manager’s newly

developed REST API, as described next.

3.4. Interaction between Radigost and XJAF

Both Radigost and XJAF can act as clients in an

interaction. As shown in Figure 3, Radigost includes

stub implementations of XJAF’s managers. Each stub

implementation simply performs an asynchronous

AJAX call to the appropriate RESTful interface. On

the other hand, when XJAF (or one of its agents)

needs to interact with Radigost (or one of its agents),

the standard WebSocket protocol is used. The message

is serialized on the server side into a JSON-formatted

string, transferred to the client’s web browser, de-

serialized into a corresponding Radigost message, and

delivered to the target. Unfortunately, the (de-)

serialization process cannot be fully avoided at the

moment, as web browsers in general do not support

binary data transfer through WebSockets.

Figure 3. Communication flow from Radigost to XJAF

through the REST API, and from XJAF to Radigost over the

WebSocket protocol

As noted earlier, the interaction between Radigost

and XJAF is manifested in three different ways: code

sharing, message exchange, and agent mobility.

Obviously, code sharing is possible as long as the

agent implementation satisfies all constraints imposed

by web environments, and relies only on libraries

available in both JavaScript and Java.

Message exchange is the easiest to achieve. It is

enough to extend the AID representation in both

Radigost and XJAF with a platform identifier. The

message sending routines in both sub-systems can

then simply compare this value with their host

platforms’ identifiers, and forward the message

appropriately.

The idea of code sharing is that the agent

developer can write an agent once, using his/hers

preferred programming language. The Siebog

platform then takes a care of executing the agent on

Radigost and XJAF, as needed. This feature has two

aspects: executing JavaScript agents in the Java

Virtual Machine (VM), and executing Java agents in

web browsers.

The execution of JavaScript agents on Java VM is

a much simpler task. Java Specification Request (JSR)

223 defines the standard Scripting API for Java VM

[19]. Besides executing JavaScript code, the API

offers some advanced features. For example,

JavaScript programs can import and use Java classes,

and indirectly implement Java interfaces, which are

then directly accessible in Java programs, etc.

Unfortunately, there is no standard way of

executing Java code in web browsers. The approach of

embedding XJAF agents and functionalities in Java

applets would be subpar, beating the purpose and

advantages of Radigost. However, an efficient third-

party solution does exist. Google Web Toolkit (GWT)

is a popular set of open-source libraries and tools that

transform complex Java-based web applications into

pure JavaScript applications [20]. One of its defining

features is cross-browser compatibility: GWT will

produce a number of compilations from the same Java

source, each optimized for a distinct web browser. In

this way, developers are relieved from worrying about

browser-specific implementations, and the best

possible runtime performance can be achieved. Given

its many advantages, Siebog relies on GWT for

executing Java agents in Radigost.

Although the code sharing feature of Siebog does

work in practice, developers need to be aware of its

limitations. For example, writing performance-centric

agents in JavaScript and then executing them in Java

VM might not be the best option. Instead, it would be

better to move the core implementation to a Java-

based agent, and then communicate with it from

Radigost. Similarly, although powerful, GWT poses a

number of limitations on Java implementations; more

details are available in the official GWT

documentation.

The final aspect of the Radigost-XJAF interaction

is agent mobility. For example, an agent running in the

web browser should be able to move to the server,

replicate and distribute itself across the cluster, and

finally return to the web browser carrying the

computational result. With the existence of state

persistence and code sharing, this functionality can be

achieved in a straightforward manner. An example of

its use is given in the next section.

4. A case study

The previous performance evaluation of Radigost

presented in [5] has shown that the system offers the

runtime execution speed comparable to that of a

desktop-based multiagent solution. Similarly, it has

D. Mitrović, M Ivanović, M Vidaković, Z Budimac, J Vidaković

170

been shown in [1] that XJAF performs better than a

third-party multiagent solution for scenarios with large

populations of agents. Here, instead of a performance

evaluation, we will demonstrate one practical

application of Siebog. The case study utilizes new

features that emerge from the proposed Radigost-

XJAF integration. More concretely, it shows the

heterogeneous agent mobility in practice.

The case study includes a couple of different

hardware devices; for example, a smartphone and a

Smart TV. The user visits the application’s web page

on the smartphone, and takes a photo using the

device’s camera. He/she then activates the mobile

agent, which:

 Moves to the server, carrying the photo with it;

 Persists the photo in the user’s database;

 Moves to the Smart TV, and shows the photo.

The application’s execution flow is shown in

Figure 4. A simplified version of this case study was

previously used in [4], that, in turn, was inspired by

the case study in [21].

Figure 4. Execution flow of the presented case study

As noted, whenever a web page with Siebog

agents is loaded on a client device, the agents and the

client device itself are registered with the server. This

enables any interested party to inspect and interact

with client-side Siebog agents regardless of their

physical location. Also, it provides the starting point

for agent mobility required here.

The case study consists of the host web page and

the mobile agent. The web page shows a list of

connected client devices and a number of control

buttons. It does not require any external plugins to

take photos, since the media capture and streaming are

part of the HTML5 standard. Security is provided at

the web browser level: the user is asked whether the

application can access the camera.

The full source code of the mobile agent, named

PhotoAgent, is shown in Listing 1. Once the user takes

a photo, the agent is started. Its initialization function

onInit, receives the photo along with the destination

device, and the user’s session identifier. At the end of

the initialization phase, the agent moves itself to the

server.

Before the migration process starts, Siebog retrie-

ves and remembers the agent’s internal state. The ac-

tual migration is performed by making the appropriate

REST API call to the WebClient Manager.

On the server side, each JavaScript agent is em-

bedded in an instance of the RadigostAgent compo-

nent. That is, RadigostAgent is a server-side (i.e.,

XJAF) agent that acts as a wrapper around a

JavaScript agent. It uses the previously mentioned

Java Scripting API to execute and interact with the

embedded JavaScript code. For example, Radigost-

Agent will first restore the agent’s internal state, and

then invoke its onArrived function.

In order to better support the execution of client-

side agents on the server, a special helper class has

been developed. In the given source code, the agent

uses this helper class to persist the photo in the user’s

database. The helper’s function persist relies on the

Java Persistence API, a Java EE specification for

object-relational mapping. As the final execution step

on the server, the agent migrates to the destination

client to show the photo.

Listing 1. The full source code of the PhotoAgent used in

the case study. This mobile agent moves between client

devices and the server, carrying the user's photo with it.

importScripts("/siebog/radigost.js");
function PhotoAgent() { };
PhotoAgent.prototype = new Agent();

PhotoAgent.prototype.onInit = function(args) {
 this.photo = args.photo;
 this.destClient = args.destClient;
 this.sessionId = args.sessionId;
 this.moveToServer();
};

PhotoAgent.prototype.onArrived =
 function(hap, isServer) {
 if (isServer) {
 var helper = this.getRadigostHelper();
 helper.persist(this.sessionId, this.photo);
 helper.moveToClient(this.aid,
 this.destClient);
 } else { // on the dest client, show the
photo
 this.onStep(this.photo);
 }
};

In conclusion, the case study demonstrates the

benefits of combining agents with HTML5 and Java

EE technologies. By following the well-established

and widely-used software development standards, the

Siebog multiagent middleware can seamlessly

integrate software agents into modern web and

enterprise applications.

Siebog: an Enterprise-Scale Multiagent Middleware

171

5. Related work

This section provides a comparison of Siebog and

other existing multiagent middlewares. In the first

part, the focus is on the client-side (i.e., Radigost-

provided) features of our framework, while the second

part compares its server-side (i.e., XJAF-provided)

functionalities.

Generally speaking it is evident lack of contem-

porary research efforts and published papers concer-

ning fault tolerance in agent clusters which is, in fact,

one of the main advantages of our system. Few papers

[22], [23] deal only with theoretical aspects of the

fault tolerance in agent clusters, but they are rather out

of date. On the other hand, only paper [1] deals with

industrial-based solutions for agent clustering, and

that paper is based on and uses XJAF.

To the best of our knowledge, papers regarding

client-side agents are also not so common. According

to that, the following subsections will describe related

work in both areas (client-side and server-side) using

widely available, contemporary and frequently used

agent frameworks, middlewares and architectures.

5.1. Comparing the client-side features of Siebog

Currently, there exist several web-based multiagent

middlewares. JACK Intelligent Agents WebBot utilizes

several enterprise Java technologies. The framework is

executed on the server, and consists of three layers:

Servlet Container, which acts as an interface to the

application front-end JACK application, which

contains the actual agent code, and WebBot, which

acts as an intermediary between the other two layers.

The popular multiagent framework JADE is

known for its extensibility [15]. The web support is

added through JadeGateway that acts as a link

between server-side agents and remote clients. An

additional Java-based web agent framework is JaCa-

Web, that enables the web-based execution of Jason

agents, along with the CArtAgO framework for

artefacts' modeling [24].

Smart Python multi-Agent Development Environ-

ment (SPADE) is a client-server architecture [25]. It

relies on the existing communication protocol for

agent interaction, and offers a number of FIPA-

standardized agent services.

The main difference between Siebog and all of

these middlewares is that its client side (i.e., Radigost)

is developed in the manner of modern web

applications: using the HTML5 set of technologies.

An important advantage of this approach is greater

platform-independence: Siebog is the only system

among this group that requires no virtual machine or

browser plug-in to run. Also, it is readily available to

end-users, without any installation or configuration

steps. Finally, unlike JACK WebBot and JadeGateway,

Siebog agents are actually executed on the client side,

reducing the server load.

The only other purely HTML5-based agent plat-

form that we are aware of is described in [21]. There

are several important differences between the two

systems. Siebog is more advanced on the client side,

as it fully utilizes the advantages of Web Workers and

the WebSocket protocol. On the server side, while

Siebog relies on Java EE, their platform conveniently

uses Node.js, a JavaScript-based server framework.

Although this approach simplifies the implementation

of certain functionalities, such as agent mobility, it

lacks the cluster-based features of Java EE available in

XJAF.

5.2. Comparing the server-side features of Siebog

Currently, there are several multiagent middle-

wares that offer agent load-balancing and/or fault-

tolerance. Cognitive Agent Architecture (Cougaar) is a

Java-based distributed agent architecture specifically

designed for unstable environments [26]. Cougaar

provides state persistence and error recovery for its

agents. Since its internal components are designed as

agents, they are protected by the fault-tolerance sub-

system too. Agent distribution and fault-tolerant

features in Cougaar are more powerful than those

found in XJAF. However, our system demonstrates

how many of these features can be realized with much

less effort and much fewer resources, by using

standard and ready-made solutions in Java EE.

Magentix is a Linux-based multiagent middleware.

It is built with the runtime performance as the primary

focus [27]. For this purpose, the system is heavily

based on low-level features offered by the operating

system. For example, each agent is represented by a

Linux process with three internal threads. The

platform itself can be distributed across a number of

computers. Although it achieves remarkable runtime

performance, Magentix lacks previously described

features of XJAF that stem from the use of computer

clusters.

JADE is a popular, Java-based multiagent middle-

ware [15]. It supports the development of both

reactive and cognitive agents, and features an exten-

sive ecosystem of plug-ins. JADE’s agent containers

can be distributed across a computer network, and

have a support for fault-tolerance at the container

level. XJAF provides more advanced load-balancing

and fault-tolerant features than JADE. And as shown

in [1], it performs better in scenarios with large

populations of agents.

Whitestein LS/TS includes a set of tools, a UML-

based modeling language, and a high-level library for

developing agents [28]. It’s Java-based and offered in

three separate editions. However, its higher-level

abstractions enable an agent written once to execute

on any of the editions without changes. Although the

Enterprise edition of Whitestein LS/TS is developed in

Java EE, it is a commercial product, and so a deeper

analysis could not be performed.

Finally, as it can be concluded from the presented

analysis, none of the described multiagent middle-

wares provides the combination of features available

D. Mitrović, M Ivanović, M Vidaković, Z Budimac, J Vidaković

172

in Siebog, namely, the HTML5-based agent support

on the client side, and the Java EE-based agent

support for clustered environments on the server side.

This combination of functionalities is in line with

modern approaches to enterprise web application

development, enabling an easier integration of Siebog

and its agents into mainstream enterprise solutions.

6. Conclusions and future work

Siebog is a multiagent middleware that builds on

the successes of HTML5 and Java EE. The main goal

of this middleware is to offer high performance and

platform independence for software agents. As shown

in this paper, those features are realized using modern

web and enterprise application development standards.

In this way, any multiagent system built on top of

Siebog has several important features.

On the client side, Siebog offers true platform-

independence. By running in web browsers, Siebog

agents can be executed on a wide variety of hardware

and software platforms, including desktops,

smartphones and tablets, and Smart TVs. This is

beneficial to both agent developers, which can write

agents in the write once, run anywhere manner, and to

end-users, which can access their Siebog-based

applications in the most convenient way.

On the server side, Siebog runs on a top of

computer clusters offering a high-availability of

deployed applications. That is, the system achieves

scalability through automated agent load-balancing

and fault-tolerance through agent state replication and

failover. These advanced functionalities were not

implemented from scratch. Instead, Siebog uses

standard, readily made technical solutions of Java EE.

As discussed earlier, the Siebog middleware is not

simply a set of individual components. Our earlier

multiagent middlewares, Radigost and XJAF, have

been integrated in a way that enables cross-platform

agent interaction, code sharing, and even

heterogeneous agent mobility.

The future work on Siebog will be focused on a

number of areas. Here, security plays an important

role. As shown in the case study, a mobile agent can

easily move from one client to another, while carrying

custom data with it. This could present serious

security issues, and therefore a full assessment of

possible security flaws is required.

The social ability of agents is one of the defining

characteristics of the agent technology. Therefore, we

are currently incorporating a number of standard

interaction and action coordination approaches into

our system. The main focus is on reliability: Siebog

will employ state replication in order to assure that the

interaction and coordination sub-systems continue to

operate regardless of hardware and software failures.

For any system to become production-ready,

applications that are more practical are needed. Given

the highly-distributed nature of Siebog, the initial

focus will be on applications in the field of ant colony

optimizations [11]. Future work will also include

practical applications in web environments, including

web service management [29], personalization and

recommendation of online material [30], [31], grid

computing [31], online games [20], web crawling

[33], and various kinds of online pedagogical agents

[34], [35]. Having in mind that Siebog provides the

necessary infrastructural support for fault tolerant

clustered environment as well as having agents

running in wide range of devices, many of the above-

mentioned applications can benefit from using Siebog.

Currently, Siebog is suitable for developing not

only reactive, but also reasoning BDI (belief-desire-

intention) agents. For the latter, it includes a Java EE

version of the AgentSpeak [36] that is an agent-

oriented programming language for the popular Jason

platform. We are also in the process of developing a

unique, distributed reasoning engine.

Finally, having in mind all advantages, mentioned

within the paper, that our system posses and offers, it

represents also a good starting point for development

of more sophisticated and „clever“ agents [37]. For

example Agreement technologies [38], [39] play

important role in wide range of computer systems and

environments in which autonomous agents negotiate

usually on behalf of humans to achieve mutually

acceptable agreements. Interactions between agents

and environment must be also supported by

sophisticated activities like reasoning, learning, or

planning. Concepts like norms, trust, reputation, and

argumentation are essential in interactions between

agents within such systems. Obviously it is not easy

task to handle, maintain and incorporate all such

sophisticated concepts within an integral framework.

But, possibilities for practical development and real

applications of high-quality, high-performance, and

highly reliable agents based on agreement

technologies with Siebog are promising. Additional

superiority of Siebog agents in the area of agreement

technologies lies in the fact that they can easily run on

a wide variety of software and hardware platforms and

can harness the benefits of clustered environments.

Acknowledgements

This work was partially supported by Ministry of

Education, Science and Technological Development of

the Republic of Serbia, through project no. OI174023:

“Intelligent techniques and their integration into wide-

spectrum decision support.”

References

[1] D. Mitrović, M. Ivanović, M. Vidaković, Z. Budi-

mac. Extensible Java EE-based agent framework in

clustered environments. Lecture Notes in Computer

Science, 2014, Vol. 8732, 202-215.

[2] D. Mitrović, M. Ivanović, M. Vidaković, Z. Budi-

mac. A scalable Distributed architecture for web-based

software agents. Lecture Notes in Computer Science,

2015, Vol. 9329, 67-76.

Siebog: an Enterprise-Scale Multiagent Middleware

173

[3] S. Xinogalos, K. E. Psannis, A. Sifaleras. Recent ad-

vances delivered by HTML 5 in mobile cloud compu-

ting applications: a survey. In: Proceedings of the Fifth

Balkan Conference in Informatics, (BCI 2012), ACM,

New York, NY, USA, 2012, pp. 199-204.

[4] D. Mitrović, M. Ivanović, C. Bădică. Delivering the

multiagent technology to end-users through the web.

In: Proceedings of the 4th International Conference on

Web Intelligence, Mining and Semantics, Article no.

54, ACM, New York, NY, USA, 2014.

[5] D. Mitrović, M. Ivanović, Z. Budimac, M. Vidako-

vić. Radigost: Interoperable web-based multi-agent

platform. Journal of Systems and Software, 2014,

Vol. 90, No. 4, 167–178.

[6] D. Mitrović, M. Ivanović, Z. Budimac, M. Vidako-

vić. Supporting heterogeneous agent mobility with

ALAS. Computer Science and Information Systems,

2012, Vol. 9, No. 3, 1203-1229.

[7] M. Vidaković, M. Ivanović, D. Mitrović, Z. Budi-

mac. Extensible Java EE-based agent framework –

past, present, future. In: M. Ganzha and L. C. Jain,

(eds.), Multiagent Systems and Applications, Vol. 45 of

Intelligent Systems Reference Library, pp. 55-88,

Springer Berlin Heidelberg, 2013.

[8] V. Dignum. An overview of agents in knowledge

management. In: Proceedings of INAP-05, Lecture

Notes in Artificial Intelligence, 2006, Vol. 4369, pp.

175-189.

[9] H. Nakashima, H. Aghajan, J. C. Augusto. Hand-

book of ambient intelligence and smart environments.

Springer, 2010.

[10] B. Vesin, M. Ivanović, A. Klašnja-Milićević, Z. Bu-

dimac. Protus 2.0: Ontology-based semantic

recommendation in programming tutoring system.

Expert Systems with Applications, 2012, Vol. 39, No.

12, 12229-12246.

[11] S. Ilie, C. Bădică. Multi-agent approach to distributed

ant colony optimization. Science of Computer

Programming, 2013, Vol. 78, No. 6, 762-774.

[12] Siebog: An Enterprise-Scale Multiagent Middleware.

Github repository. Available:

https://github.com/gcvt/siebog.

[13] Distributed Artificial Intelligence Course. Faculty of

Technical Sciences, University of Novi Sad. Available:

http://informatika.ftn.uns.ac.rs/DVIIA/

[14] A. Gonclaves. Beginning Java EETM 6 platform with

GlassFish 3, Second Edition. ISBN: 978-1-4302-2889-

9, Apress Media LLC, 2010.

[15] F. Bellifemine, G. Caire, D. Greenwood. Developing

Multi-Agent Systems with JADE. John Wiley & Sons,

2007.

[16] G. Hohpe, B. Woolf. Enterprise integration patterns:

designing, building, and deploying messaging

solutions. ISBN: 978-0321200686, Addison Wesley,

2003.

[17] R. T. Fielding. Architectural styles and the design of

network-based software architectures. PhD Disserta-

tion, University of California, Irvine, 2000.

[18] G. Mulligan, D. Gracanin. A comparison of SOAP

and REST implementations of a service based

interaction independence middleware framework. In:

Proceedings of the 2009 Winter Simulation

Conference, 2009, pp. 1423-1432.

[19] M. Grogan. JSR-223: Scripting for the JavaTM plat-

form. Sun Microsystems, Inc. 2006.

[20] A. Tacy, R. Hanson, J. Essington, A. Tökke. GWT

in action, second edition. ISBN: 978-1935182849,

Manning Publications, 2014.

[21] L. Jarvenpaa, M. Lintinen, A.-L. Mattila, T. Mikk-

onen, K. Systa, J.-P. Voutilainen. Mobile agents for

the internet of things. In: 17th International

Conference on System Theory, Control and

Computing, 2013, pp. 763-767.

[22] K. Park. A Fault Tolerant Mobile Agent Model in Re-

plicated Secure Services. Lecture Notes in Computer

Science, 2004, Vol. 3043, 500-509.

[23] H. Pals, S. Petri, C. Grewe. FANTOMAS Fault Tole-

rance for Mobile Agents in Clusters. Lecture Notes in

Computer Science, 2000, Vol. 1800, 1236-1247.

[24] M. Minotti, A. Santi, A. Ricci. Developing web client

applications with Jaca-Web. 11th Workshop nazionale

“Dagli Oggetti agli Agenti”, September 2010.

[25] E. Argente, J. Palanca, G. Aranda, V. Julian,

V. Botti, A. Garcia-Fornes, A. Espinosa. Supporting

agent organizations. In: Burkhard, H.D., Lindemann,

G., Verbrugge, R., Varga, L. (eds.) Multi-Agent

Systems and Applications V, Lecture Notes in

Computer Science, 2007, Vol. 4696, pp. 236-245.

[26] S. Siracuse, R. Tomlinson, T. Wright, J. Zinky.

Experience with task/allocation coordination primitive

for building survivable multi-agent systems. In:

International Conference on Integration of Knowledge

Intensive Multi-Agent Systems, April 2007 pp. 40-45.

[27] J. M. Alberola, J. M. Such, V. Botti, A. Espinosa,

A. Garcia-Fornes. A scalable multiagent platform for

large systems. Computer Science and Information

Systems, 2013, Vol. 10, No. 1, 51-77.

[28] G. Rimassa, M. Calisti, M. E. Kernland. Living sys-

tems ® technology suite. In: R. Unland, M. Klusch, M.

Calisti, (eds.), Software Agent-Based Applications,

Platforms and Development Kits, pp. 73-93,

Birkhauser Verlag, 2005.

[29] J. Bentahar, Z. Maamar, D. Benslimane, P. Thiran.

Using argumentative agents to manage communities of

web services. In: 21st International Conference on

Advanced Information Networking and Applications

Workshops, May 2007, Vol. 2, pp. 588-593.

[30] P. Lops, M. Gemmis, G. Semeraro. Content-based

recommender systems: State of the art and trends. In:

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,

(eds.), Recommender Systems Handbook, pp. 73-105.

Springer US, 2011.

[31] R. M. Swezey, S. Shiramatsu, T. Ozono, T. Shinta-

ni. Intelligent page recommender agents: real-time

content delivery for articles and pages related to

similar topics. In: K. G. Mehrotra, C. K. Mohan, J. C.

Oh, P. K. Varshney, and M. Ali, (eds.), Modern

Approaches in Applied Intelligence, 2011, Vol. 6704

of Lecture Notes in Computer Science, pp. 173-182.

[32] J. Cao, D. P. Spooner, S. A. Jarvis, G. R. Nudd.

Grid load balancing using intelligent agents. Future

Generation Computer Systems, 2005, Vol. 21, No. 1,

135–149.

[33] L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng,

P. Kolari. Finding and ranking knowledge on the

semantic web. In Y. Gil, E. Motta, V. Benjamins, and

M. Musen, (eds.), Vol. 3729 of Lecture Notes in

Computer Science, pp. 156–170. Springer Berlin

Heidelberg, 2005.

[34] Y.-M. Cheng, L.-S. Chen, H.-C. Huang, S.-F. Weng,

Y.-G. Chen, C.-H. Lin. Building a general purpose

D. Mitrović, M Ivanović, M Vidaković, Z Budimac, J Vidaković

174

pedagogical agent in a web-based multimedia clinical

simulation system for medical education. IEEE

Transactions on Learning Technologies, 2009, Vol. 2,

No. 3, 216–225.

[35] M. Ivanović, D. Mitrović, Z. Budimac, M.

Vidaković. Metadata harvesting learning resources -

an agent-oriented approach. In: Proceedings of the

15th International Conference on System Theory,

Control and Computing, October 2011, pp. 306-311.

[36] R.H. Bordini, J.F. Hubner. BDI agent programming

in AgentSpeak using Jason. In F. Toni and P. Torroni,

(eds.), Computational Logic in Multi-Agent Systems,

Vol. 3900 of Lecture Notes in Computer Science, pp.

143-164, Springer Berlin Heidelberg, 2006.

[37] S. Heras. Case-based argumentation framework for

agent societies. Ph.D. thesis, Departamento de

Sistemas Informáticos y Computación. Universitat

Politècnica de València, 2011.

[38] S. Ossowski. Agreement Technologies, Law,

Governance and Technology Series, 2013, Vol. 8, No.

XXXV.

[39] M. Ivanović, Z. Budimac. Agreements Technologies -

Towards Sophisticated Software Agents,

Computational Collective Intelligence Technologies

and Applications, 2015, Vol. 8733, 105-126.

Received July 2015.

