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Abstract. A direct algorithm of possibilistic clustering is the effective tool for the data analysis. The approach is 
based on the concept of allotment among fuzzy clusters. To establish the number of clusters in a data set, some validity 
measures are presented in this paper. Illustrative examples of application of proposed validity measures to some well-
known data sets are given in comparison with a well-known cluster validity index for objective function-based fuzzy 
clustering algorithms. Preliminary conclusions are formulated. 
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1. Introduction 

The first subsection of this introduction provides a 
brief review of fuzzy clustering methods. A problem 
of cluster validity is stated in the second subsection. 

1.1. Preliminary remarks 

Clustering is a process aiming at grouping a set of 
objects into classes according to the characteristics of 
data so that objects within a cluster have high mutual 
similarity while objects in different clusters are dissi-
milar. Fuzzy sets theory, which was proposed by 
Zadeh [23], gives an idea of uncertainty of belonging 
to a cluster, which is described by a membership func-
tion. Fuzzy clustering methods have been applied ef-
fectively in image processing, data analysis, symbol 
recognition and modeling. Heuristic methods of fuzzy 
clustering, hierarchical methods of fuzzy clustering 
and optimization methods of fuzzy clustering were 
proposed by different researchers.  

The most widespread approach in fuzzy clustering 
is the optimization approach and the traditional opti-
mization methods of fuzzy clustering are based on the 
concept of fuzzy c -partition. Objective function-
based fuzzy clustering algorithms can in general be 
divided into two types: object versus relational. The 
object data clustering methods can be applied if the 
objects are represented as points in some multidimen-
sional space. The best-known optimization approach 
to fuzzy clustering is the method of fuzzy c -means, 
developed by Bezdek [2]. The FCM -algorithm is 
based on an iterative optimization of the fuzzy ob-
jective function, which takes the form: 
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where liu , 1, ,l c= … , 1, ,i n= …  is the membership 
degree, ix , {1, , }i n∈ …  is the data point, 1{ , , }cτ τΤ = …  
is the set fuzzy clusters prototypes and 1γ >  is the 
weighting exponent. Note that the concept of fuzzy c-
partition is defined by the conditions (2). So, the fuzzy 
c -partition can be arrayed as a ( )c n×  matrix [ ]liP u= . 

The FCM-algorithm is the basis of the family of 
fuzzy clustering algorithms. These objective function-
based fuzzy clustering algorithms were proposed by 
different authors and they are described by Höppner, 
Klawonn, Kruse and Runkler [7] in detail. 

In the relational approach to fuzzy clustering, 
the problem of the data classification is solved by 
expressing a relation which quantifies either similarity, 
or dissimilarity, between pairs of objects. The most 
popular examples of fuzzy relational clustering are the 
Windham’s AP-algorithm [21], the Hathaway, Daven-
port, and Bezdek’s RFCM-algorithm [6], and the 
ARCA-algorithm which was proposed by Corsini, 
Lazzerini, and Marcelloni in [5]. For example, the 
ARCA -algorithm is based on the criterion 
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where ( , )i jd x x  is the dissimilarity relation between 
the pair of objects ix  and jx , and ( , )l

jd x τ  is the 
relation between the prototype lτ , {1, , }l c∈ …  and the 
object jx , {1, , }j n∈ … . 

However, the condition of fuzzy c-partition is very 
difficult from essential positions. So, a possibilistic 
approach to clustering was proposed by Krishnapuram 
and Keller in [9] and developed by other researchers. 
This approach can be considered as a way in the 
optimization approach in fuzzy clustering because all 
methods of possibilistic clustering are objective 
function-based methods.  

A concept of possibilistic partition is a basis of 
possibilistic clustering methods and membership 
values liμ , 1, ,l c= … , 1, ,i n= …  can be interpreted as 
the values of typicality degree. For each object ix  

1, ,i n= …  the grades of membership should satisfy the 
conditions of a possibilistic partition:  
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So, the family of fuzzy sets 
( ) { | 1, , }lX A l c c nΥ = = ≤  is the possibilistic partition of 

the initial set of objects 1{ ,..., }nX x x=  if condition (4) 
is met. Obviously the conditions of the possibilistic 
partition (4) are more flexible than the conditions of 
the fuzzy c -partition (2). 

Heuristic algorithms of fuzzy clustering display 
high level of essential clarity and low level of a comp-
lexity. Some heuristic clustering algorithms are based 
on a definition of a cluster concept and the aim of 
these algorithms is cluster detection conform to a gi-
ven definition. Mandel [10] noted that such algorithms 
are called algorithms of direct classification or direct 
clustering algorithms. Direct heuristic algorithms of 
fuzzy clustering are simple and very effective in many 
cases. The algorithm of Chiang, Yue, and Yin [4] is a 
very good illustration for these characterizations. 

An outline for a new heuristic method of fuzzy 
clustering was presented in [13], where concepts of 
fuzzy α -cluster and allotment among fuzzy α -
clusters were introduced and a basic version of direct 
fuzzy clustering algorithm was described. The basic 
version of direct fuzzy clustering algorithm requires 
that the number c of fuzzy α -clusters be fixed. That is 
why the basic version of the algorithm, which is 
described in [13], can be called the ( )D AFC c− -algo-
rithm [17]. Moreover, the allotment of elements of the 
set of classified objects among fuzzy α -clusters can 
be considered as a special case of possibilistic 
partition (4). These facts were demonstrated in [16] 
and [18]. So, the ( )D AFC c− -algorithm can be con-
sidered as a direct algorithm of possibilistic clustering. 

1.2. A cluster validity problem  

The most important problem of fuzzy clustering is 
neither the choice of the numerical procedure nor the 
distance to use but concerns the number c of fuzzy 
clusters to look for. Really, lacking in a priori know-
ledge of the data structure, there is no reason to choose 
a particular value of c and one must find a way to 
measure the acceptance with which cluster structure 
has been identified by a clustering procedure. This is 
the so-called cluster validity problem. 

The classical approach to cluster validity for fuzzy 
clustering is based on directly evaluating the fuzzy c-
partition. Measures of cluster validity can be used for 
the purpose. Many authors have proposed several 
measures of cluster validity associated with fuzzy c-
partitions. The cluster validity problem can be illust-
rated by the method of fuzzy c-means.  

Various cluster validity indeces for the FCM-
algorithm were proposed by different researchers [7]. 
For example, Xie and Beni proposed in [22] well-
known validity index, which measures overall average 
compactness against separation of the fuzzy c-parti-
tion. So, the compactness and separation index is 
defined in [22] as follows: 
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The number of clusters that minimizes ( ; )csV P Τ  is 
taken as the optimal number c  of fuzzy clusters. The 
compactness and separation index ( ; )csV P Τ  is most 
popular cluster validity criteria for the FCM-algo-
rithm. Notable that the compactness and separation 
index ( ; )csV P Τ  is appropriate for the ARCA-algorithm, 
because the ARCA-algorithm, though being a rela-
tional clustering algorithm, generates prototypes. So, 
the validity measure will be used throughout the 
paper.  

The results of application of the ( )D AFC c− -
algorithm to the Anderson’s Iris data [1] are 
considered in [13], [15], [17] and the results show that 
the ( )D AFC c− -algorithm is a precise and effective 
numerical procedure for solving classification prob-
lems. Moreover, the method of the rapid prototyping 
fuzzy controllers which is based on deriving fuzzy 
classification rules from the data on a basis of clus-
tering results obtained from the ( )D AFC c− -algorithm 
is proposed in [19]. However, validity measures are 
not proposed for the ( )D AFC c− -algorithm. So, the 
main goal of this paper is a consideration of the 
problem of cluster validity for the ( )D AFC c− -algo-
rithm. The contents of this paper is as follows: in the 
second section, basic concepts of the method are 
considered and the plan of the ( )D AFC c− -algorithm 
is proposed, in the third section, methods of evaluation 
of the fuzzy clusters are considered and cluster 
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validity indices are proposed, in the fourth section, 
methods of the data preprocessing are considered and 
numerical examples of application of the ( )D AFC c− -
algorithm with the proposed validity measures to 
some well-known data sets are given in comparison 
with the compactness and separation index for 
objective function-based fuzzy clustering algorithms. 
In the fifth section some final remarks are stated.  

2. Outlines of the clustering method 

The basic concepts of the heuristic method of pos-
sibilistic clustering are considered in the first subsec-
tion. A plan of the ( )D AFC c− -algorithm is presented 
in the second subsection of the section. 

2.1. Basic concepts 

Fuzzy clustering can be considered as a technique 
of representation of the initial set of objects by fuzzy 
clusters. The structure of the set of objects can be 
described by some fuzzy tolerance, that is – a fuzzy 
binary intransitive relation. So, a fuzzy cluster can be 
understood as some fuzzy subset originated by fuzzy 
tolerance relation stipulating that the similarity degree 
of the fuzzy subset elements is not less than some 
threshold value. In other words, the value of a mem-
bership function of each element of the fuzzy cluster is 
the degree of similarity of the object to some typical 
object of fuzzy cluster. 

Let us remind the basic concepts of the clustering 
method based on the concept of allotment among 
fuzzy clusters, which was proposed in [13]. The 
concept of fuzzy tolerance is the basis for the concept 
of fuzzy α -cluster. That is why definition of fuzzy 
tolerance must be considered in the first place.  

Let 1{ ,..., }nX x x=  be the initial set of elements 
and : [0,1]T X X× →  some binary fuzzy relation on 

1{ ,..., }nX x x=  with ( , ) [0,1]T i jx xμ ∈ , ,i jx x X∀ ∈  being 
its membership function. 

Definition 2.1. Fuzzy tolerance is the fuzzy binary 
intransitive relation which possesses the symmetricity 
property  

( , ) ( , ), ,T i j T j i i jx x x x x x Xμ μ= ∀ ∈ , (6) 

and the reflexivity property 
( , ) 1,T i i ix x x Xμ = ∀ ∈ . (7) 

The notions of powerful fuzzy tolerance, feeble 
fuzzy tolerance and strict feeble fuzzy tolerance were 
considered in [10], as well. In this context, the clas-
sical fuzzy tolerance in the sense of definition 2.1 was 
called usual fuzzy tolerance. However, the essence of 
the method here considered does not depend on the 
kind of fuzzy tolerance. That is why the method herein 
is described for any fuzzy tolerance T. A fuzzy 
tolerance T on 1{ ,..., }nX x x=  can be represented by a 
matrix [ ( , )]n n T i jT x xμ× = , , 1, ,i j n= … . 

Let us consider the general definition of fuzzy 
cluster, the concept of the fuzzy cluster's typical point 
and the concept of the fuzzy allotment of objects. The 
number c of fuzzy clusters can be equal to the number 
of objects, n. This is taken into account in further 
considerations. 

Let 1{ ,..., }nX x x=  be the initial set of objects. Let T 
be a fuzzy tolerance on X and α  be α -level value of 
T, (0,1]α ∈ . Columns or lines of the fuzzy tolerance 
matrix are fuzzy sets 1{ ,..., }nA A . Let 1{ ,..., }nA A  be 
fuzzy sets on X, which are generated by a fuzzy 
tolerance T.  

Definition 2.2. The α -level fuzzy set 
( ) {( , ( )) | ( ) , [1, ]}l l
l

i i iA A
A x x x l nα μ μ α= ≥ ∈  is fuzzy α -clus-

ter or, simply, fuzzy cluster. So ( )
l lA Aα ⊆ , (0,1]α ∈ , 

1{ , , }l nA A A∈ …  and liμ  is the membership degree of 
the element ix X∈  for some fuzzy cluster ( )

lAα , 
(0,1]α ∈ , [1, ]l n∈ . Value of α  is the tolerance thre-

shold of fuzzy clusters elements.  
The membership degree of the element ix X∈  for 

some fuzzy cluster ( )
lAα , (0,1]α ∈ , [1, ]l n∈  can be de-

fined as a 
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where an α -level { | ( ) }l
l

i iA
A x X xα μ α= ∈ ≥ , (0,1]α ∈  

of a fuzzy set lA  is the support of the fuzzy cluster 
( )
lAα . So, condition ( )( )l lA Supp Aα α=  is met for each 

fuzzy cluster ( )
lAα , (0,1]α ∈ , [1, ]l n∈ . Membership 

degree can be interpreted as a degree of typicality of 
an element to a fuzzy cluster. The value of a member-
ship function of each element of the fuzzy cluster in 
the sense of Definition 2.2 is the degree of similarity 
of the object to some typical object of fuzzy cluster. 
So, fuzzy clusters in Definition 2.2 are different from 
fuzzy clusters in the sense (2) from the methodolo-
gical positions.  

In other words, if columns or lines of fuzzy 
tolerance T matrix are fuzzy sets 1{ ,..., }nA A  on X, then 
fuzzy clusters 1

( ) ( ){ ,..., }nA Aα α  are fuzzy subsets of fuzzy 
sets 1{ ,..., }nA A  for some value α , (0,1]α ∈ . The value 
zero for a fuzzy set membership function is equivalent 
to non-belonging of an element to a fuzzy set. That is 
why values of tolerance threshold α  are considered in 
the interval (0,1] .  

Definition 2.3. Let T be a fuzzy tolerance on X, where 
X is the set of elements, and 1

( ) ( ){ ,..., }nA Aα α  be the 
family of fuzzy clusters for some (0,1]α ∈ . The point 

l l
e Aατ ∈ , for which  

arg max
i

l
e lix
τ μ= , l

ix Aα∀ ∈  (9) 
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is called a typical point of the fuzzy cluster ( )
lAα , 

(0,1]α ∈ , [1, ]l n∈ .  
So, the expression (8) defines a possibility distri-

bution function for some lτ  over the domain of 
discourse consisting of all objects ix X∈ . The distri-
bution will be denoted by ( )l ixπ  and the correspon-
ding measure of possibility will be denoted by ( )l ixΠ  
[18]. Obviously, a typical point of a fuzzy cluster does 
not depend on the value of tolerance threshold. 
Moreover, a fuzzy cluster can have several typical 
points. That is why symbol e is the index of the typical 
point.  

Definition 2.4. Let  
( )( ) { | 1, , 2 , (0,1]}l

zR X A l c c nα
α α= = ≤ ≤ ∈  be a family of 

fuzzy clusters for some value of tolerance threshold 
α , (0,1]α ∈ , which are generated by some fuzzy 
tolerance T on the initial set of elements 

1{ ,..., }nX x x= . If condition  

1

0
c

li
l

μ
=

>∑ , ix X∀ ∈  (10) 

is met for all fuzzy clusters ( ) ( )l
zA R Xα

α ∈ , 1,l c= , 
c n≤ , then the family is the allotment of elements of 
the set 1{ ,..., }nX x x=  among fuzzy clusters 

( ){ , 1, , 2 }lA l c c nα = ≤ ≤  for some value of the tolerance 
threshold α . 

It should be noted that several allotments ( )zR Xα  
can exist for some tolerance threshold α . That is why 
symbol z is the index of an allotment.  

The condition (10) requires that every object ix , 
1, ,i n= …  must be assigned to at least one fuzzy clus-

ter ( )
lA α , 1,l c= , c n≤  with the membership degree 

higher than zero. The condition 2 c n≤ ≤  requires that 
the number of fuzzy clusters in each allotment ( )zR Xα  
must be equal or more than two. Otherwise, the 
unique fuzzy cluster will contain all objects, possibly 
with different positive membership degrees. 

The definition of the allotment among fuzzy clus-
ters (10) is similar to the definition of the possibilistic 
partition (4). This fact was shown in [16] and [18]. So, 
the allotment among fuzzy clusters can be considered 
as the possibilistic partition, and fuzzy clusters in the 
sense of Definition 2.2 are elements of the possibilis-
tic partition. However, the concept of allotment will be 
used in further considerations. 

The concept of allotment is the central point of the 
method. But the concept introduced next should be 
paid attention to, as well.  

Definition 2.5. Allotment  
( )( ) { | 1, , (0,1]}l

IR X A l nα
α α= = ∈  of the set of objects 

among n fuzzy clusters for some tolerance threshold 

(0,1]α ∈  is the initial allotment of the set 
1{ ,..., }nX x x= . 

In other words, if initial data are represented by a 
matrix of some fuzzy T then lines or columns of the 
matrix are fuzzy sets lA X⊆ , 1,l n=  and level fuzzy 
sets ( )

lA α , 1,l c= , (0,1]α ∈  are fuzzy clusters. These 
fuzzy clusters constitute an initial allotment for some 
tolerance threshold and they can be considered as 
clustering components. 

Thus, the problem of fuzzy cluster analysis can be 
defined in general as the problem of discovering the 
unique allotment ( )R X∗ , resulting from the classifi-
cation process, which corresponds to either most 
natural allocation of objects among fuzzy clusters or 
to the researcher's opinion about classification. In the 
first case, the number of fuzzy clusters c is not fixed. 
In the second case, the researcher's opinion determines 
the kind of the allotment sought and the number of 
fuzzy clusters c can be fixed. 

If some allotment  
( )( ) { | 1, , , (0,1]}l

zR X A l c c nα
α α= = ≤ ∈  corresponds to the 

formulation of a concrete problem, then this allotment 
is an adequate allotment. In particular, if condition 

1

c
l

l

A Xα
=

=∪ , (11) 

and condition 

( ) 0l mcard A Aα α∩ = , ( ) ( ),l mA Aα α∀ , l m≠ , (0,1]α ∈  (12) 

are met for all fuzzy clusters ( )
lA α , 1,l c=  of some al-

lotment ( )( ) { | 1, , , (0,1]}l
zR X A l c c nα

α α= = ≤ ∈ , then the 
allotment is the allotment among fully separate fuzzy 
clusters. 

However, fuzzy clusters in the sense of Definition 
2.2 can have an intersection area. This fact was 
demonstrated in [14]. If the intersection area of any 
pair of different fuzzy clusters is an empty set, then 
conditions (11) and (12) are met and fuzzy clusters are 
called fully separate fuzzy clusters. Otherwise, fuzzy 
clusters are called particularly separate fuzzy clusters 
and {0, , }w n∈ …  is the maximum number of elements 
in the intersection area of different fuzzy clusters. 
Obviously, for 0w =  fuzzy clusters are fully separate 
fuzzy clusters. So, the conditions (11) and (12) can be 
generalized for a case of particularly separate fuzzy 
clusters. Condition 

1
( ) ( )

c
l

l

card A card Xα
=

≥∑ , ( ) ( )l
zA R Xα

α∀ ∈ , (0,1]α ∈ , 

( ( ))zcard R X cα =  (13) 

and condition 

( )l mcard A A wα α∩ ≤ , ( ) ( ),l mA Aα α∀ , l m≠ ,  
(0,1]α ∈  (14) 
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are generalizations of conditions (11) and (12). 
Obviously, if 0w =  in conditions (13) and (14), then 
conditions (11) and (12) are met. The adequate allot-
ment ( )zR Xα  for some value of tolerance threshold 

(0,1]α ∈  is a family of fuzzy clusters which are ele-
ments of the initial allotment ( )IR Xα  for the value of 
α  and the family of fuzzy clusters should satisfy the 
conditions (13) and (14). So, the construction of 
adequate allotments ( )( ) { | 1, , }l

zR X A l c c nα
α= = ≤  for 

every α  is a trivial problem of combinatorics.  
Several adequate allotments can exist. Thus, the 

problem consists in the selection of the unique 
adequate allotment ( )R X∗  from the set B of adequate 
allotments, { ( )}zB R Xα= , which is the class of possible 
solutions of the concrete classification problem and 

{ ( )}zB R Xα=  depends on the parameters of the 
classification problem. The selection of the unique 
adequate allotment ( )R X∗  from the set { ( )}zB R Xα=  of 
adequate allotments must be made on the basis of 
evaluation of allotments. The criterion 

1
1 1

1( ( ), )
lnc

z li
l il

F R X c
n

α α μ α
= =

= − ⋅∑ ∑ , (15) 

where c is the number of fuzzy clusters in the 
allotment ( )zR Xα  and ( )l

ln card Aα= , ( ) ( )l
zA R Xα

α ∈ , is 
the number of elements in the support of the fuzzy 
cluster ( )

lAα , can be used for evaluation of allotments 
[13]. The criterion 

2
1 1

( ( ), ) ( )
lnc

z li
l i

F R Xα α μ α
= =

= −∑∑ , (16) 

can also be used for evaluation of allotments [16].  
Maximum of criterion (15) or criterion (16) cor-

responds to the best allotment of objects among c 
fuzzy clusters. So, the classification problem can be 
characterized formally as determination of the solution 

( )R X∗  satisfying 

( )
( ) arg max ( ( ), )

z
z

R X B
R X F R X

α

α α∗

∈
= , (17) 

where { ( )}zB R Xα=  is the set of adequate allotments 
corresponding to the formulation of a concrete 
classification problem and criteria (15) and (16) are 
denoted by ( ( ), )zF R Xα α .  

The criterion (15) can be considered as the 
average total membership of objects in fuzzy clusters 
of the allotment ( )zR Xα  minus cα ⋅ . The quantity 

cα ⋅  regularizes with respect to the number of clusters 
c in the allotment ( )zR Xα . The criterion (16) can be 
considered as the total membership of objects in fuzzy 
clusters of the allotment ( )zR Xα  with an appreciation 
through the value α  of tolerance threshold. 

The condition (17) must be met for the some 
unique allotment ( )zR X Bα ∈ . Otherwise, the number c 

of fuzzy clusters in the allotment sought ( )R X∗  is not 
appropriate. The important condition was formulated 
in [14]. 

2.2. A general plan of clustering procedure 

The classification problem formulation depends on 
the parameters of classification and these parameters 
are determined for a problem of classification in a 
concrete case. A number c  of fuzzy clusters in the 
sought allotment ( )R X∗  is a unique parameter of the 

( )D AFC c− -algorithm. So, the class of possible 
solutions ( )B c  of the classification problem depends 
on the parameter c and a unique allotment must be 
selected from the class ( )B c  on a basis of the criteria 
(15) or (16) calculation for every allotment from the 
class ( )B c .  

There is a seven-step procedure of classification: 
1. Calculate α -level values of the fuzzy tolerance T 

and construct the sequence 
0 10 1Zα α α α< < < < < < ≤… …  of α -levels;  

2. Construct the initial allotment 
( )( ) { | 1, }l

IR X A l nα
α= = , α α=  for every value α  

from the sequence 0 10 1Zα α α α< < < < < < ≤… … ; 
3. Let : 0w = ; 
4. Construct allotments ( )( ) { | 1, , }l

zR X A l c c nα
α= = ≤ , 

α α= , which satisfy conditions (13) and (14) for 
every value α  from the sequence 

0 10 1Zα α α α< < < < < < ≤… … ; 
5. Construct the class of possible solutions of the 

classification problem ( ) { ( )}zB c R Xα= , 

1{ , , }Zα α α∈ …  for the given number of fuzzy 
clusters c and different values of the tolerance 
threshold α , 1{ , , }Zα α α∈ …  as follows: 

if for some allotment ( )zR Xα , 1{ , , }Zα α α∈ …  
the condition ( ( ))zcard R X cα =  is met 

then ( ) ( )zR X B cα ∈  
else let : 1w w= +  and go to step 4; 

6. Calculate the value of some criterion ( ( ), )zF R Xα α  
for every allotment ( ) ( )zR X B cα ∈ ; 

7. The result ( )R X∗  of classification is formed as 
follows: 

if for some unique allotment ( )zR Xα  from the 
set ( )B c  the condition (17) is met 
then the allotment is the result of classification 
else the number c  of classes is suboptimal.  

The allotment ( )( ) { | 1, , (0,1]}l
zR X A l cα

α α= = ∈  
among the given number c of fuzzy clusters and the 
corresponding value of tolerance threshold α , 

(0,1]α ∈  are the results of classification. 
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3. Cluster validity 

Methods for evaluation of the clustering results are 
given in the first subsection of the section. The second 
subsection of the section provides three validity 
measures for the ( )D AFC c− -algorithm. 

3.1. Evaluation of the fuzzy clusters 

The result of classification must be interpreted 
from essential positions. Some formal criteria can be 
useful for the aim. For example, most appropriate 
distance between fuzzy sets for the data preprocessing 
can be selected on a basis of the evaluation of the 
results of classification. A problem of the evaluation 
of fuzzy clusters was considered in [15].  

The qualitative inspection of fuzzy clustering re-
sults can be done, e.g., with a linear index of fuzziness 
or a quadratic index of fuzziness, used for evaluation 
of fuzziness degree of fuzzy clusters. These two inde-
xes are considered by Kaufmann [8]. So, a modifi-
cation of the linear index of fuzziness is defined in 
[15] as 

( )( ) ( )
2( ) ( , )ll l

L H
l

I A d A A
n αα α= ⋅ , (18) 

where ( )l
ln card Aα= , ( ) ( )lA R Xα

∗∈ , is the number of 

objects in the fuzzy cluster ( )
lAα  and ( )( )( , )ll

Hd A A αα  is 
the Hamming distance 

( )
( )( )( , ) ( )l

l
i

ll
H li iA

x A

d A A x
α

α

αα μ μ
∈

= −∑  (19) 

between the fuzzy cluster ( )
lAα  and the crisp set ( )

lA α  
nearest to the fuzzy cluster ( )

lAα . The membership 

function of the crisp set ( )
lA α  can be defined as 

( )

( )

( )

0, ( ) 0.5,
( )

1, ( ) 0.5,

l

l

l

iA l
i iA

iA

x
x x A

x
α

α

α

α

μ
μ

μ

≤⎧⎪= ∀ ∈⎨ >⎪⎩
, (20) 

where (0,1]α ∈ . 
The modified quadratic index of fuzziness is 

defined in [15] as 

( )( ) ( )
2( ) ( , )ll l

Q E
l

I A d A A
n αα α= ⋅ , (21) 

where ( )l
ln card Aα= , ( ) ( )lA R Xα

∗∈ , and ( )( )( , )ll
Ed A A αα  is 

the Euclidean distance 

( )
( )

2

( )( )( , ) ( )l
l

i

ll
E li iA

x A

d A A x
α

α

αα μ μ
∈

= −∑  (22) 

between the fuzzy cluster ( )
lAα  and the crisp set ( )

lA α  
which is defined by formula (20).  

For each fuzzy cluster ( )
lAα  in the allotment ( )R X∗ , 

evidently, the following conditions are met: 

( )0 ( ) 1l
LI Aα≤ ≤ , (23) 

( )0 ( ) 1l
QI Aα≤ ≤ . (24) 

Indexes (18) and (21) show the degree of fuzziness 
of fuzzy clusters which are elements of the allotment 

( )R X∗ . Obviously, ( ) ( )( ) ( ) 0l l
L QI A I Aα α= =  for a crisp set 

( ) ( )lA R Xα
∗∈ . Otherwise, if 0.5liμ = , l

ix Aα∀ ∈  then 
fuzzy cluster ( ) ( )lA R Xα

∗∈  is a maximally fuzzy set 
and ( ) ( )( ) ( ) 1l l

L QI A I Aα α= = . 

The density of fuzzy cluster was defined in [15] as 
follows: 

( )
1( )

l
i

l
li

x Al

D A
n

α

α μ
∈

= ∑ , (25) 

where ( )l
ln card Aα= , ( ) ( )lA R Xα

∗∈ , and membership 
degree liμ  is defined by formula (8). It is obvious that 
condition  

( )0 ( ) 1lD Aα< ≤ , (26) 

is met for each fuzzy cluster ( )
lAα  in ( )R X∗ . Moreover, 

( )( ) 1lD Aα =  for a crisp set ( ) ( )lA R Xα
∗∈  for any tole-

rance threshold α , (0,1]α ∈ . The density of fuzzy 
cluster shows an average membership degree of 
elements of a fuzzy cluster.  

3.2. Validity measures for the D-AFC(c)-algorithm 

The most “plausible” number c of fuzzy clusters in 
the sought allotment ( )R X∗  can be considered as the 
cluster validity problem for the ( )D AFC c− -algorithm. 
The number c of fuzzy clusters and their compactness 
are contradictory purposes of the classification of n  
objects. If compact classes are searched, the most 
appropriate solution can be obtained with n  classes 
each consisting of one object. Obviously, such a 
solution is not useful. So, the number c of fuzzy 
clusters must be determined under consideration of the 
conditions: firstly, the number of fuzzy clusters c in 
the sought allotment ( )R X∗  must be as possible as 
less, and, secondly, the membership function of fuzzy 
clusters of some allotment among c fuzzy clusters 
must be sharper than the membership function of 
fuzzy clusters of allotments for other numbers of 
fuzzy clusters. 

Let ( )cR X∗  be the allotment which corresponds to 
the result of classification for the given number c of 
fuzzy clusters and cR  be the set of all allotments 

( )cR X∗  among c, {2, , }c n∈ …  fuzzy clusters. A cluster 
validity measure can be defined as a mapping 

: cV R ℜ  which can be used to rank the validity of 
various allotments ( )cR X∗ . Validity measures can be 
obtained from the indexes which are defined in the 
previous section. 

The fuzziness of the allotment ( )cR X∗  among c 
fuzzy clusters can be evaluated as the sum of indexes 
of fuzziness of fuzzy clusters of the allotment ( )cR X∗ . 
So, the linear measure of fuzziness of the allotment 



Validity Measures for Heuristic Possibilistic Clustering 

327 

must be based on the formula (18), and the measure 
can be defined as follows: 

( ) ( )
( )

( )

( )
( )

( )( )
( )

( ); ( )

2 ( , )

l
с

l
с

l
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V R X c I A

d A A
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α

α

αα

∗

∗

∗

∈

∈

= =

⎛ ⎞
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⎝ ⎠

∑

∑
. (27) 

The linear measure of fuzziness of the allotment 
( ( ); )LMF сV R X c∗  was proposed in [20]. 

From other hand, the quadratic measure of fuzzi-
ness of the allotment can be defined on the analogy of 
the linear measure of fuzziness (27): 

( ) ( )
( )

( )

( )
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( )( )
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∈

∈

= =
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⎝ ⎠

∑

∑
, (28) 

where ( )( )l
QI Aα  is the modified quadratic index of 

fuzziness (21). 
The justification of both measures of fuzziness is 

intuitive. It is obvious that the fuzziness of each fuzzy 
cluster ( ) ( )l

сA R Xα
∗∈  depends on the size of the fuzzy 

cluster. The number of objects ln  in each fuzzy cluster 

( ) ( )l
сA R Xα
∗∈  is decreasing with increasing of the 

number c of fuzzy clusters in the allotment ( )сR X∗ . 
That is why the fuzziness of each fuzzy cluster 

( ) ( )l
сA R Xα
∗∈  is decreasing with increasing of the 

number c of fuzzy clusters. In other words, for c n→  
we have 1ln →  and ( )( ) 0l

LI Aα → , ( )( ) 0l
QI Aα →  for all 

( )
lAα , {1, , }l c∈ … . So, for c n→  we have 

( )( ); 0LMF сV R X c∗ →  and ( )( ); 0QMF сV R X c∗ → . So, the 
maximal value of a measure of fuzziness of the 
allotment ( )сR X∗  corresponds to the minimal number c 
of compact fuzzy clusters ( ) ( )l

сA R Xα
∗∈ , 1, ,l c= …  in 

the sought allotment. Using ( ( ); )LMF сV R X c∗  or 

( )( );QMF сV R X c∗ , the optimal number of fuzzy clusters 
can be obtained by maximizing the index value. 

The density of fuzzy cluster (25) can be considered 
as the basis for a validity measure, too. The validity 
measure must take into account the compactness of 
fuzzy clusters which is characterized by their density. 
The density of each fuzzy cluster ( ) ( )l

сA R Xα
∗∈  is 

increasing with increasing of the number c of fuzzy 
clusters. So, for c n→  we have ( )( ) 1lD A α →  for all 

( )
lAα , {1, , }l c∈ …  and for c n→  we have 1α → . Thus, 

the value of the tolerance threshold α  must be taken 
into account. So, the validity measure can be defined 
as the ratio of the sum of densities of fuzzy clusters of 
some allotment to the number of fuzzy clusters minus 
the value of the tolerance threshold α . However, a 
case of particularly separate fuzzy clusters must be 

taken into account. That is why the sum of 
membership degrees of elements in intersection areas 
of fuzzy clusters must be calculated and the ratio of 
the number c of fuzzy clusters in the allotment *( )cR X  
to the number of elements of the data set must be 
taken into account, too. So, the measure of separation 
and compactness of the allotment can be defined in the 
following way: 

( )

( )
( )

( ( ); )

( )
l

с

j

MSC с

l

A R X
lj

x

V R X c

D A
c

c n
α

α

μ α
∗

∗

∈

∈Θ

=

+ −
∑

∑
, (29) 

where Θ  is a set of elements jx , {1, , }j n∈ …  in all 
intersection areas of different fuzzy clusters.  

Thus, the validity measure (29) has three 
components. The first component is the ratio of the 
sum of densities of fuzzy clusters of an allotment 

*( )cR X  to the number of fuzzy clusters c, the second is 
a penalty term which regularizes with respect to 
membership values of elements in intersection areas 
fuzzy clusters, and the third component is included to 
make the value of the tolerance threshold. Note that 
the value of the second component of the measure of 
separation and compactness (29) be equal to zero in 
the case of fully separate fuzzy clusters in the 
allotment ( )zR Xα . From other hand, several allotments 

( ) ( )zR X B cα ∈  among c fuzzy clusters cannot exist as 
solutions of the classification problem because the 
condition (17) must be met for the some unique 
allotment ( ) ( )zR X B cα ∈ . The measure of separation 
and compactness of the allotment ( ( ); )MSC сV R X c∗  in-
creases when c is closer to n. Thus the optimum value 
of c is obtained by minimizing ( ( ); )MSC сV R X c∗  over 

max2, ,c c= …  where max2 c n< < . 

4. Experimental results 

Results of some well-known data sets procesed by 
the ( )D AFC c− -algorithm using the proposed validity 
measures in comparison with two objective-function 
fuzzy clustering algorithms and corresponding validity 
measures are presented in the section. The first sub-
section includes the Tamura’s relational data descrip-
tion and results of their processing by the ( )D AFC c− -
algorithm using the proposed validity measures in 
comparison with the ARCA-algorithm. In the second 
subsection the Anderson’s Iris data is used for testing 
of proposed validity measures in comparison with the 
FCM-algorithm. 

4.1. The Tamura’s portrait data 

Let us consider an application of proposed validity 
measures to the classification problem for the 
following illustrative example. The problem of 
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classification of family portraits coming from three 
families was considered by Tamura, Higuchi and 
Tanaka in [12]. The number of portraits was equal to 
16 and the real portrait assignment among three 
classes is presented in Figure 1. 

 
Figure 1. Real portraits classification 

The matrix of subjective similarities contains the 
results of a study aimed at discovering the similarity 
degree of 16 people belonging to three families. The 
study was conducted by showing the photo of the 16 
members of three families to experts who did not 
know them. The subjective similarities assigned to the 
individual pairs of portraits collected in the tabular 
format are presented in Table 1, where ix , 1, ,16i = …  
identify the 16 people to be grouped into families. In 
fact, the matrix of subjective similarities is the matrix 
of a fuzzy tolerance and the ( )D AFC c− -algorithm can 
be applied to the matrix directly. Obviously, the matrix 
which is presented in Table 1 has no metric characte-
ristic.  

The data were originally analyzed in order to iden-
tify families with the technique of first transforming 
the matrix of a fuzzy tolerance into a matrix of a fuzzy 
similarity relation and then taking an appropriate α -
cut of the fuzzy similarity relation [12]. The best 
partition proved to be obtained with α -cut equal to 
0.6. The partition identified the following three 
families 1

1 6 8 13 16{ , , , , }A x x x x x= , 2
2 5 7 11 14{ , , , , }A x x x x x=  

and 3
4 9 10 12 15{ , , , , }A x x x x x= . However, person 3x  is not a 

member of any of the three families. 

Table 1. The matrix of subjective similarities 

i  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 1.0                
2 0.0 1.0               
3 0.0 0.0 1.0              
4 0.0 0.0 0.4 1.0             
5 0.0 0.8 0.0 0.0 1.0            
6 0.5 0.0 0.2 0.2 0.0 1.0           
7 0.0 0.8 0.0 0.0 0.4 0.0 1.0          
8 0.4 0.2 0.2 0.5 0.0 0.8 0.0 1.0         
9 0.0 0.4 0.0 0.8 0.4 0.2 0.4 0.0 1.0        

10 0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.2 1.0       
11 0.0 0.5 0.2 0.2 0.0 0.0 0.8 0.0 0.4 0.2 1.0      
12 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 0.4 0.8 0.0 1.0     
13 0.8 0.0 0.2 0.4 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0 1.0    
14 0.0 0.8 0.0 0.2 0.4 0.0 0.8 0.0 0.2 0.2 0.6 0.0 0.0 1.0   
15 0.0 0.0 0.4 0.8 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.2 0.0 1.0  
16 0.6 0.0 0.0 0.2 0.2 0.8 0.0 0.4 0.0 0.0 0.0 0.0 0.4 0.2 0.0 1.0 
 

The ( )D AFC c− -algorithm was applied to the 
matrix of fuzzy tolerance for 2, ,5c = …  using the 
proposed validity measures. The performance of the 
proposed validity measures is shown in Figures 2 – 4. 

The actual number of fuzzy clusters is equal 3 and 
this number corresponds to the maximum of the linear 
measure of fuzziness of the allotment ( ( ); )LMF сV R X c∗  
and the maximum of the quadratic measure of fuzzi-
ness of the allotment ( ( ); )QMF сV R X c∗ . From other hand, 

the minimal value of the measure of separation and 
compactness of the allotment is equal to 0.4385 and 
this value corresponds to the four fully separate fuzzy 
clusters. The value of the total number of elements in 
intersection areas is equal to 3 for the allotment 
among two particularly separate fuzzy clusters, for c = 
3 we have the total number of elements in intersection 
areas 2 and the value of the total number of elements 
in intersection areas is equal to 1 for c = 5. 
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Figure 2. Plot of the linear measure of fuzziness of the 

allotment as a function of the number of clusters 

 
Figure 3. Plot of the quadratic measure of fuzziness of the 

allotment as a function of the number of clusters 

 
Figure 4. Plot of the measure of separation and compactness 

of the allotment as a function of the number of clusters 

The application of the ( )D AFC c− -algorithm to the 
classification problem was made in comparison with 
the ARCA-algorithm of fuzzy clustering [5] using the 
compactness and separation index (5) for 2, ,5c = … . 
In order to compare proposed validity measures with 
the relational ARCA -algorithm of fuzzy clustering, we 

transformed the initial matrix into a dissimilarity mat-
rix by complementing the relationship degrees. The 
performance of the compactness and separation index 
is shown in Figure 5.  

 
Figure 5. Plot of the compactness and separation index as a 

function of the number of clusters 

We observed that the minimal value of the com-
pactness and separation index corresponds to the five 
fuzzy clusters. The optimal number of fuzzy clusters is 
equal to 3 and this number corresponds to the first 
minimum of the compactness and separation index 

( ; )csV P Τ .  

4.2. The Anderson’s Iris data  

The Anderson's [1] Iris data is the most known 
database to be found in the pattern recognition 
literature. The data set represents different categories 
of Iris plants having four attribute values. The four 
attribute values represent the sepal length, sepal width, 
petal length and petal width measured for 150 irises. It 
has three classes Setosa, Versicolor and Virginica, with 
50 samples per class. The problem is to classify the 
plants into three subspecies on the basis of this infor-
mation. It is known that two classes Versicolor and 
Virginica have some amount of overlap while the class 
Setosa is linearly separable from the other two.  

Let us consider the effectiveness of the proposed 
clustering validity measures by testing the Anderson’s 
Iris data set. However, a method for the data 
preprocessing for using the ( )D AFC c− -algorithm 
must be considered [17].  

The Anderson's Iris data can be presented as a 
matrix of attributes 150 4

ˆ ˆ[ ]t
iX x× = , 1, ,150i = … , 

1, ,4t = … , where the value ˆ t
ix  is the value of the t-th 

attribute for i-th object. The data can be normalized as 
follows: 

ˆ
ˆmax

t
t i
i t

ii

xx
x

= , (30) 

for all attributes tx , 1, ,t m= … . So, each object can be 
considered as a fuzzy set ix , 1, ,i n= … , and 
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( ) [0,1]
i

t t
i xx xμ= ∈ , 1, ,i n= … , 1, ,t m= …  are their mem-

bership functions. After application of the squared 
normalized Euclidean distance [8] 

( )2

1

1( , ) ( ) ( )
i j

m
t t

i j x x
t

x x x x
m

ε μ μ
=

= −∑ , , 1,i j n= , (31) 

to the matrix of normalized data [ ( )]
i

t
n m xX xμ× = , 

1, ,i n= … , 1, ,t m= …  a matrix of a fuzzy intolerance 
[ ( , )]I i jI x xμ= , , 1, ,i j n= …  is obtained. The matrix of 

fuzzy tolerance [ ( , )]T i jT x xμ= , , 1, ,i j n= …  is obtained 
after application of complement operation 

( , ) 1 ( , )T i j I i jx x x xμ μ= − , , 1, ,i j n∀ = … , (32) 

to the matrix of fuzzy intolerance [ ( , )]I i jI x xμ= , 
, 1, ,i j n= …  obtained from previous operations. 

We applied the ( )D AFC c− -algorithm to the 
obtained matrix of fuzzy tolerance for 2, ,5c = … . So, 
we calculated the values of the proposed validity 
measures for different c values and we plotted these 
validity measures in Figures 6 – 8.  

 
Figure 6. Plot of the linear measure of fuzziness of the 

allotment as a function of the number of clusters 

 
Figure 7. Plot of the quadratic measure of fuzziness of the 

allotment as a function of the number of clusters 
 

 
Figure 8. Plot of the measure of separation and compactness 

of the allotment as a function of the number of clusters 

By executing the ( )D AFC c− -algorithm for 
2, ,5c = … , we obtain that the optimal cluster number c 

is chosen at 5c =  for the linear measure of fuzziness 
of the allotment and the quadratic measure of 
fuzziness of the allotment. However, the number of 
fuzzy clusters 3c =  corresponds to the first maximum 
for both validity measures. From other hand, the 
measure of separation and compactness of the 
allotment finds the optimal cluster number c at 3c = . 
Allotments among fully separated fuzzy clusters were 
obtained for 2c =  and 3c = . The value of the total 
number of elements in intersection areas is equal to 10 
for the allotment among four particularly separate 
fuzzy clusters and the value of the total number of 
elements in intersection areas is equal to 18 for 5c = . 
So, the results of proposed validity measures seem to 
be appropriate. 

 
Figure 9. Plot of the compactness and separation index as a 

function of the number of clusters 

For the comparison purpose, the Iris data set was 
also tested by the FCM-algorithm using the 
compactness and separation index (5). The FCM-
algorithm was applied to the data set with the 
weighting exponent 2.0γ =  and the value of a small 
threshold 0.001ε =  for 2, ,5c = … . The performance of 
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the compactness and separation index for the Iris data 
set is shown in Figure 9. 

The optimal cluster number c is chosen at 2c =  
for the compactness and separation index. Note that 
most validity measures reported in the literature 
provide two clusters for these data [3]. 

5. Concluding remarks 

Results of experiments are summarized and dis-
cussed in the first subsection of the section. The 
second subsection deals with the perspectives on 
future investigations.  

5.1. Discussion 

In conclusion, it should be said that fuzzy cluster 
and allotment concepts have an epistemological 
motivation. That is why the results of application of 
the heuristic possibilistic clustering method based on 
the allotment concept can be very well interpreted. 
The ( )D AFC c− -algorithm can be applied directly to 
the data given as the matrix of tolerance coefficients. 
This means that it can be used with the object by 
attributes data, by choosing a suitable metric to 
measure similarity or it can be used in situations 
where object by object proximity data are available. 
Moreover, the ( )D AFC c− -algorithm depends on the 
set of adequate allotments only. That is why the 
clustering results are stable. 

Cluster validity measures are introduced in the 
paper and numerical experiments confirmed their 
utility. Some well-known data sets are used for illust-
rating the properties of the ( )D AFC c− -algorithm. The 
proposed validity measures provide useful information 
about structure of the data. Thus, the results of appli-
cation of the proposed validity measures to the data 
sets show that these validity measures are effective 
tools for solving the classification problem. However, 
the behavior of proposed cluster validity measures has 
not been justified from mathematical positions. 
Moreover, it is impossible to judge which one is the 
best one and the most appropriate with respect to the 
number of fuzzy clusters. Each of the mentioned 
measures works well with a certain class of data in 
common. So, we can conclude that the use of some 
one validity measure may produce serious hesitation. 
It will be a reasonable way to make use of various 
validity measures and compare the obtained clustering 
results.  

5.2. Perspectives 

Pedrycz [11] noted that the behavior of validity 
measures has not been theoretically justified, but 
simulation experiments confirmed their utility. So, for 
the most appropriate number of fuzzy clusters in the 
allotment an extremal value of an index or a signifi-
cant jump of its values can be observed. Moreover, the 

comparison of the results, obtained from various fuzzy 
clustering methods with their cluster validity indexes, 
can be considered as a useful approach to the data 
analysis. 

Some other validity measures can be proposed for 
the ( )D AFC c− -algorithm. In the first place, the value 
of the total number of elements in intersection areas 
can be introduced in the linear measure of fuzziness of 
the allotment and the quadratic measure of fuzziness 
of the allotment. So, modifications of the correspon-
ding validity measures can be proposed. In the second 
place, the results of the application of the ( )D AFC c− -
algorithm to the data depend on the selected distance 
[17]. 

These perspectives for investigations are of great 
interest both from the theoretical point of view and 
from the practical one as well. 
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