
310

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2010, Vol.39, No.4

A GENETIC ALGORITHM APPROACH FOR UTILITY MANAGEMENT
SYSTEM WORKFLOW SCHEDULING

Nemanja Nedić, Srđan Vukmirović, Aleksandar Erdeljan,
Lendak Imre, Darko Čapko

Faculty of Technical Sciences, University of Novi Sad
Novi Sad, Serbia

e-mail: nemanja.nedic@dmsgroup.rs, {srdjanvu, ftn_erdeljan, lendak, dcapko}@uns.ac.rs

Abstract. In this paper, we present a scheduler for distributing workflows in Utility Management System (UMS).
The system executes a large number of workflows, which have very high resource requirements. The workflows have
different computational requirements and thus the optimization of resource utilization must be performed in a way that
is different from the standard approach of scheduling workflows. We developed a strategy for allocating workflows,
which is based on a genetic algorithm. The proposed architecture executes a scheduling algorithm by using a feedback
from the execution monitor. We also report on an experimental study, which shows that a significant improvement of
overall execution time can be achieved by using the genetic algorithm. The algorithm is used for designing effective
Grid schedulers that optimize makespan. The study further shows that the overall system (UMS) performance is
significantly improved; this finding indicates that there can be reduction in hardware investment.

1. Introduction

Utility Management Systems (UMS) is a term used
to refer to various systems, such as power / gas or wa-
ter distribution systems. The UMS are becoming in-
creasingly resource demanding because their scopes
are becoming increasingly wider. The systems have
some exceptional requirements such as: communica-
tion with end devices (sensors and actuators) and
storage of huge time-series data volumes about vari-
able values.

A workflow is loosely defined as an automation of
a coordination process: coordinating people, data and
tasks. A lot of research on business wokflows as well
as their use have been done over the past few decades
[7].

Foster and Kesselman described the Grid as an
infrastructure that connects computers, databases, in-
struments, and people into a seamless web of advan-
ced capabilities [1]. With the development of large-
scale high-speed networks, the Grid has become an
attractive computational platform for high-perfor-
mance parallel and distributed applications, such as
UMS.

Workflow scheduling is a decision process that as-
signs application components to available resources in
order to optimize various performance metrics [20].
The Grid workload management and scheduling sub-
systems enable the efficient distribution of tasks and

allow their transparent execution by hiding the comp-
lexity of the Grid infrastructure.

At present, in many modern Grid infrastructures,
scheduling relies only on static properties and pre-
determined states of resources. We argue that resource
utilization can be enhanced by adding the run time
information. Also, it can be enhanced by predicting
the system performance based on the current system
information. For this reason, we propose an architec-
ture for the Workflow Scheduler system that primarily
uses the data of the current state of the Grid.

We achieve the enhancement of resource utiliza-
tion performance in the Workflow Scheduler by
carrying out workflow manipulation. The Workflow
Scheduler can adopt various optimization criteria
which it uses in order to choose the optimal workflow.
Some possible criteria include the ones that rely on
static information knowledge (e.g., type of workflow
and pre-defined order of execution, etc.) and the ones
that rely on dynamic information (e.g., database per-
formance, processor statuses, communication with end
device, etc.).

Criteria can pursue different goals: the minimiza-
tion of a single task’s execution time, the minimiza-
tion of workflow execution time, the fairness of load
distribution, maximum time of execution per work-
flow type, etc. Optimization rules are based on quanti-
fiable metrics, such as: workflow reliability and
distribution fairness, workflow average execution
time, etc [3].

A Genetic Algorithm Approach for Utility Management System Workflow Scheduling

311

Artificial intelligence represents a modern concept
of solving problems in engineering practice [19]. We
chose a set of UMS workflows to analyze the feasi-
bility and usability of applying genetic algorithm to
this field. We used the accommodation of the genetic
algorithm to solve the workflow scheduling. The ex-
perimetal study that we ran confirmed the usefulness
of the genetic algorithm based scheduler when the
makespan is optimized. The implementation of the
genetic algorithm is extensively tested and the compa-
rison with the previously provided solutions of similar
problems shows that this scheduling system allocates
workflows efficiently and more effectively; conse-
quently, the performance improves.

2. Related Work

Grid computing is a new approach in scientific
applications. Recent advances in grid infrastructure
and middleware development have enabled various
types of applications in science and engineering to be
deployed on the Grid. The applications include those
for climate modeling, computational chemistry, bioin-
formatics and computational genomics, remote control
of instruments, and distributed databases [8].

The Grid infrastructure is used both to share ex-
pensive and centralized resources among many scien-
tists, as well as to integrate experimental data sources
with the simulation codes necessary to analyze them
[9].

The Grid connects computers, databases and inst-
ruments in a seamless web, supporting rich computa-
tion application concepts such as distributed super-
computing, smart instruments, data-mining and com-
plicated algorithm calculations [18]. However, its use
has been limited to specialists, primarily because of
the lack of usability [10].

Supervisory Control and Data Acquisition
(SCADA) systems are becoming more and more re-
source demanding because their scope has become
wider. This trend is especially visible in distribution
systems for utilities – UMS, the systems that are an
extension of the SCADA systems. SCADA systems
went a long way from simple visualization of pro-
cesses observed. Distributed SCADA systems are
thoroughly described in a scientific paper [4]. The
process industry data found their way to the Internet
[5] and even cell phones [6].

An upcoming need for the Grid approach could be
envisioned by observing the volumes of data that need
to be stored and processed. This is especially apparent
in the UMS; for instance, the number of process vari-
ables exceeds tens of thousands in Distribution Mana-
gement Systems (DMS) [11].

Artificial intelligence slowly finds its purpose in
distribution systems for utilities. It will surely be the
key feature for the resources manipulation in the Grid
enviroment.

The genetic algorithm, as an evolutionary tech-
nique for large space search, proved to be a powerful
tool for solving various problems [21,22]. Faced with
a variety of situations, an intelligent Grid environment
requires complex algorithms which will help manage
the execution of different kinds of workflows. Several
works [15] [16] [17] address the problems of Grid
scheduling that adopt the genetic algorithm method
for workflow manipulation in order to improve per-
formance. The hybridization of the genetic algorithm
with other heuristics (TS, SA) for dynamic workflow
scheduling is presented in [14].

3. UMS Workflows

We found four types of grid nodes by analyzing
the architecture and requirements for large scale distri-
buted UMS systems. These are:

Processing node (PRN): its task is business cal-
culation and data pre-processing, mainly for provi-
ding reports and an offline analysis of the system.
Objects database node (ODN): it is used for
storing the static data gained from the distributed
UMS system. It usually hosts a relational database
for better search performances.
Time-series node (TSN): this node hosts data
about fast changing values of process variables.
Communication node (CON): this node is res-
ponsible for communication with end devices.
The workflows used for testing, which are reported

in this paper, are chosen from the real UMS use cases.
The following conditions are implied:
1. All workflows are independent of each other.
2. All workflows have the same priority.
3. Every node processes only one workflow at a time.
4. Every workflow is processed at one node at a time.
5. A workflow of the same type has the same

execution time at each specified node.
We implemented five workflows that use different

types of Grid nodes:
1. Direct Command: it sends commands to actua-

tors. When executing, it will send commands to ac-
tuators through CON, and write command results
to time series database in TSN.

2. Command with pre-processing: this type of com-
mand needs pre-processing of data prior to sending
commands. The commands could be used when
business logic has to be applied before actuator
could be used. In this workflow, PRN first prepa-
res the data, and after that, CON sends commands
to actuators.

3. Read Variable values: in this scenario Variables
are read from cache (previously read from de-
vices). Workflows execution of this type starts in
ODN in order to filter end devices that should be
read. After that, the execution is transferred to
TSN to read values of the selected Variables.

N. Nedić, S. Vukmirović, A. Erdeljan, L. Imre, D. Čapko

312

4. Read Variable values From Device: workflows
of this type, contrary to the type 3 workflow, have
to read values from sensors on demand. When exe-
cuting, this workflow is transferred to ODN in
order to filter end devices that should be read.
After that, CON sends an on demand reading
command to sensors.

5. Reporting Inquiry: this workflow covers various
types of data processing. During the execution, this
workflow is transferred to ODN in order to re-
trieve data needed for calculation. After that, it is
transferred to PRN, which is responsible for calcu-
lation.
Figure 1 presents the execution plan of workflow

migration for a set of previously defined UMS work-
flows. Optimization goal in this paper is to rearrange
incoming workflows in order to get maximum usage
of all nodes.

Processing node

Objects database node

Time-series node

Communication node

Reporting Inquiry

Direct Command

Command with preprocessing

Read Variable values

Collecting status information

Time

Executing
workflow

 Figure 1. Workflow execution migration between nodes

3. Proposed Architecture

The proposed architecture takes into account the
dynamic nature of a real-world UMS and uses the
Grid environment approach for detecting and
responding to the environmental change in the UMS.
The developed framework is presented in Figure 2. It
provides required support for the feedback from the
scheduling process.

Proposed workflow management architecture

The
Grid

Time-series
node

Application
Manager

Grid
Manager

Worflow
Scheduler

Processing node

Objects
database node

Incoming
workflows

Communication
node

Grid status
parameters

Schedule
results

Node status
parameter

Workflow to
schedule

Assign node to
workflow

Figure 2. Proposed architecture of the system

The framework consists of three components: the
Grid Manager, the Workflow Scheduler, and the Ap-
plication Manager. The function of the Grid Manager

is to monitor the status of the control variables and to
send workflows to the nodes for execution. The
Workflow Scheduler is responsible for resource se-
lection and for mapping the workflows to the re-
sources. This component is of the most interest for our
research, since decision-making takes place in it. The
Application Manager receives workflows in run
time, queues them and works with Workflow Sche-
duler to determine the right time to send a workflow to
execution in the Grid.

4. Model representation in Genethic Algorithm

Genetic algorithms (GA) are stochastic, evolution-
based, search and optimization algorithms. A potential
solution of the optimization problem is encoded in an
artificial creation, which is called chromosome (indi-
vidual). The population of chromosomes evolves into
a better solution in each iteration of the algorithm. The
fittest individuals survive and are able to exchange
their genetic material. Thus in every new generation, a
set of chromosomes is created by exploiting the infor-
mation from the past generation.

A. Chromosome encoding
A chromosome consists of a series of genes. The

solution proposed in this paper presents an optimized
workflow sequence, which is sent to the Grid for the
execution. Each gene thus represents a workflow type.
All of the workflow types are described in section 3 (1
– Direct Command, 2 – Command with pre-proces-
sing, 3 – Read Variable values, 4 – Read Variable va-
lues From Device, 5 – Reporting Inquiry). A gene is
an integer value in the interval from 1 to 5.

B. The fitness fuction

The essence of the GA is the following: it searches
for and eventually finds an optimal solution to a prob-
lem by creating new generations and evaluating the
individuals. It is necessary to define the principle of
the individual assessment. The fitness function [2]
provides the mechanism to evaluate each individual in
the problem domain.

The problem that we offer a solution for in this pa-
per is to maximize the throughput of the Grid by ba-
lancing the load among the nodes in an intelligent
way. The fundamental optimization criterion in solv-
ing this kind of the problem is the minimization of the
makespan, i.e. the time when the latest workflow is
finished. This criteria, for an individual with n work-
flows, is represented in the following way:

}max{ iWftmakespan = , (1)

}min{
Sequnecess

smakespannmakespanMi
∈

= . (2)

iWft represents time when the thi workflow in the
workflow sequence is finished, and the Sequences
represent all possible sequences (schedules) of n
workflows.

A Genetic Algorithm Approach for Utility Management System Workflow Scheduling

313

A conclusion is then, that the time when the last
workflow ends corresponds to the time of the comple-
tion of the last node. So, the time when the last node
finishes its work is the makespan.

If we define knodeStartTime as a time point when a
node , {1.. }k k numberOfNodes∈ is ready to start exe-
cuting assigned work, and knodeWorkTime as requi-
red time to get the work done, then the predicted
completion time of a node is:

.
k k

k

nodeEndTime nodeStartTime
nodeWorkTime

= +
+

 (3)

The workflows described in this paper consist of
two tasks, and each of these tasks executes at an ap-
propriate node. In order to formulate the predicted
time for a node to complete its work (nodeWorkTime),
we need to estimate the execution time of the tasks. A
computational load of tasks and computing capacity of
nodes are required. The estimation is easily determi-
ned in practice; it is easy to know a computing capa-
city of a resource (node) by knowing its characteristics
and, the workload of each task can be evaluated from
the history data. The task execution time is calculated
by dividing the workload of the task (in millions of
instructions – mips) with the computing capacity of
the node (in mips). Calculation of the workload of
tasks is presented in the Cornell Theory Center [12].

A workflow can be defined as a set of two tasks
(primary and secondary). The execution time for each
task is:

,Tpi k – execution time for the primary task of a

workflow i which is executed on the node k,

,Tsi k – execution time for the secondary task of a

workflow i which is executed on the node k.
Predicted time for a node to complete its work is
defined as:

, ,
, ,

.
k k

i j i j
i j k i j k

nodeEndTime nodeStartTime
Tp Ts

= =

= +

+ +∑ ∑ (4)

The makespan is determined as:

max{ },kmakspan nodeEndTime= (5)

{1.. }k numberOfNodes∈ .
In the proposed implementation of the genetic al-

gorithm, the fittest individuals have the highest
numerical values for the fitness function, defined as:

makespan
ff 1
= (6)

C. Algorithm
The approach used in this paper generates a set of

initial individuals (sequences, schedules of work-
flows), estimates the fitness gain, selects the most
appropriate individuals and combines them using the

operators (crossover and mutation) in order to form
new solutions.

A selection mechanism guarantees the survival of
the fittest individuals. A part of the existing population
is selected to breed; it is highly likely that fitter in-
dividuals survive and receive a higher number of des-
cendents. A roulette wheel mechanism [2] is used to
construct a proportional selection. This mechanism
selects a small part of the less fit individuals and thus
keeps the diversity of the population; this prevents a
premature convergence towards a poor solution.

A crossover operator is the most important ingre-
dient of the genetic algorithm. It produces new indivi-
duals by interchanging parents’ genetic material. Its
aim is to obtain better quality descendents and to ex-
plore new parts of the solutions space that have not
been considered so far.

Many types of the crossover operators are demon-
strated in literature: one-point, k-point, uniform cross-
over [2], etc. We decided to use the k-point crossover.
This operator provides a thorough study of the solu-
tions space; however, it increases the possibility of de-
stroying the parents’ structure. In order to preserve the
genetic material of the parents, we decided that the
two fittest individuals among parents and descendants
join the next generation after the crossover is per-
formed.

Since the crossover operator is dominant in the ge-
netic algorithm, the crossover rate (a probability that
the two chosen parent individuals will be crossed)
needs to be set to a high value. An experimental study
showed that best results are obtained with the
crossover rate of 0.85.

Mutation, an operator that changes the individual's
gene to another allowed value, is randomly applied
with a low probability. It is used to ensure genetic
diversity of the population and to recover good genetic
material that may be lost during the crossover and the
selection.

The mutation operator is used in the following
manner: after the crossover is performed and the two
individuals are chosen to join the next generation, the
mutation operator is applied with the probability of
0.05 (mutation rate). The operator is implemented to a
randomly selected individual's gene. The value of the
gene is replaced with a random value taken from the
set of the possible gene values.

The strategy of creating the next generation that
allows the entry of the fittest individuals from the
previous generation is known as elitism. This variant
of the genetic algorithm can be very successful. At the
same time, the elitism should be carefully used since
there is a possibility that the algorithm gets stuck in a
local extreme. We reduced the elitism in our research
to 5%.

The pseudo code for the genetic algorithm imple-
mentation is shown below (Listing 1):

N. Nedić, S. Vukmirović, A. Erdeljan, L. Imre, D. Čapko

314

begin
 initialization:
 Generate initial population of s individuals

 while(count of generation is less then specified)
 {
 Evaluate fitness function for individuals
 Create empty next generation

 elitism: specified percents of fittest individuals
 Choose m fittest individuals → ind1, ind2,..., indm
 Add to next generation (ind1, ind2,..., indm)

 for (1 .. s - m)
 {
 selection: roulette wheel mechanism
 Choose two parents from current generation →
 → parent1, parent2

 crossover: crossover rate
 Crossover(parent1, parent2) → child1, child2
 Choose the fittest two from
 (parent1, parent2 ,child1, child2) → res1, res2

 mutation: mutation rate
 Mutation(res1)
 Mutation(res2)

 Add to next generation (res1, res2)
 }

 current generation → next generation
 }

 return Best individuals from current generation

end

Listing 1. Genetic algorithm implementation pseudo code

6. GA accommodation for Workflow
Schedular

Since the workflows arrive continuously and the
set of those to be executed on the Grid is not known in
advance, all pieces of information regarding the Grid
tasks are not entirely known before the execution
time. Therefore, scheduling decisions must be made
on the fly, and a dynamic scheduling algorithm is
necessary.

One of the main disadvantages of the genetic algo-
rithms is that they need a significantly longer period
of time to generate a solution; whereas some other
concepts of artificial intelligence (e.g. neural net-
works) do it in a much shorter period. This time period
is a consequence of the iterative process of creating
individual generations. It is impractical and unviable
for the dynamic scheduler to calculate the fittest
individual for any decision on a future workflow. We
propose the following:

A. Dinamic schedular algorithm
At startup, the dynamic workflow scheduler uses

the genetic algorithm (described in Section 5) to
generate an optimal sequence of n workflows (an
individual with n genes). After the first workflow is
sent to the Grid, the sequence contains n–1 workflows.
The dynamic workflow scheduler uses the following
steps to add a new workflow at the end of the se-
quence so that a sequence remains optimal (Figure 3):

1. reads the remaining types of workflows from
the workflows queue,

2. creates an n-dimensional sequence by adding a
workflow at the end of the sequence for each
type of the remaining workflows,

3. calculates a fitness function for every resulting
sequence,

4. keeps the sequence with the highest fitness
function as a new optimal sequence.

Figure 3. n – sequence optimization

B. Calculation of fitnes fuction during dinamic
schedular algorithm
The dynamic workflow scheduler obtains informa-

tion related to the current Grid load after the first
workflow from the optimal sequence is sent to execu-
tion. The time periods predicted for the nodes to
complete their work are collected and they are used as
nodeStartTime for fitness function calculation of the
processed sequence; it signals when the nodes are
ready to start executing assigned work (Section 5).
The workflows in the processed sequence are defined
and the execution times of their primary and secon-
dary tasks are calculated. All information regarding
the fitness function for the processed sequence is
available and the fitness function can be calculated.

7. Results and discussion

We developed a distributed testing environment
based on the proposed architecture. Each type of the
nodes specific for the UMS systems is attributed a
computer node (described in Section 2). The schedu-
ling application controls the execution of the work-
flows queue. Figure 4 shows the deployment strategy.
Each of the four types of nodes inside the Grid is hos-
ted in a separate computer. All the software compo-
nents that we argue for in the paper are hosted in a
separate computer.

A Genetic Algorithm Approach for Utility Management System Workflow Scheduling

315

Proposed
workflow

management
architecture

(Grid Manager)

Processing node
Objects

database node

Communication
node

Time-series
node

Network Infrastructure

Node status
parameter

Task to
execute

Node status
parameter

Task to
execute

Node status
parameter

Task to
execute

Node status
parameter

Task to
execute

Figure 4. Deployment diagram for test environment

In this experiment we used a benchmark of queues
of the five UMS workflows types defined in Section 3.
We did this in order to study the performance of the
dynamic GA workflow scheduler presented. We com-
pared the quality of the results produced by the sche-
duler with the results reported in the literature [13].
The research presented in the literature [13] describes
the following scheduling logic: No optimization –
workflows are scheduled in the order in which they
arrive in the input queue; Simple ANN optimization –
the output of the simple ANN presents the workflow
that is sent to the Grid; Hierarchical ANN optimization
– the output of the hierarchical ANN network selects
the workflow that is scheduled in the next step.

We tested the dynamic workflow scheduler based
on GA with parameters given in Table 1.

Table 1. Values of parameters used in GA scheduler

population size 100
number of evolution steps 3000
chromosome size 6
selection roulette wheel mechanism
crossover operator k-point crossover
crossover rate 0.85
mutation rate 0.05
elitism 5 %

Table 2 summarizes the results of scheduling com-
parison. We used between ten and a thousand work-
flows in the tests.
Table 2. Speed of workflows execution

Numb
er of

work-
flows

Time of
execution
– no opti-
mization

[s]

Time of
execution –
simple ANN
optimization

[s]

Time of
execution –
Hierarchical

ANN
optimization

[s]

Time of
execution –
GA accom-
modation

optimization
[s]

10 17 14 13 16
50 99 77 72 67
100 199 163 156 128
250 501 412 391 324
500 1007 827 809 618
1000 2018 1671 1625 1297

The experimental study shows that the GA based
scheduler outperforms the existing solutions based on

the neural networks (Figure 5). The performance (spe-
cifically, the speed) of the system improves with the
increasing number of the scheduled workflows. The
scheduling brings more benefits if there are more
workflows to rearrange.

101 102 103
101

102

103

104
Speed of workflow execution

Number of workflows

No optimization
Simple ANN optimization
Hierarchical ANN optimization
GA accommodation optimization

Figure 5. Speed of workflow execution

By introducing the dynamic GA scheduler in a
workflow scheduling process for large scale UMS
system, we provide the substantial improvement of the
computational resources exploitation. The result is
better performance of the entire system.

8. Conclusion

The specific features of the large scale UMS make
the proposed architecture different from the standard
Grid scheduling systems. The architecture based on
feedback provides optimal scheduling (execution time
optimization) of the workflows.

We demonstrated the usefulness of the genetic al-
gorithm in forming the efficient workflow Grid sche-
duler. The aim of the experimental study was to reveal
the effectiveness of the GA based scheduling when the
makespan is optimized.

The GA scheduler works fast because of the GA
Accommodation algorithm; hence the scheduler dyna-
mically chooses the optimal scheduling strategy for
the workflows that arrive at the Grid.

We also presented an experimental study. The per-
formance analysis shows that this approach signifi-
cantly boosts the performance of the whole system
and reduces the total execution time. Since the same
results can be achieved by using less Grid nodes, the
hardware investments can be substantially decreased.

References
 [1] I. Foster, C. Kesselman, S. Tuecke. The anatomy of

the grid: enabling scalable virtual organization. Inter-
national Journal of Supercomputer Applications,
2001, 15(3), 200–222.

 [2] V. Kecman. Learning and Soft Computing. 2001.

N. Nedić, S. Vukmirović, A. Erdeljan, L. Imre, D. Čapko

316

 [3] Y. Zhang, C. Koelbel and K. Cooper. Hybrid Re-
Scheduling Mechanisms for Workflow Applications
on Multi-cluster Grid. 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2009,
116–123.

 [4] R. K. Agrawal, B. Merh, P. Fatnani, R. Yadav,
S. Gangopadhyay. Scada functionality for control
operations of Indus-2. 10th ICALEPCS Int. Conf. on
Accelerator & Large Expt. Physics Control Systems.
Geneva, 10–14, Oct. 2005, PO1.098-8.

 [5] B. Qiu H. B. Gooi. Web-Based SCADA Display
Systems (WSDS) for Access via Internet. IEEE Trans-
actions on Power Systems, 2000, Vol.15, 681–686.

 [6] E. Ozdemir, M. Karacor. Mobile phone based
SCADA for industrial automation. ISA Transactions,
2006, Vol.45, 67–75.

 [7] A. Rygg, S. Mann, P. Roe, O. Wong. Bio-Workflows
with BizTalk: Using a Commercial Workflow Engine
for eScience. Proceedings of the First International
Conference on e-Science and Grid (e-Science’05),
2005, 116–123.

 [8] D. Abramson, A. Lynch, H. Takemiya, Y. Tanimu-
ra et. al. Deploying scientific applications to the
PRAGMA grid testbed: Strategies and lessons. In Pro-
ceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid (CCGRID’06),
Washington, DC, USA, 2006, IEEE Computer Society,
241–248.

 [9] G. Allen, D. Angulo, T. Goodale, T. Kielmann, A.
Merzky, J. Nabrzyski, J. Pukacki, M. Russell, T.
Radke, E. Seidel, J. Shalf, I. Taylor. GridLab:
Enabling applications on the Grid. In GRID’02:
Proceedings of the Third International Workshop on
Grid Computing, London, UK, 2002, Springer-Verlag,
39–45.

[10] F. Berman, H. Casanova, A. Chien, K. Cooper et.
al. New grid scheduling and rescheduling methods in
the grADS project. Int. J. Parallel Program, 2005,
33(2–3), 209–229.

[11] A. Erdeljan, N. Trninić, D. Čapko. An OPC data ac-
cess server designed for large number of items. 6th
International Symposium Interdisciplinary Regional
Research (Hungary, Romania, Yugoslavia) ISIRR
2002, Novi Sad, 2002.

[12] S. Hotovy. Workload evolution on the Cornell theory
center IBM SP2. In Job Scheduling Strategies for
Parallel Processing Workshop, 1996, 27–40.

[13] S. Vukmirovic, A. Erdeljan, I. Lendak, N. Nedic.
Hierarchical neural model for workflow scheduling in
Utility Management Systems, 2010.

[14] A. Abraham, R. Buyya, and B. Nath. Nature’s
heuristics for scheduling jobs on computational grids.
In The 8th IEEE International Conference on Advan-
ced Computing and Communications (ADCOM 2000),
India, 2000, 45–52.

[15] V. Di Martino, M. Mililotti. Sub optimal scheduling
in a grid using genetic algorithms. ParallelComputing,
2004, 30, 553–565.

[16] M. Aggarwal, R.D. Kent, A. Ngom. Genetic Algo-
rithm Based Scheduler for Computational Grids. Pro-
ceeding of the 19th Annual International Symposium
on High Performance Computing Systems and
Applications, 2005, 209–215.

[17] U. Fissgus. Scheduling Using Genetic Algorithms.
20th IEEE International Conference on Distributed
Computing Systems (ICDCS’00), 2000, 662–699.

[18] A. Kačeniauskas, R. Pacevič, A. Bugajev, T. Katke-
vičius. Effective visualization by using Paraview soft-
ware on Balticgrid. Information Technology and Cont-
rol, 2010, Vol.39, No.2, 108–115.

[19] G. Narvydas, R. Simutis, V. Raudonis. Autonomous
mobile robot control using If-Then rules and genetic
algorithm. Information Technology and Control, 2008,
Vol.37, No.3, 193–197.

[20] A. Kuczapski, M. V. Micea, L. A. Maniu, V. I.
Cretu. Efficient generation of near optimal initial po-
pulations to enhance genetic algorithms for job-shop
scheduling. Information Technology and Control,
2010, Vol.39, No.1, 32–37.

[21] A. Misevičius, D. Rubliauskas. Enhanced improve-
ment of individuals in genetic algorithm. Information
Technology and Control, 2008, Vol.37, No.3, 179–
186.

[22] A. Misevičius, D. Rubliauskas, V. Barkauskas.
Some further experiments with the genetic algorithm
for the quadratic assignment problem. Information
Technology and Control, 2009, Vol.38, No.4, 325–
332.

Received June 2010.

