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Abstract. In this paper we provide the guidelines for the direct degree elevation of NURBS curves. Through the 
analysis of linear equation systems of quartic and lower degree splines we derive a direct relation between the knot 
vector of a spline and the degree elevation coefficients. We also present a direct degree elevation scheme and several 
algorithms based on the discovered relation. Experimental results indicate that the direct degree elevation algorithms 
are up to twice more time-efficient than Piegl and Tiller’s degree elevation method. This proves the inefficiency of B-
spline calculation schemes based on blossoming that involve redundant operations with control points. It also negates 
Piegl and Tiller’s claim about the inefficiency of linear equation system solving method for quartic and lower degrees. 
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1. Introduction 

NURBS (Non-Uniform Rational B-Spline) is a 
well-known mathematical model used to represent 
curves and surfaces. It has become de facto techno-
logy in CAD systems because of its compact form and 
the ability to represent any desired shape. A NURBS 
curve is composed from a control polygon and the set 
of basis functions of a specific degree. In some cases a 
designer has to link two or more B-spline curves of 
different degree to form a new curve or surface [9]. In 
both situations the set of input curves must have a 
common degree [7]. Such a problem can be solved 
either using degree elevation or reduction. Both solu-
tions should not affect the shape of curves. Although 
in general, degree reduction is an approximation of an 
input curve [9]. Therefore, the only way to link several 
B-spline curves of different degree without affecting 
their shape is degree elevation. 

Degree elevation is considered a fundamental 
problem [7], although there is no unified and simple 
approach to it (see Section 2). Degree elevation me-
thods (in some sources referred to as degree raising 
methods [1, 9]) can be categorized into direct and in-
direct [9]. Indirect methods, like one provided in [6] 
and [7], are intuitive and simple to understand. But 
they may suffer from the lack of precision (because of 
round-off error [9]) and poorer performance. In this 
paper we intend to reveal the relation between 
NURBS curve and its degree elevated version (inspect 
Section 3). Acquired information allows the 
composition of direct degree elevation (DDE) scheme 
and algorithms (see Section 4). In Section 5 we show 
the effectiveness of the presented algorithms and dis-

cuss their potential. The research is concluded in Sec-
tion 6. 

2. Related Work 

Let us open this section by quoting Piegl and Tiller 
[7]. They claim that obvious but very inefficient me-
thod to degree elevate NURBS is to solve a system of 
linear equations. The authors suggest the other method 
instead that consists of three steps: 1) the extraction of 
Bézier segments using knot insertion, 2) the degree 
elevation of Bézier segments, and 3) the removal of 
unnecessary knots.  

We suspected this claim to be disputable because 
of the research results published in [4]. The research 
showed that de Boor’s knot insertion algorithm is not 
time-efficient. This happens because of the excess of 
arithmetic operations with control points. Each opera-
tion involving a control point is performed with each 
of its coordinates. In order to compose a time-efficient 
algorithm, one must minimize the amount of such 
operations.  

Lee and Park in their paper [5] show that knot 
insertion as well as de Boor’s algorithm relates to the 
theory of blossoming [2]. As blossoming is the re-
cursive scheme involving arithmetic operations with 
control points in every iteration, it cannot provide a 
time-efficient solution. Coincidently, Piegl and Tiller’s 
algorithm is based on the same concept. We have deci-
ded to analyze this case by composing an algorithm 
based on equation solving and compare it to Piegl and 
Tiller’s method. 
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There are many other approaches to the degree 
elevation problem. For example, Qin [9] presents the 
matrix method. Naturally, large matrices require a 
considerable amount of memory and additional alloca-
tion time. Wang in [10] proposes bi-degree basis func-
tion approach, although admits its inefficiency 
because of weight calculation. The most efficient ap-
proach we came across was proposed by Huang, Hu 
and Martin in [3]. It is based on the fact that a curve is 
uniquely defined by points on curve and its deriva-
tives. It can be applied to NURBS of an arbitrary de-
gree and any knot vector. Moreover, it can elevate the 
degree by an arbitrary natural number greater than 
zero. Another set of efficient algorithms is provided by 
Cohen, Lyche and Schumaker in [1]. The authors give 
degree elevation methods optimized for linear, quadra-
tic and uniform cubic NURBS. In the following sec-
tions we will refer to these methods as to CLS 
methods. 

Performance is not the only factor taken into con-
sideration. According to [3], fast algorithms like that 
of Prautzsch and Piper’s [8] may fail to gain populari-
ty because of the complexity and problematic imple-
mentation. Therefore, in this paper we consider the 
balance between good performance and simplicity. 

3. Mathematical Basis 

In this section we present the basic concept of 
NURBS, the mathematical definition of degree eleva-
tion problem and the solutions for linear, quadratic, 
cubic and quartic cases of non-uniform rational B-
spline. 

3.1. Background of NURBS 

As mentioned before, NURBS curve is defined by 
a set of control points iP  and a set of basis functions 

)(, uN pi  of certain degree 1≥p , where ni ...1,0= . 
Basis functions are calculated from the so-called knot 
vector, consisting of 1++= pnm  elements. In our 
research we use only a clamped normalized knot 
vector form: 
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There are several mathematical representations of 
NURBS, but the most popular is Cox-de Boor recur-
sion formula. It can be found in the majority of papers 
referring to NURBS. Although, notations of basis 
functions, control points and knot values vary greatly. 
In this paper we refer to the function )(, uN pi  as to the 
basis function of the degree p : 
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In general case, NURBS is a rational spline, thus 
each control point iP  has a positive weight value 

iw attached to it. So any point on NURBS curve with-
in the limits of parametric space (in our case 10 ≤≤ u ) 
can be obtained from the equation: 
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The rational B-spline can be easily mapped into 
homogeneous space to take a non-rational form [7]: 
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This can be achieved by multiplying each control 
point iP  coordinate by the weight value iw . The 
weight value becomes an additional coordinate. This 
means that the rational B-spline positioned in 3D mo-
del space can be mapped to 4D homogeneous space by 
mapping control points [7]: 

43 RR → : 
},,,{},,,{ wzyxwwzwywx wwww

i =⋅⋅⋅=P . (6) 

The superscript w  indicates that the entity resides 
in homogeneous space. Mapping from homogeneous 
to model space is also simple. It is achieved by divid-
ing coordinates by the weight value: 

34 RR → : 
},,{}/,/,/{ zyxwzwywx www

i ==P . (7) 

In fact, we will drop the superscript w  for the 
remainder of this article and treat NURBS curve as if 
it has a non-rational form. This will not affect the 
quality of our calculations and the solution will be ap-
plicable to the rational case as well (see Subsection 
3.3 for the explanation): 
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Now that we have clarified the notation, let us dis-
cuss the problem of the degree elevation. Firstly, let us 
discuss the degree elevation of a Bézier segment, 
which is a special case of NURBS. 

3.2. Bézier Curve Degree Elevation 

The (rational) Bézier curve is NURBS defined by 
a clamped knot vector with a single non-zero knot 
interval. As we have set the bounds for parametric 
space to 10 ≤≤ u , the knot vector takes the form of: 
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}1,...,1,1,0,...,0,0{
11 ++

=
pp

U . (9) 

In this case, the spline has 1+= pn  control points 
and 221 +=++= ppnm  knots. We are to elevate its 
degree from p  to 1ˆ += pp . Intuitively, the knot vec-
tor of a new spline has the form of: 

}1,...,1,1,0,...,0,0{ˆ
22 ++

=
pp

U . (10) 

Degree elevated Bézier segment has 42ˆ += pm  
knots. Therefore it must have 21ˆˆˆ +=−−= ppmn  
control points. Hence, a new Bézier segment has one 
additional control point ( 1ˆ =− nn ). Fortunately, it is 
not difficult to calculate the positions of new control 
points iP̂  [7]: 

1)1(ˆ
−+−= iiiii PPP αα , (11) 

pii ˆ/=α , pi ˆ,...,0= . (12) 

In some sources, like [10], this process is called 
corner cutting because every new control point iP̂  is 
positioned on the line between two adjacent iP  and 

1−iP , with exception of the first and the last control 

points. They remain in their former position: 00
ˆ PP = , 

11ˆ
ˆ

−− = nn PP . Figure 1 illustrates the degree elevation 
of Bézier spline from cubic to quartic.  

 
Figure 1. Degree elevation of cubic Bézier spline 

Clearly, raising the degree of Bézier spline is very 
simplistic. The control point repositioning coefficients 

iα does not depend on the initial position of control 
points or on the knot vector. In the remainder of this 
paper we will refer to (12) as to Bézier coefficients.  

Unfortunately, degree elevation of NURBS is a lot 
more complicated. The following subsections discuss 
the general concept of degree elevation and special 
cases of linear, quadratic, cubic, and quartic splines. 

3.3. General Concept of NURBS Degree elevation 

There are two prerequisites for algorithms that 
raise the degree of a NURBS curve: input and output 

curves must match parametrically and geometrically 
[5, 7]. This means that both splines at any parametric 
value 10 ≤≤ u  must produce the point located at the 
same position in the model space: 

)(ˆ)( uu CC = . (13) 

 Also, the degree elevated spline must retain 
original differentiability properties [2, 3, 5]. Hence, a 
new spline must have the same continuity as the 
original one. This can be achieved by increasing knot 
multiplicities of the degree elevated spline by one. Let 

ls  denote a multiplicity of a certain knot, where 
η...0=l  and η  is the number of non-zero intervals in 

the knot vector. Then the original knot vector can be 
denoted as: 
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Notice that the knot subscript does not refer to the 
knot position in a knot vector, but to an index of a 
unique knot value. This rearrangement of indices does 
not affect the result of Cox-de Boor formula (3), be-
cause the knot vector remains the same. We only 
grouped equal values. To avoid confusion we mark 
such knot values with the superscript s . Coincidently, 
the knot vector of degree elevated NURBS has the 
form of: 
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Although all authors agree upon the form of the 
knot vector, their approach to the calculation of a cont-
rol polygon differs greatly. We will refer to the cal-
culation of degree elevated spline control points as to 
elevation of control points (the control polygon). It is 
known that elevation of the control point is a convex 
scheme [7]. This means that the control point jP̂  is 
located inside the polygon of adjacent control points 

iP : 

∑
−

=

=
1

0
,

ˆ
n

i
ijij PP γ , nj ˆ...0= , (16) 

where ji,γ  is a positive real value that submits to the 
restriction: 

1
1

0
, =∑

−

=

n

i
jiγ . (17) 

Notice that jP̂  is acquired by summing the multi-

plications of ji,γ  and iP . Both arithmetic operations 

are performed with each coordinate of iP . So, jP̂  
resides in the same multidimensional model space as 

iP . As the solution does not depend on the initial 
control polygon, any algorithm that can obtain correct 

ji,γ  values for 1D model space is correct in cases of 
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2D, 3D, and 4D model spaces as well. Because of this, 
we can map NURBS to homogeneous space using (6) 
before the elevation and ignore NURBS rationality in 
our analysis of the relation between original and de-
gree elevated spline. All control points must be map-
ped back to the model space after the elevation using 
(7).  

Currently, there is no unified method that cal-
culates ji,γ  values. Existing direct and indirect me-
thods vary in complexity and performance. We intend 
to reveal the relation between )(uC  and )(ˆ uC  by 
solving the linear equation system obtained from (13). 
Plugging (8) into (13) gives: 
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where n̂  is the number of elevated control points, 
)(ˆ

ˆ, uN pj is the basis function of NURBS, whose de-

gree was elevated from p  to 1ˆ += pp . Actually, only 
1+p  or less of adjacent basis functions have a posi-

tive value. Other functions equal zero, therefore can 
be eliminated (the local support property [7]): 

ˆ

ˆ, ,
ˆ ˆ

ˆ ˆ1 1

ˆ ˆ( ) ( ) ,

ˆ ˆ, ,

k k

i p i j p j
i k p j k p

k k k k

N u N u

u u u u u u
= − = −

+ +

=

< < < <

∑ ∑P P
  (19) 

∑∑
−

−=

−

−=

=
ll sk

pkj
jpj

sk

pki
ipi uNuN

ˆˆ

ˆˆ
ˆ,,

ˆ)(ˆ)( PP , (20) 

ˆˆk k
u u u= = , 1... 1l η= − ,  

where 1ˆ −−= kkl , 1ˆ += ll ss , ku ˆˆ  denotes knot from 

elevated knot vector and ls  denotes knot multiplicity. 
The equation (19) states that curve segment 

1+<< kk uuu  is affected by a set of control points 
from pk−P  to kP  before the elevation and the set of 

control points from pk ˆˆ
ˆ

−
P  to k̂P̂  after the elevation. 

The equation (20) defines a special case, when para-
metric value equals the knot value kk uuu ˆˆ== . This 
special curve point is affected by the same number of 
control points before and after the elevation (because 
we set knot multiplicities from (14) to (15) to maintain 
continuity). This number equals: 

1+−= ll spn . (21) 

Table 1 helps to visualize the situation. As u , p , 
and p̂  values are constant within the limits of the 
equations (19) and (20), we use iN  instead of 

)(, uN pi  and jN̂  instead of )(ˆ
ˆ, uN pj  for the sake of 

compactness. Also, we use the acronym PN in the text 
instead of the multiplication of the control point and 
the basis function. 

Table 1. PN influence on certain segments of NURBS curve  

l , k , k̂  0=l , pk = , pk ˆˆ =  1=l , 1spk += , 1̂ˆˆ spk +=  1−=ηl , nk = , nk ˆˆ =  

ii NP  00 NP  pp NP  slsl NP 11 spsp N ++P  pnpn N −−P  nn NP   

jj N̂P̂  00
ˆˆ NP  pp N̂P̂ pp N ˆˆ

ˆP̂  
11 ˆˆ

ˆˆ
ss NP

11 ˆˆ
ˆˆ

spsp N ++P
11 ˆˆˆˆ

ˆˆ
spsp N ++P pnpn N ˆˆˆˆ

ˆˆ
−−P  1ˆ1ˆ

ˆˆ
−− nn NP nn N ˆˆ

ˆP̂

jkpl +− ˆˆ,α  0,0α  

… 

p,0α  p̂,0α  0,1α  

…

p,1α  p̂,1α  

…

0,1−ηα  

… 

p,1−ηα  p̂,1−ηα
 

There are η  non-zero knot intervals. Each of them 
can be indentified either by k  in the knot vector U , 
by k̂  in the knot vector Û  or by l  in the knot 
multiplicity vector S :  

}1 , ,..., ,1{ 110 +=+== − psssps ηηS . (22) 
Every interval (the segment of a curve residing in 

the model space) has a set of non-zero basis functions. 
They define the amount of control point influence on a 
curve within the bounds of a given segment. The se-
cond row in Table 1 indicates PN pairs that contribute 
to the shape of the curve segment before the elevation. 
The third row refers to PN pairs after the elevation.  

Let us presume that knot multiplicities are psl = , 
1...1 −= ηl . Then we have NURBS composed of Bé-

zier segments. In such case, we can apply (11) and 
(12) to degree elevate a spline, just like Piegl and Til-
ler suggested in [6] and [7]. Then all jkpl +− ˆˆ,α  values 

given in the fourth row of Table  are Bézier 

coefficients. But in general, NURBS is not composed 
of Bézier segments. 

Normally, the influence of a basis function spreads 
throughout several segments, so a single control point 
affects several segments of a curve. This is the reason 
why NURBS is continuous at segment “welding” 
points-knots. In fact, NURBS curve is lspC −  conti-
nuous at knots [4] and each knot interval can be diffe-
rent in size (non-uniformity). Because of these inter-
segment relations calculation of alpha coefficients is 
not as simple as in Bézier case. Henceforth, we will 
refer to alpha values in Table 1 and to gamma in the 
equation (16) as to elevation coefficients.  

Theoretically, elevation coefficients do not depend 
on the position of control points. They depend on the 
degree and the knot vector of NURBS. It is much 
easier to grip the nature of relation between )(uC  and 

)(ˆ uC  by examining degree-specific examples. The 
next subsection discusses the example of NURBS 
degree elevation from linear to quadratic. 
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3.4.Degree Elevation of Linear NURBS 

We are to elevate NURBS from 1=p  to 2ˆ =p . 
Let the knot vector of the original spline take the form 
of: 

}1,1,,...,,,0,0{ 121
sss uuu −= ηU . (23) 

It is important to note that knot multiplicities ls  
cannot exceed the degree (with the exception of the 

first and the last knot), otherwise a certain control 
point will have no affect on the curve: 

psl ≤≤1 , 1...1 −= ηl . (24) 
So, in the linear case, (23) is the only valid form of 

a clamped normalized knot vector. Let us adapt Table 
1 to the linear case (see Table 2) and compose the knot 
vector of the degree elevated spline: 

}1,1,1,,...,,,,,0,0,0{ 112211
ssssss uuuuuu −−= ηηU . (25) 

Table 2.  PN influence on certain segments of the linear NURBS curve 

0=l , 1=k , 2ˆ =k  1=l , 2=k , 4ˆ =k  
00 NP  11NP   11NP  22 NP   

00
ˆˆ NP  11

ˆˆ NP  22
ˆˆ NP  22

ˆˆ NP  33
ˆˆ NP  44

ˆˆ NP  

0,0α  1,0α  2,0α  0,1α  1,1α  2,1α  

… 

 
For the sake of simplicity and compact look, we 

introduce several useful notations. Let us mark the dif-
ference between knots values 1+ku  and ku  as 1,lD . 
So, 1,lD  denotes the size of the l ’th non-zero knot in-
terval. It is convenient to use this notation in order to 
capture the size of L  adjacent non-zero knot intervals: 

kKLl uuD −=, , ∑
+<

+=

++=
Lli

li
iskK

1
1 . (26)  

Another useful notation for the ratio of knot inter-
vals is taken from [4]: 

, ( ) ( ) / ( ),

, 0 .
i j i i j iA u u u u u

k j i k j p
+= − −

− ≤ ≤ ≤ ≤
  (27) 

The last two notations are used to collapse the 
subtraction from 1 operation: 

, ,( ) 1 ( ),

, 0 .
i p i pA u A u

k j i k j p

= −

− ≤ ≤ ≤ ≤
 (28) 

jiji ,, 1 αα −= , 10 −≤≤ ηi , pj ˆ0 ≤≤ . (29) 

Let us go back to the degree elevation of linear 
NURBS. Setting u  to zero collapses equation (20) to 

0000
ˆˆ NN PP = , 1ˆ

00 == NN . Therefore, we get: 

00 P̂P = . (30) 

This relation is correct for an arbitrary degree be-
cause of the clamping. An analogous relation can be 
declared for the last control point: 

nn ˆP̂P = . (31) 

Let us move forward into the first non-zero inter-
val suu 10 << . Now the equation (19) can be rewrit-
ten as: 

2211001100
ˆˆˆˆˆˆ NNNNN PPPPP ++=+ . (32) 

This equation can be decomposed into the system 
of linear equations. In order to do this, one must for-
mulate the relation between iP  and jP̂ . It can be ac-

complished by applying the corner cutting scheme 
given in (11) for each knot interval separately. Hence, 

jP̂  relates to iP  in the following fashion: 

00,00
ˆ PP α= , (33) 

11,001,01
ˆ PPP αα += , (34) 

2 0,2 1 0,2 2 0,1 0,2

1,0 0 1,0 1 1,1 0,2

ˆ ( ) /
( ) /

D D
D D

α α

α α

= + +

+ +

P P P
P P

. (35) 

Notice that 22
ˆˆ NP  contributes to both intervals: 

1,0D  and 1,1D . In order to maintain the restriction of 
the convex scheme (see the equation (17)), it is neces-
sary to multiply elevation coefficients from 1,0D  by 
ratio )/( 1,11,01,0 DDD +  and coefficients from 1,1D  by 

)/( 1,11,01,1 DDD + . Keep in mind that 

2,01,11,0 DDD =+ . Hence, we get the expression (35). 
Grouping elements of (35) by iP  yields: 

1,1 0,1 1,1
2 1,0 0 0,2 1,0 1

0,2 0,2 0,2

0,1
0,2 2

0,2

ˆ D D D
D D D

D
D

α α α

α

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠

+

P P P

P

. (36) 

As 02 =N  at suu 10 << , we can ignore 2P  group 
in (36). From (30) and (33), we can tell that 10,0 =α , 
thus 00,0 =α . So, plugging (33), (34) and (36) into 
(32) gives: 

1,0 1,1
0 0 1 1 0 0,1 1 2 0

0,2

0,2 0,1 1,0 1,1
0,1 1 2 1

0,2

ˆ ˆ ˆ

ˆ ˆ

D
N N N N N

D

D D
N N

D

α
α

α α
α

⎛ ⎞
+ = + + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞+

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

P P P

P

. (37) 

It is easy to decompose (37) into the system of 
1+p  linear equations. In this case, there are two 

equations in the system. The first is extracted from 0P  
group, and the second is extracted from 1P  group: 
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⎪⎩

⎪
⎨
⎧

++=
++=

2,021,10,11,02,011,01

2,021,10,111,000
/ˆ)(ˆ

/ˆˆˆ

DNDDNN
DNDNNN

ααα
αα . (38) 

The basis functions can be decomposed using Cox-
de Boor formula (3) and converted into the form of 
(26). The first of equations in (38) can be expressed 
as: 

0,2 0,1 0,1 0,2 0,1 1,0 1,1( ) 2 ( ) .
.k

D D d D D d dD
d u u

α α− = − +

= −
 (39) 

Now we have a single equation with two unknown 
coefficients, but we can use two different values of d  
to obtain solutions for 1,0α  and 0,1α . If (39) is inter-
preted as (40), then coefficients can be calculated from 
(41) and (42): 

bBaAC += , (40) 

1221

1221

BABA
BCBC

a
−
−

= , (41) 

1221

1221

BABA
CACA

b
−
−

= . (42) 

Due to given 1,0α=a , 0,1α=b ,  1 0,22A D=  

0,1 1( )D d− , 1,111 DdB = , )( 11,02,01 dDDC −= ,  2A =  

0,2 0,1 22 ( )D D d− , 1,122 DdB = , and 2 0,2C D= 0,1 2( )D d− , 
the solutions are 2/11,0 =α  and  00,1 =α . Solving 
the second equation in (38) yields 12,0 =α . In the li-
near case it is not necessary to repeat the calculations 
with the remaining intervals, because each interval 
produces the same result (inspect Table 3). 

Table 3. Alpha elevation coefficient values for the linear 
NURBS curve 

0,0α  1,0α  2,0α  0,1α  1,1α  2,1α  
0 1/2 1 0 1/2 1 

… 

Notice that alpha values are Bézier coefficients 
(see Subsection 0). Inserting these values into (33), 
(34) and (36) produces 00

ˆ PP = , 2/)(ˆ
101 PPP +=  

and 12
ˆ PP = . This corresponds to (12) and there is no 

accident. Clamped linear NURBS is composed of 
Bézier segments and is 0C  continuous at knots. Hen-
ce, Piegl and Tiller’s algorithm [6, 7] does not produce 
unnecessary knots that need to be removed. 

In the cases of quadratic, cubic and quartic 
NURBS we intend to use the same corner cutting 
scheme for each non-zero knot interval and calculate 
elevation coefficient values by solving the linear 
equation system, obtained either from (19) or from 
(20). Also, the values of the first and the last elevation 
coefficient in the corner cutting scheme are valid for 
an arbitrary degree: 

00, =lα , (43) 

1ˆ, =plα . (44) 

3.5. Degree Elevation of Quadratic NURBS 

The elevation from 2=p  to 3ˆ =p  slightly differs 
from the linear case. Since knot multiplicities can be 
set either to 1=ls  or to 2=ls  (inspect (24)), the knot 
vector has more than one valid form. For now, let us 
consider 1=ls :  

}1,1,1,,...,,,0,0,0{ 121
sss uuu −= ηU . (45) 

By following the procedure provided in Subsection 
0 we are able to extract the linear equation system 
from the first non-zero knot interval 32 uuu <<  (or 

suu 10 << ): 

0 0 0,1 1

1 1 0,2 0,1 1,1 2 0,2

1,1 3 1,1 0,2

2 0,2 0,1 2 0,2 0,1 1,1 1,1 3 0,2

ˆ ˆ

ˆ ˆ2 / 3 ( ) /
ˆ /

ˆ ˆ/ ( ) /

N N N

N N D D N D

N D D

N D N D D D N D

α

α

α

α α

⎧ = +
⎪
⎪ = + + +⎪
⎨

+⎪
⎪

= + +⎪⎩

. (46) 

A portion of equation system solutions is provided 
in Table 4.  

Table 4. Alpha elevation coefficient values for the quadratic 
NURBS curve 

0,0α 1,0α 2,0α 3,0α 0,1α  1,1α  2,1α  3,1α
0 1/3 2/3 1 0 1/3 2/3 1 

…

Notice, that alpha values are Bézier coefficients 
and can be calculated using (12). Despite this fact, the 
quadratic case is different from the linear case. As 
interval ratios 2,01,0 / DD  and 2,01,1 / DD are not eli-

minated, positions of 2P̂  and 3P̂  are obtained from: 

0,1 1,1 0,1
2 0,2 1 0,2 2

0,2 0,2 0,2

ˆ D D D
D D D

α α
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

P P P , (47) 

1,1 0,1 1,1
3 1,1 1 1,1 2

0,2 0,2 0,2

ˆ D D D
D D D

α α
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

P P P . (48) 

Equations for 0P̂  and 1P̂  are the same as in the li-
near case (see (33) and (34)). In order to make expres-
sions (47) and (48) more compact, we introduce ano-
ther type of elevation coefficients: 

,1
ˆ ˆˆ ˆ, ,

ˆ 1ˆ ˆ
l

l p k j l p k j
j p j

D
u u

β α
− + − +

+ +

=
−

, (49) 

,1
ˆ ˆˆ ˆ, ,

ˆ 1ˆ ˆ
l

l p k j l p k j
j p j

D
u u

β α
− + − +

+ +

=
−

, (50) 

where jû  represents a knot from Û , nj ˆ...0= . Plain-
ly speaking, the coefficient beta is acquired by multi-
plying the coefficient alpha with the same indices 
multiplied by the knot-interval ratio. The numerator of 
the ratio indicates the size of the knot interval to 
which coefficient alpha belongs and the denominator 
denotes the size of all knot intervals where 0≠jN . 

Pay attention to the fact that ββ −≠ 1~ , when the knot 
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interval ratio is less than 1. Now (47) and (48) can be 
rewritten as: 

( ) ( )2 0,2 1,0 1 0,2 2 1,2 1 2,2 2
ˆ β β β γ γ= + + = +P P P P P , (51) 

( ) ( )3 1,1 1 0,3 1,1 2 1,3 1 2,3 2
ˆ β β β γ γ= + + = +P P P P P . (52) 

If the knot interval form U  has double knots at 
both ends, this makes a respective segment of the 
curve a Bézier segment. This case is the same as the 
linear case. Let us move on to the case of cubic 
NURBS. 

3.5. Degree Elevation of Cubic NURBS 

The degree elevation of cubic NURBS introduces 
another new feature. Let 1=ls , 1...1 −= ηl . Then 
extraction  of  the  linear  equation  system  within  the  

bounds of the first interval 43 uuu <<  yields: 

0 0 0,1 1

3 0,1 4 0,3 1,2 1,1 4 0,3

0,3 0,1 3 0,2

ˆ ˆ

...
ˆ ˆ/ /

ˆ /

N N N

N D N D D N D

D N D

α

α

α

⎧ = +
⎪
⎪
⎨

= + +⎪
⎪ +⎩

. (53) 

We would like to underline the fact that the first 
and the last equations in the system always contain 
two or less coefficients. We will refer to these equa-
tions as to short equations in the remaining sections. 
Short equations are easy to solve using the form of 
(40) and then applying (41) and (42). Moreover, in the 
cubic case short equations are sufficient to determine 
all elevation coefficients. Some of alphas are provided 
in Table 5. 

Table 5. Alpha elevation coefficient values for the cubic NURBS curve 

0,0α  1,0α  2,0α  3,0α  4,0α  0,1α  1,1α  2,1α  3,1α  4,1α  0,2α  1,2α  2,2α  
0 1/4 2/4 … 1 0 1/4 2/4 … 1 0 … 2/4 

… 

 
Certain values like 3,0α , 3,1α , and 1,2α  are 

not constant and do depend on the size of knot 
intervals: 

)ˆ(ˆ4

)(
1

4
1

64,4

43,3

3,0

2,0
3,0

uN

uN
D

D
−=−=α , (54) 

)ˆ(ˆ4

)(
1

4
1

84,6

53,4

3,1

2,1
3,1

uN

uN
D

D
−=−=α , (55) 

)ˆ(ˆ4

)(
4 104,4

63,2

3,0

2,1
1,2

uN

uN
D
D

==α . (56) 

Using this pattern in conjunction with the fact that 
there are two short equations with 1,lα  and pl ˆ,α  for 
each non-zero knot interval, we can claim that:  

)ˆ(ˆ
)(

ˆ
1

ˆˆ,ˆˆ

,
1,

kppk

kppk
l

uN

uN
p

−

−=α , (57) 

)ˆ(ˆ
)(

ˆ
1

ˆˆ,ˆˆ

,
,

kpsk

kpsk
pl

uN

uN
p

l

l

−

−=α , (58) 

where kk uu ˆˆ= , 1ˆ −−= kkl  and 1...1 −= ηl . These 
relations are valid for the arbitrary degree and this is 
the reason why they are very important. So, in the 
cubic case the first alpha is 0, the middle alpha is 1/2, 
and the last alpha is 1. The remaining alphas can be 
obtained from (57) and (58). 

3.6. Degree Elevation of Quartic NURBS 

It is not difficult to see that the complexity of 
degree elevation grows altogether with continuity at 
knots. The quartic NURBS maintains 3C  continuity 
at knots with the multiplicity of 1. So, let us assume 

that all knot multiplicities are 1=ls  for all 
1...1 −= ηl . Equations (43), (44), (57), and (58) allow 

us to acquire all alphas except 2,lα  and 3,lα . Those 
values can be calculated from short equations 
extracted at knot values kk uuu ˆˆ==  with the ex-

ception of 3,0α  and 2,1−ηα . Let us take the example of 

2,1α : 0,3 2 6 2,1 2,1 5 9 2,1
1,2

1,11,1 4 9

ˆ ˆ( ) ( )
ˆ ˆ( )

D N u D N u D
DD N u

α
α

−
= − . (59) 

This equation has a fairly large number of ele-
ments. Also, it turns out that short equations at kuu =  
define the relation between 1,lα  and 

lsl ˆ,1−α  as well as 

between pl ,1−α  and 
lspl ˆˆ, −α , where 1ˆ += ll ss . Notice 

the sliding index that depends on ls . Because of this, 
there are cases when 2,lα  and 3,lα  cannot be obtained 
from short equations. So, we must turn to long equa-
tions.  

Recall that our final objective is to acquire gamma 
elevation coefficients to calculate jP̂  (see (16)). This 
is the essential idea of the direct degree elevation. In 
fact, if all alphas are known, we can easily calculate 
betas (see (49) and (50)) and then gammas (inspect 
examples (51) and (52)), but that is a redundant pro-
cess. 

In preceding subsections we provided alpha values 
to illustrate the difference between the degree 
elevation of Bézier segment and NURBS segment. 
Henceforth, we will focus our attention to the direct 
acquisition of gamma elevation coefficients. Let us 
take the example of 3,3γ : 

2,01,03,03,03,3 /~ DDαβγ == . (60) 
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Coefficient 3,3γ  is obtained directly from the long 
equation of the group 3P  at 54 uuu <<  and 5uu = : 

( ) ( )3 3,5 5 4 7 3 5 3,5 5 7 4
3,3

3 4 7 3 7 4

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( )

N u N u N u N u N u N u

N u N u N u N u

γ γ
γ

− − −
=

−
.(61) 

Now we will illustrate the methodology that 
simplifies the solution process: 
1. The basis functions must be expressed by the 

means of ratios (27) and (28). In this specific case 
there are four different ratios. Let us denote them 
by )(1,41 uAA = , )(2,42 uAA = , )(3,43 uAA = , and 

)(4,44 uAA = . So, the list of necessary basis func-
tions consists of:  

)()( 43213213 AAAAAAAuN +++= , (62) 

)343()(ˆ 2
221

2
12

2
13 AAAAAAuN ++= , (63) 

)22()(ˆ
321

2
2

2
14 AAAAAuN ++= , (64) 

3
2
2

2
15 )(ˆ AAAuN = , (65) 

3
143213253 /)3()( AAAAAAAuN −−−= , (66) 

3
1

2
21273 /)(3)ˆ(ˆ AAAAuN −= , (67) 

3
1321

2
274 /)23()ˆ(ˆ AAAAAuN −−= , (68) 

3
13

2
275 /)ˆ(ˆ AAAuN = . (69) 

2. Gamma in the right side of the equation is obtained 
from the series of the short equations. In this case 

1,23,15,3
~
ββγ +=  is obtained from short equations 

extracted from (20) at 5uu =  and 6uu = . The 
gamma value must be expressed by the means of 
(27) and (28): 

21

32143231
5,3 5

)22())((
1

AA
AAAAAAAA +++−−

−=γ . (70) 

3. Gamma and basis function values must be plugged 
into the long equation and solved. In this case 
plugging (62) – (70) into (61) produces huge ex-
pression. Luckily it collapses to: 

3,0

1,0

1

3
2

132
2
2

2
132

2
2

1

3
3,3 5

2
5
2

32
32

5

2
D
D

A

A
AAAA
AAAA

A

A
==

−+

−+
=γ  . (71) 

We know that 2,01,03,03,03,3 /~ DDαβγ == , so we 
can easily calculate 3,0α : 

3,0

2,0
3,0 5

2
D
D

=α . (72) 

So actually, coefficient 3,3γ  we have obtained 
from (61) is the reduced form of: 

3,0

2,0

2,0

1,0
3,3 5

2
D
D

D
D

=γ . (73) 

Now let us take a look at the series of gammas at 
the left clamped end of the knot vector in Table 6.  

Table 6. Gamma elevation coefficient values for the quartic 
NURBS curve 

0,0γ  1,1γ  2,2γ  3,3γ  4,4γ  

1
1

5
5

1,0

1,0

D
D

1
1

5
4

1,0

1,0

D
D

2,0

2,0

2,0

1,0

5
3

D
D

D
D

3,0

2,0

2,0

1,0

5
2

D
D

D
D  

4,0

2,0

3,0

1,0

5
1

D
D

D
D …

Each gamma coefficient in Table 6 is combined 
from three ratios. The first one corresponds to Bézier 
coefficient in (12). The second one illustrates the knot 
interval ratio we used in (49) and (50). The third one 
is obtained from the basis function ratio similar to the 
ratios we used in (57) and (58): )(ˆ/)( 55,554,4 uNuN  

for 4,4γ , )(ˆ/)( 54,553,4 uNuN  for 3,3γ , 4,2 5( ) /N u  

5,3 5
ˆ ( )N u  for 2,2γ , and so on. It is easy to spot that the 

degree of basis functions is smaller when the diffe-
rence between k̂  and j  is greater. According to this 
pattern, we are able to compose a generic form of 

ji,γ . Let the active knot interval be indentified by a 

triplet: k  position in U , k̂  position in Û , and l  po-
sition in S . For all kisk l ≤<−  and kjsk l

ˆˆˆ ≤<−  
there is a valid relation: 

ˆˆ ˆ ,1
,

ˆ 1 ˆ ˆ ˆˆ,

ˆ ( )ˆ ˆ
,ˆˆ ˆ ˆ ˆ( )

ˆ, ,

kk p k jk k
i j

j p j k p k j k

N uu uk j
p u u N u

j k i j l

γ − ++

+ + − +

−−
=

−

< = −

 (74) 

where kk uu ˆˆ= . In the case of kj ˆ= , gamma can be 
obtained from the short equation: 

ˆ ˆ, , 1 ˆ1,
,

ˆ ˆˆ,

ˆ ˆ( ) ( )
,ˆ ˆ( )

ˆ, .

k p k i j k p k
i j

k p k

N u N u

N u

j k i k

γ
γ − −

−
=

= =

 (75) 

These relations are the very essence of the direct 
degree elevation of NURBS. They tell how to obtain a 
portion of elevation coefficients at an arbitrary knot 
interval. In the quartic case there are maximum three 
non-zero gammas. The equations (74) and (75) allow 
acquisition of the last non-zero gamma. The first non-
zero gamma can be obtained from the following 
relation and the short equation: 

ˆˆ ˆ ,1
,

ˆ 1 ˆ ˆ ˆˆ , 1

ˆ ( )ˆ ˆˆ
,ˆˆ ˆ ˆ ˆ( )

ˆ ˆ , 1,

kk p k jk k
i j

j p j k p k j k

N uu up k j
p u u N u

j k p i j l

γ − −+

+ + − − +

−− +
=

−

> − = − −

 (76) 

ˆ ˆ, , 1 ˆ ˆ1,
,

ˆ ˆˆ ˆ,

ˆ ˆ( ) ( )
,ˆ ˆ( )

ˆ ˆ , .

k p p k i j k p p k
i j

k p p k

N u N u

N u

j k p i k p

γ
γ

− + − +

−

−
=

= − = −

 (77) 

We would like a reader to pay attention to the fact 
that all gammas for a single jP̂  may be obtained from 

different knot intervals. Thus triplet k , k̂ , and l  will 
have different values for (74) and (76), as well as for 
(75) and (77). The acquisition of the middle gamma is 
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the most difficult. Therefore we suggest the usage of 
convex scheme restriction (17). 

Information gathered in this section confirms that 
elevation coefficients depend on the degree and the 
knot vector of NURBS. According to the expressions 
from (74) to (77), there is no need to solve the equa-
tion system obtained from (19). So, information acqui-
red from (20) is sufficient to determine all necessary 
gammas. Furthermore, basis functions from (20) are 
significantly simpler and their ratios can be downgra-
ded easily. As it is quite difficult to understand the 
simplicity of the concept from expressions filled with 
various indices, we present a direct degree elevation 
scheme in Subsection 4.1.  

4. DDE Algorithms and Implementation 

In this section we present the direct degree 
elevation scheme (see Subsection 4.1). We also pro-
vide several technical remarks regarding the imple-

mentation (see Subsection 4.2) and algorithm pseudo 
codes (see Subsections 4.3, 4.4, and 4.5).  

4.1. Direct Degree Elevation Scheme 

Say we are to elevate the degree of the quartic 
NURBS defined by the knot vector with various knot 
multiplicities: 

1 2 3 3 3 4 4 5{0,0,0,0,0, , , , , , , , ,1,1,1,1,1}.s s s s s s s su u u u u u u u=U  (78) 

Let us denote the multiplication of the second and 
the last ratio in (74) by 1R , and in (76) by 0R . Also, 
let 1E  denote the short equation (75) and let 0E  de-
note the short equation (77). Figure 2 explains how 
elevation coefficients are acquired from the relations 
between the basis functions of original NURBS and 
degree elevated NURBS, where sum−  symbolizes the 
subtraction of non-zero gammas from one (convex 
scheme restriction (17)). 

 

 0N̂  1N̂  2N̂  3N̂  4N̂  5N̂  6N̂ 7N̂ 8N̂  9N̂ 10N̂ 11N̂ 12N̂ 13N̂  14N̂  15N̂  16N̂  17N̂ 18N̂  

0N  5/5 -
sum   l=0 k̂ =5              

1N   4/5 -sum 1/5R0   l=1 k̂ =7            

2N    3/5R1 -sum E0 1/5R0   l=2 k̂ =9          

3N     2/5R1 -sum -sum 2/5R0             

4N  k=4    1/5R1 E1 -sum -sum            

5N    k=5    1/5R1 E1 -sum -sum   l=3 k̂ =13      

6N      k=6    1/5R1 E1 -sum         

7N            3/5 -sum 1/5R0   l=4 k̂ =16   

8N             2/5R1 -sum -sum 1/5R0   l=5 k̂ =18

9N          k=9    1/5R1 E1 -sum 2/5R0    

10N                2/5R1 -sum -sum   

11N             k=11    1/5R1 E1 -sum  

12N               k=12    1/5 5/5 

(a) Matrix representation of gamma elevation coefficients 

ji ,2−γ     1/5R0 E0 1/5R0 2/5R0      1/5R0  1/5R0 2/5R0    

ji ,1−γ   -sum -sum -sum -sum -sum -sum -sum -sum -sum -sum -sum -sum -sum -sum -sum -sum -sum  

ji,γ  5/5 4/5 3/5R1 2/5R1 1/5R1 E1 1/5R1 E1 1/5R1 E1 3/5 2/5R1 1/5R1 E1 2/5R1 1/5R1 E1 1/5 5/5 

(b) Compact representation of gamma elevation coefficients 

Figure 2. DDE scheme 

Figure 2 (a) illustrates the relation between the 
basis functions and gamma elevation coefficients in 
the form of a single gamma matrix Γ . Each set of 
non-zero basis functions at 1+<< kk uuu  is represen-
ted by a light gray rectangle with a dashed outline. 
The overlapping area of two adjacent sets is depicted 
by a darker gray rectangle with a solid outline. Coin-
cidentally, two adjacent sets of non-zero functions at 

ksk uuu
l

<<−  and 1+<< kk uuu  overlap at kuu = . 

The darkest gray areas indicate the basis functions that 
have non-zero value in three adjacent sets. 

The elements of Γ  indicate the method used to 
calculate ][ ,, jiji Γ=γ . The non-zero elements of a 
row induce to the restriction: 

∑
−

=

=
1ˆ

0
,

ˆ
n

j
jjii NN γ  . (79) 
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In words, one row holds a single equation. For 
example, the row 1N  describes the equation (80) at 

54 uuu << , which is reduced to equation (81) at 

5uu = : 

1 1,1 1 1,2 2 1,3 3
ˆ ˆ ˆN N N Nγ γ γ= + + , 4 5u u u< < , (80) 

1 1,2 2 1,3 3
ˆ ˆN N Nγ γ= + , 5u u= . (81) 

Every column submits to the restriction (17). 
Therefore, we do not have to calculate pre-last gam-
ma, because it can be obtained from (17). 

It is quite obvious that matrix representation of 
gamma coefficients mostly consists of zeros, because 
the maximum number of gamma elevation coefficients 
for a single control point jP̂  is: 

⎥⎥
⎤

⎢⎢
⎡ +

=
2

1ˆ
max

pnγ , (82) 

where brackets ⎡ ⎤⎢ ⎥  denote the ceiling operation 
(rounding to a greater integer). Hence, the matrix form 
is inefficient. Therefore, we suggest a compact form 
given in Fig (b). In fact, the elevation coefficients for 
each jP̂  can be obtained on-the-fly and used in (16) 

to acquire the position of jP̂ . The idea is to calculate 
the last non-zero gamma using either (74) or (75) 
while traversing through knot intervals. If there are 
three non-zero gammas, the first one is obtained either 
from (76) or from (77). The pre-last gamma is 
obtained from (17). The calculation of the third 
gamma is necessary when: 

kjpsk l
ˆˆˆˆ <<−+ . (83) 

A simplified DDE scheme includes the following 
steps: 
1. Initialize 1: −=k , 1:ˆ −=k   
2. For all 1...1: −= ηl  do 

2.1. Set 1: −+= lskk  and 1ˆ:ˆ
1 ++= −lskk  

2.2. For kskj l
ˆ...ˆ: 1−−=  do 

2.2.1. Set 1: +−= lji  and 1:,1 =− jiγ  

2.2.2. If kj ˆ= , then set 1: −= ii  
2.2.3. Calculate ji,γ  using (74) or (75) and 

set jijiji ,,1,1 : γγγ −= −−  

2.2.4. If (83) is satisfied, then calculate ji ,2−γ  
using (76) or (77) and set 

jijiji ,2,1,1 : −−− −= γγγ  

2.2.5. Calculate jP̂  from (16) 

4.2. Technical Remarks 

The performance of algorithms depends on the 
chosen platform, the amount of arithmetic calculations 
and data handling technique. We have chosen to 
implement our algorithms on the basis of .NET frame-

work using C# programming language. This subsec-
tion consists of several observations regarding plat-
form-specific implementation. 

 Experiments indicate that minimization of arith-
metic operations is not the only crucial factor that 
affects the performance. Memory allocation overhead 
may reduce the performance several times. .NET has 
an option to allocate a portion of memory either stati-
cally or dynamically. One must avoid allocating addi-
tional portions of memory during the calculation 
cycles for it may take more CPU time than calculation 
itself. The number of local variables is also important, 
but it plays a minor role. 

Conversions between static arrays and List collec-
tions should be avoided at any time. This procedure 
requires the framework to allocate additional memory 
and initialize additional cycles to transport data. The 
best bet is the static array when the number of ele-
ments is known. Also, List collection produces reason-
able overhead and is useful when allocated memory is 
filled with data in a consistent manner. The last ele-
ment can be introduced by simply using the method 
Add() and there is no need to track the index of the last 
element. Methods, like Insert() should be avoided for 
the rearrangement of the elements takes a lot of time. 

Apart from the performance factor, we also con-
sider the simplicity of algorithms. This property is 
defined by the number of code lines and the code 
structure. Essentially, there are two different strategies 
for the degree elevation problem: an arithmetic ap-
proach and a special case scenario. The arithmetic ap-
proach offers more elegant code structure because of 
fewer conditional sentences. However, the special case 
scenario performs faster because of the lesser number 
of arithmetic calculations. 

4.3. Elevation of NURBS Knot Vector 

In this paper we refer to the elevation of the knot 
vector as to the procedure that produces the knot vec-
tor of degree elevated NURBS curve. According to 
Section 3.3, we propose the following knot vector ele-
vation algorithm. In addition, this algorithm produces 
the multiplicity vector in the form of (22). 

Procedure ElevateKnots 
// in: p – degree 
// in: U[m] – knot vector 
// out: S[ns] – knot multiplicity vector 
// out: V[r] – elevated knot vector (worst case r = 2*(n+3)) 
begin 
 n = m - p - 1; k = 0; 
 r = 0; l = 1; ns = 0; 
 while (k < m-1) do begin 
  V[r] = U[k]; r = r + 1; 
    if (U[k] != U[k+1]) then 
   V[r] = U[k]; r = r + 1; S[ns] = l; 
   ns = ns + 1; l = 0;   
  endif; 
    l = l + 1; k = k + 1; 
 endwhile; 
 S[ns] = l; ns = ns + 1; V[r] = U[m-1]; 
 r = r + 2; V[r-1] = U[m-1]; 
end. 
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4.4. Elevation of NURBS Control Polygon 

As we have shown in Section 3.4, the linear case 
of clamped NURBS has a single knot vector form and 
the only variable is the number of knots. Therefore, 
we suggest purely arithmetic solution for this problem. 
We also compare our algorithm against the algorithm 
published by Cohen, Lyche and Schumaker in [1]. 
Both algorithms calculate the control point positions 
of degree elevated spline. 

Procedure DDELinear 
// in: P[n] – control points 
// out: Q[2*n-1] – elevated control points 
begin 
 for i = 0 to n-2 do begin 
  Q[2*i] = P[i]; 
  Q[2*i+1] = (P[i] + P[i+1])/2;  
 endfor; 
 Q[2*n-2] = P[n-1]; 
end. 

 

Procedure CLSLinear 
// in: U[m] – knot vector 
// in: P[n] – control points 
// out: Q[p+1] – elevated control points 
begin 
 p = 1; 
 if (U[0] < U[1]) then 
  Q[1] = P[0]/2; p = p + 1; 
 endif; 
 Q[p] = P[0]; 
 for i = 1 to n-1 do begin 
  if (U[i] < U[i+1]) then 
   p = p + 1;  
   Q[p] = (P[i] + P[i-1])/2; 
  endif; 
  p = p + 1; Q[p] = P[i]; 
 endfor; 
 if (U[n+1] > U[n]) then 
  p = p + 1; Q[p] = P[n-1]/2; 
 endif; 
end. 

 

Procedure DDEQuadratic 
// in: U[m] – knot vector 
// in: P[n] – control points 
// in: S[ns] – knot multiplicity vector 
// out: Q[n+ns-1] – elevated control points 
begin 
 k = 2; B = 1; b1 = 1/3; b2 = 2/3;  
 Q[0] = P[0]; 
 for l = 1 to nl – 1 do begin 
  if (S[l-1] > 1) then 
     Q[k+l-2] = b2*P[k-1] + b1*P[k-2]; 
  endif; 
  if (S[l] > 1) then 
      Q[k+l-1] = b1*P[k] + b2*P[k-1]; 
   Q[k+l] = P[k];  
  else 
   B=(U[k+1]-U[k])/(3*(U[k+2]-U[k])); 
      Q[k+l-1] = B*P[k] + (1-B)*P[k-1]; 
      Q[k+l] = (B+b2)*P[k]+(b1-B)*P[k-1]; 
  endif; 
  k = k + S[l]; 
 endfor; 
 Q[2*n-2] = P[n-1]); 
end. 

CLS algorithm has more steps, but is able to 
handle an unclamped knot vector. Let us compare the 
algorithm designed regarding the information 

provided in Section 0 against CLS algorithm when 
2=p  and 3ˆ =p . Consider that knot multiplicity vec-

tor S  was composed during the knot elevation (see 
Section 4.3). 

Both algorithms have a similar number of steps 
and follow the special case scenario. In addition, CLS 
algorithm handles unclamped knot vectors. Let us 
examine the degree elevation of quartic and lower 
degree NURBS. 

Procedure CLSQuadratic 
// varable description coresponds to DDEQuadratic 
begin 
 k = -1; p = -1; 
 for l = 0 to ns-2 do begin 
  k = k + S[l]; 
  if (S[l] == 3) then 
   p = p + 1; Q[p] = P[k-2]; 
  endif; 
  if (S[l] >= 2) then 
   p = p + 1; 
   Q[p] = (P[k-2] + 2*P[k-1])/3; 
  endif; 
  h1 = U[k+1] - U[k];  
  h2 = U[k+2] - U[k+1]; 
  comb = (h1*P[k] + h2*P[k-1])/(h1+h2); 
  p = p + 1; Q[p] = (2*P[k-1] + comb)/3; 
  p = p + 1; 
  if (S[l+1] == 1) then 
   Q[p] = (2*P[k] + comb)/3; 
  else 
   Q[p] = P[k]; 
  endif; 
  endfor; 
end. 

 

Procedure NRatio 
// in: U[m] – knot vector 
// in: V[r] – elevated knot vector 
// in: p – degree 
// in: sl – knot multiplicity 
// in: k1 – current knot 
// in: k2 – current elevated knot 
// in: type – ratio type 
// out: NR[p+1] – basis function ratios 
begin 
 rat = 1; 
 for i = 0 to p do begin NR[i] = rat; 
  endfor; 
 if (p >= 3) then 
  for i = sl+1 to p-1 
   if (type == 0) then 
    rat = (V[k2+1] – V[k2-i-1]) /  
    (U[k1+1] - U[k1-i]); 
   else 
    rat = (V[k2+i+2] - V[k2]) / 
    (U[k1+i+1] - U[k1]); 
   endif; 
   NR[i+1] = NR[i]*rat; 
 endif; 
end. 

As one might notice, in order to calculate (74) and 
(76) we must obtain the ratio of a certain basis 
functions first. Luckily, those functions are either the 
first or the last in non-zero basis function set at 

kuu = . This means that the ratio is easy to calculate. 
In 4≤p  case, this ratio can be reduced to a single 
knot interval in numerator and another one in deno-
minator. However, it is necessary to obtain all ratios 
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with intermediate values of the degree. Therefore, we 
suggest the method NRatio to calculate them. We 
provide the method SolveEq for the calculation of (75) 
and (76) as well. Setting variable type to 1 tells pro-
cedures to calculate (74) and (75). Any other value of 
type is used to calculate (76) and (77). 

Procedure SolveEq 
// in: V[r] – elevated knot vector 
// in: k2 – current elevated knot 
// in: p – degree 
// in: sl – knot multiplicity 
// in: NR – basis function ratio 
// in: type – equation type 
// out: Eq – short equation solution 
begin 
 sum = 1; q = p + 1; 
 if (type == 1) then 
  if (sl < q) then 

     for i = k2+q-sl to k2+q do 
   begin 
        sum = sum - (V[i] – V[k2+sl]) /  
    (q*(V[i] - V[k2])); 
   endfor; 
  else 
     for i = k2-q+1 to k2-q+sl+1 do 
   begin 
    sum = sum - (V[k2] – V[i]) /  
    (q*(V[k2+1] – V[i])); 
   endfor; 
 endif; 
  Eq = NR*sum; 
end. 

As the special case scenario offers better perfor-
mance, we have composed the direct degree elevation 
algorithm for the quartic and lower degree NURBS 
(DDE) using conditional segmentation. 

Procedure DDE 
// in: p – degree, p <= 4 
// in: U[m] – knot vector 
// in: V[r] – elevated knot vector 
// in: P[n] – control points 
// in: S[ns] – knot multiplicity vector 
// local: N0[p+1] – basis function ratios from (74)  
// local: N1[p+1] – basis function ratios from (76) 
// out: Q[n2] – elevated control points 
begin 
 q = p+1; n2 = n+ns–1; k1 = -1; k2 = -1; Bnum = 1; Bden = 1; 
 for l = 1 to ns-1 do begin 
  k1 = k1+S[l-1]; k2 = k2+S[l-1] + 1; lb = k2+S[l]-p; 
    N0S = 0; N1 = NRatio(U, V, p, S[l], k1, k2, 1);  // N1 denotes 3rd ratio in (74) 
    if (ns-l > 1) then jE = lb+S[l+1]+1; 
  else jE = n2; endif; 
    if (jE < k2) then  
   N0S = (V[k2+5]-V[k2+2])/(U[k1+3]-U[k1-1]);  // p=4 case, 3rd ratio in (76) 
  endif; 
    if (p-S[l] > 1) then  
   N0 = NRatio(U, V, p, S[l], k1+S[l], k2+S[l]+1, 0); 
   Bnum = V[k2+S[l]+2] - V[k2+S[l]+1]; 
  endif; 
    for j = k2-S[l-1] to k2 do begin // for every non-zero knot interval 
     G = {0, 1, 0}; i = j-l+1; // gammas and the last i 
      if (j >= lb) then Bden = V[j+q+1] - V[j]; endif; // 2nd ratio den. in (74) and (76) 
      if (j == k2) then 
        G[2] = SolveEq(V, k2, p, S[l]+1, N1[p], 1); i = i-1; //Eq. (75) 
        if (N0S > 0) then 
     G[0] = (V[k2+5]-V[k2+4])*N0S/(5*Bden);  //Eq. (76) 
      else 
       G[2] = (k2-j)/q;  // 1st ratio from (74) 
        if (j >= lb) then 
         G[2] = G[2] * (V[k2+1]-V[k2])/Bden; // 2nd ratio from (74) 
           if (j > lb && j < k2) then       // condition (83) 
            G[2] = G[2] * N1[q+j-k2];  // 3rd ratio from (74) 
             if (j == jE) then 
       G[0] = SolveEq(V, k2+4, p, 2, N0S, 0);   //Eq. (75)  
      else 
       G[0] = (j-lb)/q*Bnum/Bden*N0[k2+S[l]-j+1]; //Eq. (76) 
       endif; 
     endif; 
    endif; 
   G[1] = G[1] - G[2] + G[0];  //restriction (17) 
   if (G[1] == 0) Q[j] = P[i]; 
   else if (G[0] == 0) then Q[j] = G[2]*P[i] + G[1]*P[i-1]; endif; 
   else Q[j] = G[2]*P[i] + G[1]*P[i-1] + G[0]*P[i-2]); endif; 
  endfor; 
 endfor; 
end. 

The next subsection discusses the algorithm designed for the uniform case of NURBS. 
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4.5. Degree Elevation of Uniform NURBS 

The property of the uniformity is embedded into a 
knot vector [4]. NURBS is considered uniform when-
ever all knot intervals are equal, with the exception of 
the clamped ends. As the modification of knot inter-
vals produces non-intuitive result, the great majority 
of CAD applications do not permit such adjustment. 
So, the knot vector stays uniform. Equal knot intervals 
suggest that all ratios in (74) and (76) become frac-
tions that depend on two things: the degree p  and the 
number of control points n . Hence, all elevation coef-
ficient values can be pre-calculated and stored in the 
arrays. There are several facts to be considered before 
the inspection of the code. 
• There is a transitional range between the clamped 

and unclamped knot intervals. Gammas that are 
not   affected  by  the  clamping   can  be  stored  in  

matrix unΓ  of size 2max ×γn . The first dimension 
is obtained from (82). The second dimension 
equals the multiplicity of elevated knot, so in the 
uniform case it is 21 =+ls , 1...1 −= ηl . 

• Transitional gammas trΓ  are applicable for trn  of 
control points at the ends of a control polygon: 

 )1(2 −= pntr . (84) 
• Calculations may be performed in a mirror-like 

fashion (with respect to a middle control point). 
• The degree elevation of uniform spline produces a 

non-uniform spline ( 1≠ls ). 
Algorithm DDEU is based on the arithmetic 

approach and works for arbitrary degree if appropriate 
gamma values are known. Gamma values are given in 
Table 7 for all 4≤p . 

Preocedure DDEU 
// in: p – degree, p <= 4 
// in: P[n] – control points 
// local: Gtr[ng, ntr] – transitional gammas 
// local: Gun[ng, 2] – unclamped gammas 
// out: Q[n2] – elevated control points 
begin 
 ng = ceil(p+2)/2; ntr = 2*(p-1);     // Eq. (82) and (84) 
 switch (p) ... endswitch;  // Load gamma values 
 n2 = 2*n-p; n2h = n2/2; odd = Mod(p, 2);  // Mod – remainder of div. by 2 
 i = 0; k = p+1; iii = 0; n = n - 1; n2 = n2 – 1; ng = ng - 1;  // To avoid n-1 operation 
 Q[0] = P[0]; Q[n2] = P[n]; 
 for j = 1 to n2h+odd-1 do begin 
  Q[j] = {0, 0, 0, 0}; Q[n2-j] = {0, 0, 0, 0}; 
  if (j < k) then i = i + 1; endif; 
  if (j < ntr) then    // Transitional range 
   for ii = 0 to ng do begin 
    if (Gtr[ii, j] > 0) then 
     iii = i+ii-ng; Q[j] = Q[j] + Gtr[ii, j] * P[iii]; 
     if (j != n2h) then Q[n2-j] += Gtr[ii, j] * P[n-iii]; endif; 
    endif; 
   endfor; 
  else        // Unclamped range 
   for ii = 0 to ng do begin 
    if (Gun[ii, 1-k+j] > 0) then 
     iii = i+ii-ng; Q[j] = Q[j] + Gun[ii, 1-k+j] * P[iii]; 
     if (j != n2h) then Q[n2-j] = Q[n2-j] + Gun[ii, 1-k+j] * P[n-iii]; endif; 
    endif; 
   endfor; 
  endif; 
    if (j == k) then k = k + 2; endif; 
 endfor; 
end. 

Table 7. Pre-calculated gamma values for the uniform NURBS 
unclamped transitional 

p  i  
,0

un
i⎡ ⎤⎣ ⎦Γ  ,1

un
i⎡ ⎤⎣ ⎦Γ  ,0

tr
i⎡ ⎤⎣ ⎦Γ  ,1

tr
i⎡ ⎤⎣ ⎦Γ  ,2

tr
i⎡ ⎤⎣ ⎦Γ  ,3

tr
i⎡ ⎤⎣ ⎦Γ  ,4

tr
i⎡ ⎤⎣ ⎦Γ  ,5

tr
i⎡ ⎤⎣ ⎦Γ  

0 1/2 0       1 1 1/2 1       
0 5/6 1/6 0 1/3     2 1 1/6 5/6 1 2/3     
0 1/12 0 0 0 0 1/8   
1 5/6 1/2 0 1/4 3/4 19/24   3 
2 1/12 1/2 1 3/4 1/4 1/12   
0 1/3 1/30 0 0 0 1/10 4/9 2/45 
1 19/30 19/30 0 1/5 7/10 23/30 47/90 28/45 4 
2 1/30 1/3 1 4/5 3/10 2/15 1/30 1/3 
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The results of performance tests are illustrated and 
discussed in Section 5. 

5. Results and Discussion 

The algorithms presented in Section 4 were tested 
on Intel Core2 Duo 1.86 GHz x2 CPU, 3 GB RAM 
machine. Each algorithm was performed 104 times and 
then calculation time was divided by 104. This pro-
cedure was repeated several times to obtain an average 
calculation time value. The visual example of the 
degree elevated quartic NURBS is given in Figure 3. 
The original control polygon is depicted as faint blue 
line and the degree elevated polygon is marked as 
opaque blue line. 

 
Figure 3. Degree elevated quartic NURBS 

To emphasize the inefficiency of the schemes that 
involve redundant operations with control points, all 
control points were converted to homogeneous 4D 
space by using (6). In addition, we implemented CLS 
algorithms given in Subsection 4.4 and Piegl & Til-
ler’s algorithm provided in [7]. CLS degree elevation 
version, optimized for linear and the quadratic cases, 
were tested against ours by measuring the control 
polygon elevation times. The results are presented in 
Figure 4. 
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Figure 4. Control polygon elevation times 

CLS algorithm designed for the linear case, clear-
ly, has an upper hand. Its ability to handle the 

unclamped knot vectors comes at very small cost of 
calculation time. DDELinear managed to save only 
1% - 3% of calculation time. The situation is very 
different in the case of the quadratic spline. DDEQ-
uadratic finished the task from 36% to 39% faster 
than CLSQuadratic. This happens because of redun-
dant operations with control points. E.g. one should 
use 1)/()/( ++ ii cbca PP  instead of cba ii /)( 1++ PP  
to avoid the third operation. In 4D case such a rearran-
gement saves up to 40% of calculation time. 

Let us compare the entire degree elevation process 
of DDE, DDEU and Piegl & Tiller algorithms. The 
process includes the elevation of the knot vector (15), 
the conversion of the control polygon to homogeneous 
coordinates (6), the elevation of the control polygon, 
and its conversion back to the model space (7). The 
following tests were performed with a different num-
ber of control points and all the degree-specific cases, 
discussed in this paper. To reduce the amount of data, 
we divided the calculation time by the number of 
control points for every degree-specific case. Average 
calculation times per control point are given in Figure 
5. 
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Figure 5. NURBS degree elevation times per control point 

The direct degree elevation overtakes Piegl & 
Tiller’s algorithm in all the cases of 4...1=p . From 
the first glance, the fact that the algorithm designed 
for the uniform case (DDEU) is slower than the 
generic case algorithm (DDE), may look odd. Actual-
ly, this example illustrates the advantage of the special 
case scenario used in DDE against the arithmetic 
approach used in DDEU.  

Let us talk in the terms of calculation time econo-
my. Figure 6 shows how much time DDE and DDEU 
algorithms were able to save in comparison to Piegl & 
Tiller’s algorithm. Clearly, the degree of a spline has 
much greater effect to economy values than the 
number of control points. Another thing we can learn 
from this chart is that DDEU becomes competitive to 
DDE when 3≥p . In general, the direct degree ele-
vation algorithms we presented in this paper have 
demonstrated considerably better performance than 
Piegl & Tiller’s algorithm. Calculation time economy 
varies from 8% to 49%. 
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Figure 6. NURBS degree elevation time economy 

Although, we did not test Huang, Hu & Martin’s 
algorithm provided in [3], we can compare the effi-
ciency against DDE by the means of calculation time 
economy. According to the data presented in [3], de-
gree elevation of the cubic spline is performed 43% 
faster than Piegl & Tiller’s elevation. Our algorithm 
reaches 41% economy under the same circumstances. 
Huang, Hu & Martin’s approach is one of the most 
time-efficient algorithms up-to-date. So, we can claim 
that information uncovered in this paper enables the 
composition of highly competitive degree-specific ele-
vation algorithms. 

Theoretically, DDE algorithm is very limited be-
cause of 4≤p  restriction, but practically, there are 
two good reasons to limit any CAD system to lower 
degree splines: 1) lower degree splines are processed 
much faster and 2) human eye cannot detect disconti-
nuities of third and higher derivatives [7]. 

The future work of this research would include the 
composition of algorithms applicable for an arbitrary 
degree, handling of the unclamped knot vector, and 
the introduction of the ability to elevate the degree of 
NURBS by arbitrary value at once. 

6. Conclusions 

In this paper we have discussed the degree eleva-
tion of a NURBS curve. By solving the linear equation 
system obtained from (13), we have discovered how 
original and elevated knot vectors relate to the control 
polygon of the degree elevated spline (through the 
elevation coefficients in equations (74) – (77)). Due to 
this discovery, we have composed the direct degree 
elevation scheme and several fairly simple and very 
fast algorithms. 

By comparing the performance of our algorithms 
against CLS methods optimized for linear and quad-
ratic cases we show that minimization of arithmetic 
operations with control points is very important. In the 
quadratic case our algorithm demonstrated 36% - 39% 
calculation time economy. 

The performance tests of our direct degree eleva-
tion algorithms against Piegl & Tiller’s degree ele-
vation method showed that authors made a wrong 
assumption about the inefficiency of the linear equa-
tion solving approach (see [7]). Two of our algorithms 
have been tested: DDE that is based on the special 
case scenario and designed for quartic or lower degree 
splines, and DDEU that is based on the arithmetic ap-
proach and restricted to the uniform case of NURBS. 
The first one demonstrated 26% - 47% better perfor-
mance than Piegl & Tiller’s method, while the second 
one reached 8% - 49% of calculation time economy.  

With all the facts in mind, we claim that in order to 
compose time-efficient and simple NURBS curve de-
gree elevation algorithm, one must follow these steps: 
1) define a direct relation between knot vectors and 
elevation coefficients, 2) apply a degree limitation if 
possible, and 3) use a special case scenario. 
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