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Abstract. Given an undirected graph with costs associated both with its edges and unordered pairs of edges, the quadratic

minimum spanning tree problem asks to find a spanning tree that minimizes the sum of costs of all edges and pairs of edges

in the tree. We present multistart simulated annealing, hybrid genetic and iterated tabu search algorithms for solving this

problem. We report on computational experiments that compare these algorithms on random graphs of size up to 50 vertices.

The results indicate that the iterated tabu search algorithm is superior to the other two approaches in terms of both solution

quality and computation time.
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1. Introduction

Let G = (V,E) be an undirected graph with
vertex set V and edge set E. The quadratic mini-
mum spanning tree problem (QMSTP) is a general-
ization of the classical minimum spanning tree prob-
lem where we are given not only edge costs ¢, > 0,
e € F, as in the latter, but in addition also interac-
tion costs c., between pairs of edges e, g, e # g, in
E. The quality of a spanning tree T = (V, E(T)) in
the case of the QMSTP is evaluated by the following
objective function:
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where U(T) is the set of all unordered pairs of edges
in E(T') (from now on we assume that the order of
the subscripts does not matter, and both c.4 and cge
refer to the same value). The QMSTP asks to find a
spanning tree 7" that minimizes the objective function
given by (1). The problem was first introduced by
Assad and Xu [1]. It arises in several contemporary
application areas such as telecommunications, trans-
portation and energy distribution.

The QMSTP can be regarded as a special case
of the binary quadratic optimization problem (BQOP
for short). Indeed, let .S be a set of objects of some
kind and P be the power set of .S, i.e., the set of all
subsets of .S including the empty set and S itself. Let
us denote by ¢}, i € S, the cost of selecting object
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i and by c;, i,j € S, i < j, the cost incurred by
selecting objects 7 and j. Assuming that P’ is a fixed

subset of P, the BQOP can be stated as follows:

min (or max) Z ¢ + Z N )
ies’ ijeS’i<j
st. S'eP. 3)

Perhaps the most widely studied case of (2), (3) is
the one where P’ = P. This case is called an un-
constrained binary quadratic optimization problem
(UBQOP) (see [6], [11], [15]). As another example,
for a fixed positive integer k, consider P’ consisting
of all subsets of .S of size k. Suppose that the objec-
tive function in (2) is maximized. Then, for such P’,
(2), (3) is the formulation of the maximum diversity
problem (see [4], [9]). The QMSTP can be recast into
the form (2), (3) as well. This fact comes from the
following observations: S = F; ¢, and cq in (1) cor-
respond to ¢; and ¢;; in (2), respectively; P’ is the
collection of edge sets of all spanning trees of G.
The QMSTP is known to be NP-hard [1], [20]
and thus cannot be solved to optimality in polyno-
mial time, unless P=NP. Therefore, exact algorithms
are viable only for solving QMSTP instances of small
size. Assad and Xu [1] proposed such an algorithm
based on the general branch-and-bound scheme. They
reported results for QMSTP instances of size up to
15 vertices. However, the exact algorithms rapidly
degrade as the size of the graph grows. Thus, when



dealing with medium to large size graphs, efficient
algorithms, which provide good, but not necessarily
optimal solutions, are required. The first two heuris-
tics for the QMSTP were given in [1]. These algo-
rithms are constructive by nature and, therefore, are
not able to provide good enough solutions for larger
graphs. Zhou and Gen [21] presented a genetic algo-
rithm (GA) in which the Priifer number [16] to encode
a spanning tree was adopted. They reported com-
putational results for 17 test instances. Soak, Corne
and Ahn [18] developed another genetic algorithm
which employed a decoder-based redundant encod-
ing strategy. They have shown that their GA imple-
mentation outperforms genetic algorithm using the
Priifer number representation. More recently, Cor-
done and Passeri [2] have applied a tabu search tech-
nique to solve the QMSTP. At each iteration of their
algorithm, the search is performed in the 1-exchange
neighborhood, which consists of all spanning trees
that can be obtained from the current spanning tree
by replacing one of its edges with a non-tree edge.
In [10], Oncan and Punnen have presented a local
search algorithm with tabu thresholding. In this al-
gorithm, the same neighborhood structure as in [2]
is used. An artificial bee colony algorithm for solv-
ing the QMSTP was proposed by Sundar and Singh
[19]. In the last phase, the algorithm makes a call
to a local search procedure. This algorithm compares
favourably with earlier evolutionary approaches. Gao
and Lu [5] introduced the fuzzy quadratic minimum
spanning tree problem. It is formulated as expected
value model, chance-constrained programming and
dependent-chance programming according to differ-
ent criteria. In [5], a genetic algorithm using Priifer
number representation for solving this problem was
developed.

The purpose of the current paper is to investi-
gate computationally the applicability of three quite
different metaheuristics to the QMSTP, namely, sim-
ulated annealing, genetic algorithm and tabu search.
We compare two versions of the genetic algorithm.
The first one is a pure GA, while the second is a GA
hybridized with an effective local search procedure.
The tabu search metaheuristic is represented by an it-
erated tabu search algorithm. Such an approach ap-
peared to be successful when applied to other combi-
natorial optimization problems with quadratic objec-
tive function, including the UBQOP [11], the max-
imum diversity problem [12] and the Max-2-SAT
problem [13], [14]. The empirical results summarized
in this paper were obtained by testing the above listed
algorithms on the QMSTP instances used by Cordone
and Passeri [3].
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The remainder of this paper is organized into
five sections. In Sections 2 to 4, we describe our
implementations of simulated annealing, genetic and
tabu search algorithms, respectively. In Section 5, we
present computational results. Finally, in Section 6,
some concluding remarks are made.

To end this introduction, let us give a few no-
tations used in the sequel of the paper. We denote
by n and m the number of vertices and edges of a
graph G = (V, E), respectively. Given a spanning
tree T = (V,E(T)) of G and edges e € E(T),
g € E\ E(T), we will write T'(e, g) for the sub-
graph of GG obtained from 7" by replacing the edge
e with the edge g. Trivially, the subgraph T'(e, g) is
connected if and only if it is a spanning tree. The set
N(T) ={T(e,g9) | e € E(T),g € E\ E(T) and
T(e, g) is connected} is called a neighborhood of T'.

2. Simulated annealing

In this section, we describe an implementation
of the simulated annealing algorithm for solving
the QMSTP. Simulated annealing (SA) is a general-
purpose optimization method that attempts to exploit
an analogy between the physical process of annealing
and the process of obtaining a global extremum of a
function. In physical annealing, a material, like metal
or glass, is first heated up to a very high temperature
and then slowly cooled down to reach the lowest en-
ergy state. During the optimization process, each so-
lution corresponds to a state of some physical system
and the value of the objective function corresponds
to the energy level. In our SA algorithm, the initial
(high) temperature, denoted ¢, is obtained by evalu-
ating a certain number of trees selected at random
from the neighborhood N(T') of a randomly gener-
ated spanning tree ' = (V, E(T)). More precisely,
suppose that the tree 77 € N(T) is obtained from T
by replacing an edge e € E(T) with an edge g €
E\ E(T). We denote by 6(T,e,g) = F(T")— F(T)
the change in the objective function value when mov-
ing from T to T". Clearly, 6(T,e,g) = ¢4 — ce +
> ner(r)\fe} (Cgh — Cen). The algorithm assigns to ¢
the largest absolute value of §(7, e, g) over a sample
of 10000 spanning trees randomly drawn from N (7).
Other parameters of the algorithm are the cooling rate
«, minimum temperature ¢y, which should be very
close to 0, and repetition factor Ry.

In order to make a fair comparison between the
different algorithms, we use the same stopping rule
for each of them. Our choice was to stop an al-
gorithm after a prescribed time period had elapsed.
The running time of the SA algorithms typically de-
pends on the cooling rate as well as on the repeti-
tion factor. Therefore, to be able to apply our stop-
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ping rule, we execute the simulated annealing pro-
cedure repetitively using randomly constructed span-
ning trees as starting points. The steps of the main al-
gorithm, named MSA (Multistart Simulated Anneal-
ing), are as follows.

MSA

1. Randomly generate a spanning tree 7'. Initialize
T* with T and F* with F(T).

2. Compute t = max{|6(T,e,g)| | (e,9) € H},
where H is a set of randomly selected edge
pairs (e,g) for which T'(e,g) € N(T). Set
K = |(log(to) — log(t))/loga], R := Ron
and start := 1.

3. Apply SA(T, T*, F*, t, K, R, a, start). Incre-
ment start by 1.

4. Check if the termination condition is satisfied. If
s0, then stop with the spanning tree 7™ of value
F*. Otherwise return to 3.

In the above description, T is used to denote the
best spanning tree found so far. The corresponding
value of the objective function is denoted by F'*. The
algorithm starts with the tree 7' = T generated using
the augmentation technique. Initially, the tree consists
of a single vertex. At each of n — 1 steps of the gen-
eration routine, the tree T = (V(T'), E(T)) is aug-
mented with a randomly selected edge having exactly
one endpoint in V\V(T'). At the end of this process, a
tree spanning all the vertices in V' is obtained. Step 2
of MSA prepares the parameters to be passed to the
simulated annealing algorithm. The parameter K is
the number of temperature reductions, R is the num-
ber of trees evaluated at a temperature level, and start
is the counter for the number of calls to the procedure
SA given below.

SA(T, T*,F*,t, K, R, a,start)

1. If start = 1, then initialize f with F* (which
equals F'(T)). Otherwise, randomly generate a
spanning tree 7" and set f := F'(T).

2. Initialize ¢ with ¢ and ¢ with 1.

3. Setj:=1.

4. Randomly select edges e and g such that T'(e, g) €
N(T). Compute &' = 6(T,e,g). If & < 0,
then go to 5. Otherwise, randomly draw a num-
ber ¢ from the uniform distribution on [0, 1]. If
¢ < exp(—0d'/t), then proceed to 5; else go to 6.

5. Update the tree T' by substituting the edge e by
the edge g. Set f := f+ . If f < F™*, then set
F* := f and store T as the new best solution:
T+ T.
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6. Increment j by 1. If j < R, then go to 4.

<
7. Increment 7 by 1. If ¢ < K, then set t := ot and

go to 3. Otherwise return with 7* and F'™*.

As can be seen from the above description, sim-
ulated annealing process is started from a random
spanning tree. When SA is invoked for the first time,
the same random tree as in MSA 1is used. The main
body of SA consists of two nested loops. The outer
one successively modifies the temperature ¢ by multi-
plying it by the cooling factor «. The initial tempera-
ture is set equal to ¢. Each iteration of the inner loop
evaluates a tree selected at random from the neighbor-
hood N(T') of the current spanning tree 7. If either
the new tree T'(e, g) is at least as good as T or the
condition stated in Step 4 is satisfied, then T'(e, g) is
accepted to replace T'. In the case where the current
objective function value f is smaller than F™*, the up-
dated tree T’ is saved as the best solution found so far.
The time complexity of an iteration of the inner loop
is O(m).

3. Genetic algorithm

A widely used approach for solving optimization
problems is based on the idea of applying evolution-
ary principles to problem solutions. The most famous
technique in the area of evolutionary computation is
the genetic algorithm. We have developed a GA to
solve the QMSTP. In our algorithm, each individual
of the population is a spanning tree represented by
the list of its edges. Therefore, our approach differs
from the genetic algorithm of Zhou and Gen [21], in
which spanning trees are encoded using Priifer num-
bers. Our decision in choosing the tree representation
was influenced by the fact that, according to several
authors, including Raidl and Julstrom [17] and Got-
tlieb et al. [7], the Priifer encoding is not suitable
for GA due to its low locality and heritability. More-
over, Priifer numbers can be used to represent span-
ning trees only in the case where the QMSTP instance
graph is complete. In this study, our aim is to develop
algorithms for the QMSTP, including the genetic al-
gorithm, which could deal with graphs of arbitrary
density.

Actually, in this section we will present two vari-
ations of the genetic algorithm — the pure GA and
the hybrid GA which is obtained from the former by
equipping it with a local search procedure. The first
step of the genetic algorithm is to create a random
population of individuals. For this purpose, a random-
ized version of Kruskal’s algorithm [8] is adopted. At
each iteration, the algorithm considers the set of all
edges that can be used to augment the current for-



est (V, Egs1) and chooses a subset of "best" candi-
dates, that is, those feasible edges e for which the sum
Qe = ce + deEsel Ceg 18 the smallest. One of the
edges is randomly selected from this subset and added
to the tree being built. If the resulting tree appears to
be very similar to some of the individuals in the popu-
lation, then it is rejected. Otherwise it is accepted as a
new member of the population. Once the initial pop-
ulation has been created, the algorithm enters into the
evolution phase, which includes the following main
steps: reproducing offspring, applying local search to
offspring, and updating the current population. Let
the latter be denoted by II. The crossover operation is
performed on the two spanning trees randomly cho-
sen from II. It consists of two steps. In the first step,
the algorithm identifies all edges that are common to
both parents (for illustration, see Figure 1 where (c)
displays the result of this step for parents shown in
(a) and (b)). In the second step, the offspring is com-
pleted by adding edges which belong to only one of
the parents (Figure 1, (d)). This is done in the same
way as in the above outlined randomized version of
Kruskal’s algorithm. Afterwards, the offspring is sub-
mitted to a local search procedure. Basically, this pro-
cedure can be regarded as a kind of mutation opera-
tor. To update II, the algorithm employs a frequently
used strategy of replacing the worst individual in the
population with the generated offspring. Before do-
ing this, the algorithm checks whether the offspring
is sufficiently different from each individual in II. If
the answer is negative, then the offspring is simply
discarded. The algorithm, named HGA (Hybrid Ge-
netic Algorithm), can be described as follows.

HGA

1. (Initialization) SetIT := (), [ := 0, F'* := oo and
p := 0. While [ < pop_size do the following:

1.1. Set Eyy := 0, Ecang := E and Q. := c,
for each edge e € E.

1.2. Form a set E' of z = min(Zzy,|Feandl|)
edges e € Ecang such that Q. < Qg for
eache € E' and each g € Ecang \ F’ (in
other words, pick the z smallest values .
among those with e € F,nq). Select an

edge h € E’ at random.

Move the edge h from E..nq to Fge. If
|Esell] = n — 1, then proceed to 1.4. Oth-
erwise, eliminate from E.,,q all the edges
that create a cycle when added to Ejge. For
the remaining edges e € E_,,q4, increase
Qe bY cep. Return to 1.2.

If I = 0, then go to 1.5. Otherwise, com-
pute D = minyer |Fse & E(T)|, where

1.3.

1.4.
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A denotes the symmetric difference of two
sets. If D > DL. . then go to 1.5. Oth-
erwise increment p by 1. Check whether
p < p. If so, then return to 1.1. If not,
then set pop_size := [ and escape from the
loop 1.1-1.5.

Set p 0. Add to II the tree T
(V, Ege1). Increment [ by 1.If F(T) < F*,
then set 7% := T and F* := F(T). If
I < pop_size, then repeat the loop.

1.5.

2. (Parents selection) Randomly choose two trees,
say Ty = (V,E(Ty)) and To, = (V, E(T?)),
from the population II.

. (Mating) Perform the following steps:

3.1. Initialize the set E.; with all edges that are
common to both trees 13 and T5.

Set Ecand = E(Tl) A E(TQ) and Qe =
Ce + X gep.., Ceg foreach e € Ecana.
Form a set E' of z = min(Za, |Feandl|)
edges e € Ecanq such that Q. < @ for
eache € E' and each g € Ecang \ E'.
Select an edge h € E’ at random.

Move the edge h from FE.ang to Fgep. If
|Esel]l = n — 1, then go to 4. Otherwise,
eliminate from E,,q all the edges that cre-
ate a cycle when added to Eg. For the re-
maining edges e € Fa,q, increase Q. by
Cen. Return to 3.3.

3.2.

3.3.

3.4.

. (Local search) Apply the local search procedure
LS(T) to the tree T = (V, Ege1). Let T also de-
note the tree returned by it.

. (Offspring evaluation) Perform the following
steps:

5.1. Check whether F((T') < F*.If so, then set
T*:=T, F* := F(T) and go to 5.3. Oth-
erwise proceed to 5.2.

If T = (V,E(T)) is worse than the worst
tree in the population, then go to 6. Oth-
erwise, compute D = mingiepy |E(T) A
E(T")|. It D < D2, then go to 6; else
proceed to 5.3.

5.3. Replace the worst tree in I by 7.

5.2.

. Check if the termination condition is satisfied. If
s0, then stop with the spanning tree 7 of value
F*. Otherwise return to 2.

In the algorithm, pop_size stands for the cardinal-
ity of IL. The other parameters are 1, Z2, D}, , D2
and p. The first two of them are used to randomize the
selection of edges during the construction of span-
ning trees in the initialization and, respectively, off-

spring generation steps. The role of D! . and D?

min min
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Figure 1. Illustration of crossover operation: (a)—(b) parents; (c) common edges; (d) offspring

is to identify those spanning trees which are too sim-
ilar to at least one member of the population. Such
spanning trees are not included in II. The parameter
p is used to stop the initialization process when it be-
comes difficult to generate a diverse population of the
required size. This may happen only if the graph G is
very small and sparse. In the description of the algo-
rithm, the best solution is denoted by 7. Initially, 7
is the best spanning tree in the population constructed
in Step 1 of HGA. In the evolution phase, T is up-
dated each time a better spanning tree is found by the
local search procedure LS. This procedure is an im-
plementation of the 1-opt local improvement method.
It goes as follows.

LS(T)

1. Initialize v with 0. For each e € E, compute
Qe = ce + 2 cm(T)\ (e} Ceg» Where E(T') de-
notes the edge set of the tree T as before.

. Running through all pairs of edges e € E(T)
and g € E\ E(T) such that T'(e, g) € N(T),
compute ¢ = Qg — Qe — ceg. If 6" < 0,
then perform the following actions. Exchange
the edge e in E(T") with the edge g. Set v := 1,
Qe = Qe + Ceg, Qg = Qg — Ceg and Qp, =
Qn, — Cen + g, foreach h € E\{e, g}. Goto 3.
If however 6’ > 0, then repeat 2 for the next pair
(e,9).

. If v = 0, then return with 7. Otherwise, set
v := 0 and go to 2 (thus, start the search for
an improving exchange from the beginning).

At each iteration of LS, the neighborhood N (T)
of the current tree T is explored. The algorithm tries
to exchange each tree edge with each non-tree edge
provided such an exchange does not create a cycle.
Different ways to accomplish this are possible. Our
strategy is to make the tree T' rooted at any vertex
and, for any edge (u,v) outside T, using the obtained
information to effectively enumerate the edges on the
path from « to v in 7. In order to describe this pro-
cess more formally, we need a couple of notations.
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For a non-root vertex ¢ € V, let ®; be the father of ¢
in the rooted tree T'. Let L; stand for the level of ver-
tex ¢ in T'. The procedure, dubbed NS (Neighborhood
Search), consists of the following two steps.

NS
1. Make the tree T rooted at any fixed vertex.
2. For each edge g = (u,v) € E\ E(T) do the
following:

2.1.
2.2.

Initialize ¢ with u and j with v.

Check whether L; > L;. If so, then set
w = 4,4 := ®; and e := (¢, w). If not,
then set w := j, j := ®; and e := (j, w).
Compute ¢’ for the edges e and g. If 7 # 7,
then return to 2.2.

2.3.

The described procedure is embedded in Step 2
of LS where, for each pair of edges (e, g) identified by
NS, the value of §(7', e, g) is calculated and, depend-
ing on the result, appropriate actions are taken. The
behavior of NS is illustrated in Figure 2 where (u, v)
is the edge to be added to T'. Notice that the order of
assignment statements in Step 2.2 of NS is fixed. It
is not hard to see that Step 1 of NS (i.e., getting ®;
and L; for non-root vertices i € V) requires O(n)
time. The complexity of Step 2 of NS is O(nm). In
the case of dense graphs, it amounts to O(n?). Thus
the time of making the tree rooted is negligible com-
pared with the overall time taken by NS. As it can
be seen from the description of LS, exploration of the
neighborhood is restarted after each update of the cur-
rent spanning tree. This means that a new rooted tree
needs to be built (or the existing one reconfigured).
However, as just remarked, this operation is compu-
tationally very cheap.

In closing this section, we note that the pure ge-
netic algorithm can be obtained simply by removing
Step 4 from HGA. Moreover, to keep a higher level
of intensification in the search process it is useful to
make the selection of an edge in Step 3.3 determin-
istic. The modification is to choose an edge with the



Figure 2. Tllustration for Step 2 of LS: the edges for
removal from 7" are considered in the order
(u, w1), (w1, w2), (v, w3), (W2, wa),
(’UJ3, w4)

smallest value of ().. This can be done by setting Zo
to 1 in Step 3.3 of HGA.

4. Iterated tabu search

At the core of our third algorithm is an adapta-
tion of the tabu search technique to the quadratic min-
imum spanning tree problem. In order to obtain better
solutions, we apply the tabu search procedure repeat-
edly. To get a starting spanning tree for the next itera-
tion, a solution perturbation mechanism is used. The
main procedure of the iterated tabu search algorithm
can be stated as follows.

ITS

1. Randomly generate a spanning tree T = (V, E(T)).

Initialize T* with T" and F™* with F'(T'). For each
e € E, compute Q. = ¢, + deE(T)\{e} Ceg-

. Randomly draw an integer I between I,;, and
Ihax- Execute the tabu search procedure TS(T',
T, F*, I).

. Check if the termination condition is satisfied. If
s0, then go to 5. Otherwise proceed to 4.

. Randomly draw integers p and ¢ in {a1,a; +
1,...,a2} and {b1,b1+1,...,ba}, respectively;
here a;, b; and by are constants, whereas as is
an integer chosen at random from the interval
[nA1,nAs]. Apply GST(T, p, @). Return to 2.

. Stop with the spanning tree 7"* of value F'*.

In Step 1 of ITS, an initial spanning tree is gener-
ated. For this purpose, the same algorithm as in MSA
is used. This step also initializes the variables @),
e € E. They are needed to efficiently compute the
decrease (or increase) in the objective function value
that will result from exchanging an edge in E(T") with
an edge in '\ E(T). Step 2 of ITS invokes the tabu
search procedure TS. The input to TS includes the
number of iterations for a tabu search run, denoted by
I. This number is taken from the interval [I ,in, Iimax)
where I, and I, .« are the parameters of ITS. Other
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parameters are used in Step 4 to get the values of
p and . These values are submitted to the solution
perturbation procedure, named GST (Get Start Tree).
We shall discuss the meaning of p and ¢ later in this
section. Making I, p and ¢ variable strengthens the
search diversification capabilities of the algorithm.

Next, we will present the main ingredients of
ITS, namely, TS and GST. In the description of TS
given below, 7., e € E, are the tabu values and 7 is
the tabu tenure, which in our experiments was set to
min(10,m/4).

TS(T, T*, F*, 1)
1. Initialize i and 7, e € E, with 0. Set f := F(T).
2. Increment i by 1. Set §* := oo and p := 0.

3. Running through all pairs of edges e € E(T)
and g € E\ E(T) such that T'(e,g) € N(T),
perform the following steps.

3.1. Compute ¢’ = Qg — Qe — Ceg. If 6’ > 6%,

then go to 3.3. Otherwise check whether

f+ 48 < F* If so, then set 6* := ¢,
h:==ed:= g, pu:=1and goto 4. If

not, then proceed to 3.2.

If at least one of 7, 74 is positive, then go

to 3.3. Otherwise check whether §' < 6*.

If so, then set 6* := &', h :== e, d := g and

k := 1. If not, then increment k£ by 1 and

set h := e, d := g with probability 1/k.

Repeat 3.1 and 3.2 for the next pair (e, g),

if any.

. Exchange the edge h in E(T") with the edge d.
Set f := f+ d*. Update Q., e € E (in the same
way as it is done in Step 2 of the LS procedure).
If 4 = 1, then go to 5. Otherwise go to 6.

3.2.

3.3.

. Apply the local search procedure LS to the tree
T. Let T also denote the tree returned by it. Set
T*:=T,F*:=F(T)and f := F*.

. If i = I, then return. Otherwise, decrement each
positive 7., e € E, by 1,set 7, := 7,74 := T
and go to 2.

As can be seen, TS consists of the initializa-
tion part and the loop comprising Steps 2—-6, which
is generally executed [ times. It is, however, possi-
ble to terminate TS prematurely in Step 6 after the
time allotted for the ITS run has expired. The most
costly part of TS is Step 3 where the neighborhood
of the current spanning tree 7' is explored. Like in the
LS case, this is done using the procedure NS. For a
tree T'(e, g) obtained while running NS, the condition
F(T(e,g)) = f+(T,e,g) < F* is checked. If it
is satisfied, then the indicator p is set to 1. Obviously,
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1 = 1 means that a new best solution in the ITS run
has been found. Only in this case the local search pro-
cedure is applied. It is essentially the same as LS used
in HGA. The only difference is that now the initial-
ization of ., ¢ € F, in Step 1 of LS is not required.
Indeed, the values of (). are computed in Step 1 of
ITS and are maintained by both TS and GST.

The tabu search is restarted from a spanning tree
produced by the procedure GST implementing a strat-
egy for perturbation of the current spanning tree 7.
Besides T, the input to GST includes parameters p
and ¢. The parameter p is the number of edges to be
removed from 7'. The procedure is randomized. An
edge for removal and a non-tree edge replacing it are
picked at random from the candidate list of length at
most ¢. This list is constructed by including edge pairs
(e, g) of type (tree edge, non-tree edge) for which the
values 6(7T, e, g) are smallest. An additional require-
ment is that each edge can be chosen (to remove from
T or to add to T') at most once. The perturbation al-
gorithm proceeds as follows.

GST(T, p, @)
. Setp:=0and E := 0.

L If B = {(61,62) | €1 € E(T) \ E,BQ S
E\ (E(T)UE),T(e1,ez) € N(T)} is empty,
then return. Otherwise, form a set B’ of ¢
min(g, | B|) edge pairs (e1,e2) € B such that
8(T,e1,e2) < 6(T,g1,g2) for each (e1,es) €
B’ and each (g1, 92) € B\ B’. Randomly select
(h1,he) € B'.

. Exchange the edge h; in E(T") with the edge hs.
Add hq and hsy to E. Update Q., e € E.

. Increment p by 1. If p < p, then go to 2. Other-
wise return.

In Step 2 of GST, the set B is searched in order
to retrieve edge pairs with the smallest ¢ values. For
this purpose, we again use the procedure NS stated in
the previous section.

5. Experimental results

In this section, we present some computational
results in order to evaluate the performance of the al-
gorithms we have described. All the algorithms have
been coded in the C programming language and all
the tests have been carried out on a PC with an Intel
Core 2 Duo CPU running at 3.0GHz. The sources are
publicly available at http:
/Iwww.soften.ktu.lt/"gintaras/qmstp.html. As a testbed
for the algorithms, the problem instances introduced
by Cordone and Passeri [3] were considered. We will
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provide results only for the largest instances in their
test set. More specifically, in the main experiments,
we used graphs ranging in size from 40 to 50 vertices.

To compare HGA with the pure genetic algo-
rithm, we performed tests also on a few of the graphs
of order 30 and 35. The density of each graph in the
testbed is one of the following: 33%, 67% and 100%.

Based on the results of preliminary computa-
tional experiments with algorithms, we have fixed
the values of their parameters: for MSA, a = 0.95,
to = 0.0001, Ryg = 100; for HGA, pop_size=100,
Z =20,z =10, DL, = D?. =6, p = 1000; for
ITS, a; = 10, /\1 = 0.1, )\2 = 1, bl = 5, b2 = 300,
Inin = 100, I,ax = 200. For the pure genetic algo-
rithm, the same values as in the case of HGA were
used, except that the parameter Z, was fixed at 1. The
results presented in this section were obtained by per-
forming 10 runs of each algorithm on each problem
instance in the test set. In the first experiment, the cut-
off time for each run was 10 seconds. The results of
MSA, HGA and ITS are summarized in Tables 1 and
2. The first column of these and subsequent tables
represents the problem instances. In the name of an
instance, the integer following "n" indicates the graph
order (the number of its vertices), whereas the integer
following "m" shows the number of its edges. For ex-
ample, n40_m257_1 denotes the first instance whose
graph has 40 vertices and 257 edges. The second col-
umn of Table 1 gives the best objective function val-
ues, which were reported by Cordone and Passeri [3].
The third (respectively, fourth) column shows the dif-
ference between the value of the best solution out of
10 runs (respectively, the average value of 10 solu-
tions) found by MSA and the value displayed in the
second column. The rest of Table 1 gives these differ-
ences for HGA and ITS. Table 2 includes the results
for the 24 largest instances only. The second and third
columns of this table, for each instance, provide the
shortest (out of 10 runs) and, respectively, the aver-
age CPU time taken by MSA to first find a solution
that is best in the run. The remaining columns report
the CPU time taken by HGA and ITS. The results, av-
eraged over all tested instances, are presented in the
last row of each table.

Inspection of Table 1 reveals that ITS performs
considerably better than the other tested algorithms.
In particular, ITS is the only algorithm that was able
to find the best known solutions for all benchmark in-
stances used in our study. For comparison, MSA and
HGA failed to achieve the best objective function val-
ues in 18 and, respectively, 5 cases (out of 36). From
the average results, we can see that there is no in-
stance for which ITS is inferior to HGA. A similar
observation can be made when comparing HGA and
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Table 1. Results of running MSA, HGA and ITS on the chosen dataset (time limit=10s)
Instance Best Solution difference
known MSA HGA ITS
value Min Ave Min Ave Min Ave

n40_m257_1 5945 0 3.6 0 0 0 0
n40_m257_2 56237 0 27.0 0 0 0 0
n40_m257_3 6925 0 0 0 0 0 0
n40_m257_4 57874 0 24.1 0 0 0 0
n40_m522_1 5567 0 22.0 0 2.4 0 0
n40_m522_2 51851 266 538.3 0 32.8 0 6.0
n40_m522_3 6456 0 21.8 0 0 0 0
n40_m522_4 53592 11 190.1 0 7.7 0 5.4
n40_m780_1 5368 5 47.2 0 10.9 0 0
n40_m780_2 49817 452 1184.7 0 51.6 0 3.3
n40_m780_3 6208 0 17.9 0 0 0 0
n40_m780_4 51229 0 778.5 0 176.1 0 0
n45_m326_1 7521 0 6.5 0 0 0 0
n45_m326_2 70603 0 66.7 0 0 0 0
n45_m326_3 8720 0 0 0 0 0 0
n45_m326_4 72676 0 109.7 0 0 0 0
n45_m663_1 7161 37 78.5 0 24.2 0 8.4
n45_m663_2 66889 0 826.6 0 301.4 0 0
n45_m663_3 8225 0 149 0 1.8 0 0
n45_m663_4 68737 0 865.0 0 248.3 0 0
n45_m990_1 6944 11 95.6 6 14.1 0 1.9
n45_m990_2 64840 631 1289.3 25 242.3 0 33.2
n45_m990_3 7827 5 44.6 0 0 0 0
n45_m990_4 66508 530 1262.3 50 186.0 0 41.1
n50_m404_1 9393 0 22.9 0 2.4 0 0
n50_m404_2 88942 349 458.8 0 34.9 0 0
n50_m404_3 10717 0 8.2 0 0 0 0
n50_m404_4 91009 0 285.8 0 82.5 0 0
n50_m8&20_1 8958 63 112.1 0 32.8 0 0
n50_m820_2 84020 759 1437.0 0 361.5 0 0
n50_m820_3 10100 2 34.8 0 0 0 0
n50_m820_4 86231 685 1257.8 0 398.0 0 0
n50_m1225_1 8713 87 209.1 8 41.2 0 6.0
n50_m1225_2 81858 1459 2361.5 27 267.2 0 112.1
n50_m1225_3 9836 8 85.3 0 0.6 0 0.6
n50_m1225_4 83838 548 1604.4 0 67.5 0 4.3

Average 164.1 427.6 3.2 71.9 0 6.2

MSA. In all cases, the average values of I’ obtained
by HGA are smaller than or equal to those obtained
using MSA. Thus, HGA is the second best algorithm
in our tests.

From Table 2, we see that, considering the CPU
time required by the algorithms to find the best so-
lution in the run, HGA is comparable to ITS. These
algorithms are significantly faster than MSA.

In Table 3, we compare the performance of the
pure genetic algorithm, denoted as GA, with that of
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HGA. The results are presented for a subset of the
full set of the problem instances. This table is orga-
nized similarly to Table 1. We conclude from the ta-
ble that the pure genetic algorithm is beaten by HGA.
It was able to deliver solutions of best quality only
for 3 instances out of 15. By analyzing the results
in Tables 1 and 3, we find that also MSA is better
than GA. Actually, MSA dominates over GA almost
completely. The only exceptions are n45_m990_3
(Min = 5, Ave 22.9 for GA) and n50_m404_2
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Table 2. Time to the best solution in the run for graphs of order 45 and 50 (in seconds)

Instance MSA HGA ITS

Max Ave Max Ave Max Ave

n45_m326_1 9.0 43 0.3 0.2 0.2 0.1
n45_m326_2 72 1.7 0.3 0.2 0.5 0.2
n45_m326_3 3.6 1.0 0.4 0.2 <0.1 <0.1
n45_m326_4 7.5 3.0 1.1 0.5 1.0 0.4
n45_m663_1 6.4 3.3 8.1 2.8 9.1 4.0
n45_m663_2 7.3 3.7 9.2 2.8 1.9 0.6
n45_m663_3 6.2 3.3 5.5 2.7 0.6 0.2
n45_m663_4 7.1 6.4 5.0 2.8 1.8 0.7
n45_m990_1 9.6 49 8.2 2.5 9.3 3.9
n45_m990_2 10.0 6.7 8.2 34 7.1 2.3
n45_m990_3 9.4 7.0 0.6 0.4 0.9 0.4
n45_m990_4 9.8 5.1 9.2 3.2 9.7 52
n50_m404_1 4.7 2.0 4.5 0.8 0.7 0.2
n50_m404_2 9.6 4.5 5.3 1.9 0.5 0.2
n50_m404_3 8.6 43 0.1 0.1 0.2 <0.1
n50_m404_4 9.7 4.7 0.9 0.3 0.9 0.2
n50_m820_1 8.6 3.8 7.0 2.7 8.4 2.2
n50_m820_2 9.5 6.3 9.9 4.2 7.9 3.7
n50_m820_3 8.7 4.6 0.5 0.3 0.3 0.2
n50_m820_4 9.5 6.4 7.6 2.9 7.2 2.0
n50_m1225_1 3.1 2.8 8.0 3.6 94 5.0
n50_m1225_2 3.3 2.8 8.7 4.5 9.8 5.1
n50_m1225_3 3.5 3.0 9.0 4.3 8.2 3.9
n50_m1225_4 3.0 2.7 3.7 1.9 8.5 4.4
Average 7.3 4.1 5.1 2.0 43 1.9

Table 3. Comparison of GA and HGA (time limit=10s)

Instance Best Solution difference
known GA HGA
value Min Ave Min Ave
n30_m143_1 3205 0 2.8 0 0
n30_m291_1 2998 28 43.1 0 0
n30_m435_1 2874 31 60.0 0 6.6
n35_m196_1 4474 0 154 0 0
n35_m398_1 4147 20 61.5 0 0
n35_m595_1 4000 102 132.2 0 0
n40_m257_1 5945 16 36.1 0 0
n40_m522_1 5567 60 91.5 0 2.4
n40_m780_1 5368 130 175.3 0 10.9
n45_m326_1 7521 0 423 0 0
n45_m663_1 7161 154 180.1 0 24.2
n45_m990_1 6944 174 235.3 6 14.1
n50_m404_1 9393 37 126.5 0 2.4
n50_m820_1 8958 175 259.2 0 32.8
n50_m1225_1 8713 240 324.5 8 41.2
Average 77.8 119.1 0.9 9.0
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Table 4. Results of longer runs of MSA, HGA and ITS (time limit=180s)

Instance Solution difference
MSA HGA ITS

Min Ave Min Ave Min Ave

n40_m522_2 0 101.2 0 16.4 0 0
n40_m522_4 11 50.7 0 6.6 0 0
n40_m780_2 0 127.7 0 46.9 0 0
n45_m663_1 17 28.3 0 20.9 0 0
n45_m663_2 0 146.9 0 237.2 0 0
n45_m663_3 0 0 0 0 0 0
n45_m663_4 0 181.4 0 229.9 0 0
n45_m990_1 1 33.8 6 11.7 0 0
n45_m990_2 274 525.8 25 178.5 0 0
n45_m990_3 0 0 0 0 0 0
n45_m990_4 50 421.1 0 154.1 0 0
n50_m404_1 0 0 0 0 0 0
n50_m404_2 0 34.9 0 0 0 0
n50_m404_3 0 0 0 0 0 0
n50_m404_4 0 0 0 0 0 0
n50_m820_1 0 31.3 0 27.0 0 0
n50_m820_2 44 565.7 0 235.0 0 0
n50_m820_3 0 0.2 0 0 0 0
n50_m820_4 104 677.7 0 367.8 0 0
n50_m1225_1 59 87.7 0 36.3 0 0
n50_m1225_2 379 738.2 27 201.0 0 0
n50_m1225_3 0 18.5 0 0.6 0 0
n50_m1225_4 238 712.1 0 32.1 0 0
Average 51.2 194.9 2.5 78.3 0 0

(Min = 0,Ave = 994.6 for GA) instances.

In our second experiment, we allowed the algo-
rithms to run longer. We have limited the computation
time to 3 minutes (180 seconds) per run. We tested
MSA, HGA and ITS on all instances of size 50 as
well as on 8 densest instances of size 45 and 3 in-
stances of size 40 for which ITS failed to find the best
solutions in at least one of the 10-second runs. The
results are summarized in Tables 4 and 5. As Table 4
shows, ITS again outperforms HGA and again HGA
is ranked ahead of MSA. We can notice that ITS suc-
ceeded in finding the best solutions in all the runs.
Meanwhile, the HGA implementation was still unable
to reach the best known minima for 3 instances. In ad-
dition, the average performance of HGA in a number
of test cases was not good enough. It can be observed
that the difference between the quality of solutions
produced by HGA and those produced by MSA be-
comes smaller as the amount of time allotted for each
run of the algorithm increases. As seen in Table 4,
MSA performed better than HGA for n45_m663_2
and n45_m663_4 and was not dominated by HGA in

266

the case of the n45_m990_1 instance.

The results in Table 5 indicate that the CPU time
taken to find the best solution is smaller for ITS than
for the other two approaches. In fact, a time limit of
60 seconds was sufficient for ITS to deliver the best
spanning trees in all the runs for each benchmark in-
stance except n50_m1225_2. Again, as in the first ex-
periment, MSA is the slowest of the examined algo-
rithms.

6. Conclusions

In this paper we have presented simulated an-
nealing (MSA), genetic (HGA) and tabu search (ITS)
algorithms for the quadratic minimum spanning tree
problem. We conducted computational experiments
to evaluate the performance of these algorithms. Their
results demonstrate that ITS is superior to HGA as
well as to MSA in terms of both solution quality and
computation time. In particular, ITS was the only one
of the three approaches which was able to find the best
known solutions for all QMSTP instances we have
tried. HGA was the second best algorithm in the ex-
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Table 5. Time to the best solution in the run (in seconds)

Instance MSA HGA ITS

Max Ave Max Ave Max Ave

n40_m522_2 152.7 92.9 83.3 9.8 10.2 3.6
n40_m522_4 160.6 54.5 62.7 8.7 24.9 7.8
n40_m780_2 155.2 82.1 71.7 8.8 21.3 5.7
n45_m663_1 151.1 109.0 98.0 222 24.1 11.2
n45_m663_2 163.3 63.8 155.5 35.1 1.9 0.6
n45_m663_3 98.3 359 14.1 4.0 0.6 0.2
n45_m663_4 159.7 63.3 37.9 6.4 1.8 0.7
n45_m990_1 161.9 92.2 108.2 14.1 50.5 21.0
n45_m990_2 136.0 954 64.9 16.6 30.3 8.9
n45_m990_3 159.3 59.1 0.6 0.4 0.9 0.4
n45_m990_4 155.4 77.8 20.7 5.5 48.3 20.9
n50_m404_1 67.5 36.5 27.2 3.5 0.7 0.2
n50_m404_2 170.4 44.8 11.0 2.8 0.5 0.2
n50_m404_3 30.5 11.3 0.1 0.1 0.2 <0.1
n50_m404_4 172.8 65.7 58.1 16.0 0.9 0.2
n50_m820_1 160.2 70.4 42.0 8.1 8.4 2.2
n50_m820_2 174.9 119.2 81.2 21.0 79 3.7
n50_m820_3 167.7 45.1 0.5 0.3 0.3 0.2
n50_m820_4 155.4 82.7 49.9 8.2 7.2 2.0
n50_m1225_1 179.9 100.2 78.9 12.9 46.5 13.3
n50_m1225_2 175.0 103.3 173.2 36.8 151.7 50.1
n50_m1225_3 172.4 99.7 9.0 4.3 30.0 7.6
n50_m1225_4 164.8 78.1 25.2 4.1 41.8 8.3
Average 149.8 73.2 554 10.9 22.2 7.3

periments. However, the success of HGA strongly de-
pends on the use of a local search procedure. The ge-
netic algorithm without local search performed rather
poorly. This version of GA is not competitive with
the other algorithms (MSA, HGA and ITS) involved
in the comparison. On the basis of our results, it may
be speculated that also other approaches incorporat-
ing local search could be promising techniques for
the QMSTP. Such approaches include VNS (Vari-
able Neighborhood Search) and GRASP (Greedy
Randomized Adaptive Search Procedure) with path-
relinking.
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