
301

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2010, Vol.39, No.4

PARALLEL PROCESSING OF ENCRYPTED XML DOCUMENTS IN
DATABASE AS A SERVICE CONCEPT

Ozan Ünay, Taflan İmre Gündem
Computer Engineering Department, Boğaziçi University, Bebek 34342, İstanbul, Turkey

gundem@boun.edu.tr

Abstract. Data-owners who possess large confidential data are looking for methods to securely store and efficient-
ly query their data when using database services. In this paper we focus on “database as a service” concept and propose
a methodology that securely and efficiently queries encrypted XML documents using parallel processing. The content
of the database is not revealed to the service provider and immunity against attacks is also provided. The query execu-
tion is performed at the service provider side that uses several computation nodes. Proposed methodology is tested and
the performance results are presented.

Keywords: XML, parallel processing, database as a service.

1. Introduction

In business, companies usually prefer to concent-
rate on their own proficiencies and outsource the rest
of the work. This situation has brought the service
concept to information technology. In this paper, we
focus on “database as a service” concept which makes
handling the database easier for the client but brings
some privacy issues into consideration [1, 2, 3, 4].
Regardless of the database type used, the data kept in
untrusted third parties have to be secured. To over-
come this security issue, the databases are encrypted
and the keys are not disclosed to the service provider.
On the other hand, unrevealing the key to the service
provider brings forth the problem of querying the en-
crypted database.

Extensible Markup Language (XML) is a widely
used standard for creating documents. Numerous
firms store their data in XML format. It is expected to
find considerable amount of sensitive information in
XML format [5]. The clients, who outsource their con-
fidential data, need to be sure that their data are secure
and visible neither to attackers nor to database service
providers. One of the solutions suggested to resolve
the data security problem in XML databases is using
"access control mechanisms" [6, 7, 8, 9, 10]. But using
access control mechanisms alone is usually not suffi-
cient. The attackers, who once break into the system,
may gain access to private information. The weak
point of access control mechanism is that either the
communication channel or the storage itself may be
insecure, e.g. the hard disk may be stolen. Therefore,
something more than an access control mechanism is
required.

Encryption plays an important role in database se-
curity. In order to provide reliable encryption, encryp-
tion key should only be known by the data owner. The
whole database should be a black box for the service
provider. The administrative issues such as database
backups and space managements should not be affec-
ted by the fact that the database is encrypted or not.
The critical question to be drawn now is how the
service provider is going to answer user queries with-
out decrypting the database and without knowing the
content of the database. Some research has been done
on this subject. Mainly the problem can be handled by
maintaining indexes at server side and/or at client
side. The techniques in the literature also try to mini-
mize the effort for data owner and give most of the
work to the service provider. However, this has to be
accomplished in such a way that the overall system
security is high. Therefore querying encrypted XML
databases without giving the key to the service pro-
vider is a big challenge.

There are models in the literature which propose
parallel processing of unencrypted XML documents.
The main working principle of these systems is divi-
ding the processing load at the service provider into
subgroups. These subgroups process XML document
in parallel and consequently query processing time is
shortened. In our work, we propose to combine pa-
rallel processing techniques and querying encrypted
XML document techniques as a solution for securely
storing encrypted XML documents in a third party
service provider and efficiently querying the data
without revealing the content. To accomplish this, we
modified existing indexing techniques in the literature

O. Ünay, T. İ. Gündem

302

in a particular way in our proposed system. The index-
ing techniques are integrated with parallel processing
so that the load on the service provider is divided into
multiple computation nodes. The computation nodes
can be either single processor-distributed servers or
multiprocessor-single server.

In the next section, we first give the necessary
preliminary information. In Section 3, we present our
methodology and show that the data stored at the
service provider in the proposed methodology are
secure and defensive to attacker's statistical analysis.
In Section 4, we give the performance results.

2. Preliminaries

Encryption is a common method for providing
confidentiality of databases. Research on encryption
started with key management [11] and continued with
the development of the techniques which are used for
efficiently searching keywords based on encrypted
textual strings [12]. Independent of the database type,
the naive way of encrypted query processing is sen-
ding the encrypted database totally to the data owner.
However this approach is not appropriate for large
databases because of the fact that decryption and que-
ry processing responsibility are at the data owner side
which may have limited processing capabilities.
Moreover, data transportation is costly. A novel tech-
nique using bucketization and partitioning is proposed
in [13]. The main idea is to map the plaintext values to
ciphertext values by splitting the plaintexts in the do-
main into some partitions and giving them bucket ids.
The success of this technique is due to the mapping
function of the bucket ids that uses order preserving
encryption functions [14]. As a result, the range que-
ries can successfully be supported. In [15], mathe-
matically well defined order and distance preserving
encryption functions are used rather than partitioning
techniques to encrypt the database. The proposed
computing architecture is efficient in the sense that for
some query types, query processing can be completed
at the server without having to decrypt the database.
One future work proposed in [15] was to handle SQL
queries with arithmetic expressions and aggregate
functions as well as complex SQL queries with nested
subqueries. This is accomplished in [16]. The authors
of [16] present query execution strategies for the men-
tioned types of queries. They also quantify additional
costs incurred in executing these queries. In [17], a
hash-based method suitable for selection queries is
given. The index is maintained at the server side. The
algorithm given in [17] provides a balance between
efficiency and security. In [18], an algorithm for
determining optimal bucket size for encrypted query
processing is proposed.

2.1. The general architecture of encrypted query
processing of XML documents

To provide a worthwhile service, most of the work
load should be at the service provider side when a

query is evaluated. Since the service provider does not
have the access to the decrypted database, the client is
supposed to give sufficient amount of clues to the
service provider in order for it to return the correct
encrypted data. However these clues should not enable
the service provider to guess the structure of the whole
database. The clues are generally given by maintai-
ning crypto-indexes either at the client or at the server
side.

The general architecture of encrypted query pro-
cessing is as follows. The user creates a query which
is then translated into its encrypted form by the query
translator at the client side. The rules of encryption are
determined by the client and given to the query trans-
lator. After the query becomes secure enough not to
show the structure of the XML database, the service
provider answers the query by some predefined rules
that are determined at the server side. The result retur-
ned by the service provider is not the exact result that
the user wants. It is a superset of the actual result set.
The client decrypts the results and post filters the re-
sults in order to get the actual result. It should be
noted that the client should have some processing
capability in order to post process the results.

Some papers in the literature mention architectures
different from the one explained above. For example
in SymCrypt project, a number of messages should be
exchanged between the server and the client in order
to get the results.

2.2. W3C encryption standard

W3C specifies standards for encrypting XML [19,
20]. According to the mentioned standards, the tags
and the contents that are going to be encrypted are
replaced with a string called the Encrypted Data ele-
ment. There are four subelements of Encrypted Data.
(a) Encryption method which indicates the encryption
algorithm and the parameters of the specified algo-
rithm. (b) Key Info which indicates the key name but
not the value. (c) Cipher Data which contains cipher
value as subelements that indicate the encrypted ele-
ment together with their content. (d) Encryption pro-
perties which contain additional information related to
decrypting of Encrypted Data.

2.3. Advanced encryption standard

Advanced Encryption Standard (AES), which is
adopted as an encryption standard by US government,
is widely used worldwide and took the place of its pre-
decessor Data Encryption Standard (DES). AES is
fast, easy to implement and requires little memory.

There are mainly four steps in this standard.
1) SubBytes step in which each byte in the array is up-
dated using an 8-bit substitution box. 2) ShiftRows
step in which the bytes in each row of the state is
cyclically shifted by a certain offset. 3) MixColumns
step in which the four bytes of each column are
combined using an invertible linear transformation.

Parallel Processing of Encrypted XML Documents in Database as a Service Concept

303

4) AddRoundKey step in which a subkey which is
derived from the main key is combined with the state.

2.4. Attack types

There are two main types of attacks that a database
can face [3]. The first one is called frequency based
attack and is possible if the attacker can find some
number of matches between the cipher text and plain
text values.

The attacker must know the exact frequency of
occurrence of the domain values to be able to perform
this type of attack. To give an example, let us assume
that we have a hospital database and Michael Mack-
son is one of the patients. Let us also assume that it is
known that Michael Mackson is the only patient who
had 5 plastic surgery operations. From this, the
attacker can infer that Michael Mackson corresponds
to the encrypted value that occurs 5 times. If the atta-
cker can find several matches like this, then it is pos-
sible for him to guess the encryption key.

Another attack type is "size based attack". If the
length of the plain text determines the length of the ci-
pher text, then attacker can eliminate the candidate
databases whose lengths do not match and find the
original database which corresponds to the encrypted
database.

2.5. Index types

The structural index and the value index are the
types of the index structures that are usually used in
encrypted XML documents. Structural index is used
for determining whether the path in the query matches
any of the paths in the XML document, whereas the
value index is used for checking the constraints in
range queries. These indexes can be maintained either
at the server side or at the client side.

2.5.1. Maintaining indexes at the server
There is a well-known indexing structure which is

used in indexing XML documents. In this structure,
each node is given a sequence number. The sequence
numbers start from 1 and incremented by 1 for each
node. The sequence number of the opening tag of a
node represents the left bound of a node and the se-
quence number of the closing tag of a node represents
the right bound of a node. The general rule for this
structure is that “for a parent node p and child node c,
p.leftbound<c.leftbound and p.rightbound>c.right-
bound. The drawback of this structure is that whole
tree has to be renumbered in case of insertions. This
problem can be solved by leaving empty spaces when
numbering the nodes.

In order to encompass the hierarchical structure of
the XML documents, the structural index just explai-
ned is modified in [3]. Discontinuous structural index
(DSI) is the name of the index introduced in [3]. In
DSI, the interval (0, 1) is assigned to the root. The
children are assigned sub intervals of their parents’

interval. The intervals of the children are determined
by an algorithm at run time. Thus the structure of
XML is hidden from the server.

The value index in [3] has an order preserving en-
cryption with splitting and scaling (OPES). Splitting
and scaling are used to prevent frequency based
attacks. The main purpose of splitting and scaling is to
change the frequency distribution of the encrypted da-
ta values in the value index so that they are different
from the frequencies of the original values.

The main contribution of the approach in [3] is
allowing the execution of range queries at the server
side by employing order preserving encryption with
splitting and scaling. One of the limitations of OPES
is that security achieved by scaling encypted data cau-
ses an increase in data size. Increase in data size imp-
lies extra time in query processing. Another limitation
is that it cannot provide security against prior
knowledge of tag distribution, query workload distri-
bution and correlation among data values. This ap-
proach is not very efficient in insertions and updates.

In the methodology proposed in [21], there are
three phases for query processing. The first one is the
query preparation phase which is offline. This phase
contains encoding the structure and the instance of the
XML document. The second phase is the actual query
processing phase. This is the first online phase. Inap-
propriate XML document candidates are filtered out
by examining query conditions in this phase. The
selected candidate databases are returned to the client
for further decrypting in the third phase.

2.5.2. Maintaining indexes at the client

In [5] an algorithm called XQEnc is used for
encrypted XML query processing. This algorithm uses
vectorization and skeleton compression together [22,
23]. Vectorization partitions an XML document into
path vectors which are composed of nonempty leaf
nodes. Skeleton compression removes the redundancy
of XML documents by using common sub branch
sharing. This approach shows that XML documents
may become small enough to fit into the main me-
mory.

This algorithm runs at the client side and it gene-
rates a selection query for the cryptoindexes and then
sends it to the server. The server is treated only as an
external storage. The server starts its job after the
client sends the query. The task of the server is retrie-
ving the encrypted results and sending them back to
the client for further decrypting. The structural infor-
mation always remains hidden from the server because
the schema of the XML document is stored as a com-
pressed skeleton at the client. One drawback of this
approach is that the burden of the query processing is
at the client side which decreases the performance.
Every insertion into the XML database triggers the
client side for an index update. Another drawback is
associated with space management problems. Al-
though skeleton compression makes the document

O. Ünay, T. İ. Gündem

304

smaller, the client with its limited memory may still
face problems.

2.6. HL7 clinical document architecture standard

We used clinical document architectures (CDA) in
testing our system. CDAs are XML documents repre-
senting XML patient records. These documents con-
tain detailed information about patients. One clinical
document node contains information about one
patient. Health Level Seven (HL7) Structured Docu-
ments Technical Committee has specified a CDA stan-
dard. A sample CDA schema and sample CDA
instance can be examined in [24] and [25, 26], respec-
tively.

3. Overall system architecture of the proposed
system

The proposed model consists of two main phases:
1) offline phase in which the client splits, indexes and
encrypts the database and 2) online phase in which
query processing occurs. In this section the main
phases and subphases of the system will be explained
through examples from clinical documents.

3.1. First offline phase: splitting

The very first step of the proposed model is split-
ting the client’s XML database without disrupting the
hierarchical structure of the document. Due to the con-
cerns of data confidentiality, this step takes place at
the client side. The client makes use of an algorithm
proposed in [27] to split an XML document into n
partitions. According to this algorithm, client deter-
mines the number of computation nodes and the range
factor and indicates the size of the original document.
Next the resulting document sizes are computed. To
give an example, if the original document size is 200
MB and the client aims 8 nodes to process concur-
rently with a range factor of 0.1, then the resultant
documents have sizes between 22.5 and 27.5. (This is
calculated by dividing the original document size, 200
MB, by the number of computation nodes, 8. The
result of this division is 25 MB. When the range factor
of 0.1 is multiplied by 25, we obtain 2.5. Thus we
have the resulting document sizes varying in the in-
terval 25 ± 2.5)

An important point to point out is that in our
splitting algorithm, we split XML documents to sub-
documents which contain different number of clinical
document nodes. However, since it is not appropriate
to disjoin one patient’s information into several parts,
we do not split clinical documents any further.

3.2. Second offline subphase: indexing

At the second step of our proposed model, split
XML documents are indexed at the server side to
expedite query processing. We make use of two dif-
ferent indexing techniques: 1) right and left bounds

indexing [28] and 2) Dewey number indexing [29].
Tables 1 and 2 illustrate left bound and right bound
indexing for a clinical XML document.

Table 1. Sample index table for nodes with Left and Right
Bounds indexing

Table 2. Sample index table for attributes with Left and
Right Bounds indexing

In this indexing schema each node is given an in-
crementally increasing identification number. Then the
following rule is applied: for a parent node p and a
child node c, p.leftbound<c.leftbound and p.right-
bound>c.rightbound. By looking at the left and right
bound properties of the nodes, one can determine the
ancestor – descendant relation between the nodes.

The absolute root to path index in Table 2 could be
found by tracing the node ids but since it requires an
extra join operation, we find it appropriate to
explicitly store it in a table so that the queries can be
executed efficiently.

Left and right bounds indexing expedite selection,
deletion and update queries. The order of nodes is not
affected when the target entry is deleted or updated.
The important point in this schema is that, since left
and right bound properties determine the ancestor-
descendant relationship between the nodes, they have
to be strictly preserved. In selection, deletion and
update queries, left bound and right bound properties
of the remaining nodes are preserved. In deletion, the
left and right bounds of the deleted entry can later be
used in an insertion.

However, this schema requires extra work in inser-
tions because when an insertion occurs, left and right
bounds of the other nodes become corrupted. One pos-
sible improvement to prevent this situation is creating
empty space in the index boundaries. For instance,
after indexing the XML document once, we can multi-
ply every left and right bound property by a factor of
10. This will enable us to make a number of insertions
without affecting the other nodes. Yet, it should be
kept in mind that the XML document needs to be re-
indexed after a while when we run out of empty space.
There are two choices for re-indexing. In the first one,
the server sends the sub document to the client and

Parallel Processing of Encrypted XML Documents in Database as a Service Concept

305

gets it back from the client after re-indexing. This is
not an efficient choice. The second choice is updating
the index entries at the server side. In order to
accomplish this, it is important to know where to
insert the node. Hence the client first queries the
server to find the related computation node. Then the
client sends the insertion query together with an
update operation in the index entries of the other
fields. In this manner, the structure of the XML
document is not destroyed and only one index table is
rebuilt. It is obvious that an insertion operation is not
as efficient as deletions or updates.

The second indexing schema used in the proposed
model is Dewey numbering schema. Table 3 shows
our sample clinical document with Dewey indexes of
the nodes and Table 4 shows the Dewey indexes of the
attributes.

In Dewey numbering a child’s Dewey number
starts with the parent’s Dewey number (i.e. it has the
parent’s number as a prefix).

Table 3. Sample index table for nodes with Dewey Number
indexing

Table 4. Sample index table for attribute Dewey Number
indexing

When an update operation is executed on Dewey

numbering, only the corresponding entry is modified
and the other nodes do not need to be re-indexed. Thus
update operation is as efficient as in left and right
bounds indexing.

Insertions with Dewey number indexing are more
efficient than those in left and right bounds indexing
because the target node will just be the last node of the
corresponding subtree. For example, assume that we
also want to store the telephone number of John
Parker. His telephone number will be inserted to the
end of his subtree having the Dewey index 1.1.1.4.

However, deletions are not as efficient as those in
left and right bounds indexing because of the fact that
some number of nodes may need to be re-indexed af-
ter a deletion operation. For instance, if we delete the
name entry with Dewey number 1.1.1.1 in Table 3, the
surname’s Dewey number has to change to 1.1.1.1 and
that of birthday’s to 1.1.1.2. Hence, in order to delete a

node, first the client sends a selection query for all the
nodes that are at the same level with the target node,
then updates their Dewey numbers with an update
query and finally deletes the target node with all of its
contents and children.

3.2.1. Adding bogus data to indexes
To improve security against attacks, we propose to

add bogus data to the original index tables. This re-
quires an extra column that serves as a flag indicating
whether the data are real or not.

The entries of this column are obtained by using a
hash function which gives odd values for the real data
and even values for bogus data. After adding bogus
entries and encrypting the indexes, the data are sent to
the server. While query processing, the server proces-
ses the real data as well as the bogus data. This may be
considered as an extra overhead for the server, but it is
necessary in order to improve the system’s security.
After the results of the queries are returned to the
client, the client first decrypts the values in the flag
column and then uses the hash function to obtain odd
or even values. The client understands that the data
have to be discarded, if the value in the flag column is
even. A detail to consider at this point is that the client
should also specify a seed (a prime number) to the
hash function. While encrypting or decrypting the
database, the client will give this seed as a multiplica-
tive factor to the hash function and process according-
ly. The seed is important because of the fact that an
attacker may attain the implementation of the codes in
the system where the hash function is written.

One way of adding bogus data is to make all the
values to occur with the same frequency to improve
security against frequency based attacks. However,
this approach may cause the database to become so
large that the gain from parallel processing may dimi-
nish. A more efficient approach, which we use in our
proposed system, is to group the data first and then
add bogus data in such a way that the data in each
group occur with the same frequency. The group sizes
may vary. Table 5 shows an example including a com-
parison between the former and latter approaches.

Table 5. Number of items after adding bogus data

O. Ünay, T. İ. Gündem

306

Column A in Table 5 represents the encrypted node
names; column B represents the original number of
items; column C represents the number of items after
making each data item occur with the same frequency;
column D represents the number of bogus items nee-
ded to be added to make each data item occur with the
same frequency; column E represents the number of
items after applying the proposed algorithm and final-
ly column F represents the number of bogus items
needed to be added in the proposed algorithm. The
total number of original items in this dataset is 4007
whereas the total number of bogus items needed to be
added to the dataset to make the data occur with the
same frequency is 19393. The total items become
nearly 5 times the original data causing a big burden
on the system. On the other hand, when the proposed
algorithm is used, the total number of items needed to
be added is 765. Hence the efficiency of the system
does not decrease too much in this case.

In order to group the data, we make use of a sta-
tistical outlier detection method well known in the
literature whose principle idea is explained in the fol-
lowing. We begin with analyzing the input domain.
We make a histogram of the number of distinct input
values and sort the number of values in the histogram.
Hereafter, starting with the first element, we apply
outlier detection algorithm. If the nth element is an
outlier when started from the first element, then group
first n-1 elements and start from the beginning again.
As a result k distinct groups are formed. In each
group, get the maximum number of occurrences for
each element, multiply it with a coefficient slightly
bigger than 1 and then start adding bogus data until
the number of each element reaches the maximum
number of its group times the specified coefficient. At
the end, the frequency of occurrence of data items is
uniformly distributed in each group.

In order to detect the outliers, the mean and the
standard deviation of the frequency of occurrence of
the data items are calculated. Afterwards the data are
standardized by subtracting the mean from each data
item’s frequency of occurrence and dividing the result
to the standard deviation. If the calculated value does
not fall in the range of -1 to 1, then the value is con-
sidered to be an outlier. The reason we choose -1 and
1 as the boundaries of the interval is because they are
nearly the optimum values in determining the outliers.
If we choose a number greater than 1, the frequency
values which are grouped together usually fall in the
same range, the group sizes expand and the distribu-
tion nearly becomes uniform. If we choose a number
smaller than -1, then there occurs a vast amount of
groups with small sizes which is not good for security.

Once the bogus data are inserted, an attacker can-
not infer the exact relationship between ciphertext and
plaintext values. Even if he knows the exact frequency
distribution of the data items, since we grouped the
values, he again cannot infer that a certain group of
plaintexts corresponds to a group of ciphertexts. Alter-
natively, if he knows the exact number of occurrences

of a word in the input domain, since we added bogus
data, he cannot find out the ciphertext value that the
word corresponds to.

The third case is that the attacker may know k dis-
tinct values occurring in the domain but since we
grouped the values, the number of candidate databases
is too large for the attacker to guess. One more case to
consider is that the attacker may know the maximum
and minimum number of occurrences in the input
domain. After multiplying with the coefficient and ad-
ding bogus data, the extrema are indistinguishable.

3.3. Third offline subphase: encrypting

Since AES is more secure and efficient than DES
as mentioned in Section 2.3, we chose to use AES in
our proposed architecture. After indexing the XML
document with one of the indexing schemas and ad-
ding bogus data, the client encrypts the XML indexes
with AES. In the node index table, only the node
names and node values are encrypted. In attribute
index table, attribute names and attribute values are
encrypted. Left bounds, right bounds and Dewey num-
bers are not encrypted. One can think that this ap-
proach may reveal the structure of the XML document
but it should not be forgotten that we add bogus data
into the input set. By this means, the number of
candidate databases becomes too high for the service
provider or an attacker to determine the true database
structure easily.

3.4. Online phase: query processing

After splitting, indexing and encrypting the data
query processing takes place according to the W3C
standards. The user creates a query which is translated
into its encrypted form by the query translator and the
service provider processes the query and sends the
results back. The client decrypts the results and
eliminates the bogus data to get the actual results.

4. Performance study and evaluation

We have implemented the proposed system in .Net
2.0. We executed sample queries for different size of
datasets and different number of computation nodes.
The results of these experimental executions will be
given in this section.

All the experiments are done on an Intel ®Pen-
tium® M processor 2.13GHz PC with 2GB RAM run-
ning under Windows XP. The relational indexes are
implemented in MS SQL Server 2005. We used
20MB, 50MB and 100MB synthetic datasets and ran
the queries on 5 and 10 computation nodes simulta-
neously for both indexing methods. We repeated each
experiment 10 times and took the average response
times. The measurements are done in terms of query
processing times. We will list the graphical results of 5
processor systems as well as a summary of perfor-
mance gain percentage for both 5 and 10 processor

Parallel Processing of Encrypted XML Documents in Database as a Service Concept

307

systems. In the graphs, processor number 0 represents
the case where there is only one processor in the sys-
tem. Other processor numbers represent the number of
processors in systems. A performance gain percentage
given in this section specifies the average of the per-
formance gain percentages of the 10 executions for
each query. A performance gain percentage for one
execution of a query q is computed as follows. Let p1
be the time it takes to execute query q using 1 proces-
sor and without using our methodology. Let pm be the
time it takes to process query q using 5 or 10 proces-
sors using our methodology. The performance gain
percentage is calculated by (p1-pm) * 100 / p1.

Table 6. Query1

Query 1 is specified in Table 6. This query is a

selection query from the attributes table. Translated
version of the query is the same for both indexing
methods so the execution times are identical. Total
processing times of Query1 is small because there is
only selection from a relational table which has its
own indexes in it.

Figure 1 shows the total query processing time of
Query1 on 20-50-100MB documents with 1 to 5 pro-
cessors.

Figure 1. Query1 execution time using 1-5 processors

Summary of the performance gain percentage for
Query1 is given in Table 7.

Table 7. Summary of performance gain percentage for
Query1

Document Size 5 Processors 10 Processors
20 MB 70 80
50 MB 66 79
100 MB 62 79

Table 8. Query2

Query2 is specified in Table 8. This query is join
type. Therefore its total processing time is longer
when compared to that of Query 1. Figure 2 shows the
total processing time of Query2 with Left and Right
Bounds indexing using 1 to 5 processors for 20-50-
100MB documents.

Figure 2. Query2 execution time with 1-5 processors

using Left and Right Bounds Indexing

Summary of the performance gain percentage for
Query2 with left and right bounds indexing is given in
Table 9.

Table 9 Summary of performance gain percentage for
Query2 with Left and Right Bounds Indexing

Document Size 5 Processors 10 Processors
20 MB 72 85
50 MB 72 82
100 MB 64 68

Figure 3 shows comparison of the total query pro-
cessing time of Query2 using Dewey numbering with
1 to 5 processors for 20-50-100MB documents.

Figure 3. Query2 execution time with 1-5 processors

using Dewey Numbers

In parallel processing, we executed this query in a
manner that most of the results are given by processor
1 so the execution time in processor 1 is much greater
than those of the other processors. However the
performance gain is still considerable. Summary of the
performance gain percentage for Query2 using Dewey
numbers is given in Table 10.

O. Ünay, T. İ. Gündem

308

Table 10. Summary of performance gain percentage for
Query2 using Dewey Numbers

Document Size 5 Processors 10 Processors
20 MB 93 80
50 MB 81 62
100 MB 69 40

Query3 is specified in Table 11. This query con-
tains both selection and projection operations.
Table 11. Query3

Figure 4 shows the comparison of the total query

processing time of Query3 using Left and Right
Bounds indexing with 1 to 5 processors for 20-50-
100MB documents.

Figure 4. Execution time of Query3 with 1-5 processors

using Left and Right Bounds Indexing

Summary of the performance gain percentage for
Query3 using Left and Right bounds indexing is given
in Table 12.

Table 12. Summary of the performance gain for Query3
using Left and Right Bounds Indexing

Document Size 5 Processors 10 Processors
20 MB 90 77
50 MB 75 61
100 MB 68 40

Figure 5 shows the comparison of the total query
processing time of Query3 using Dewey numbering
with 1 to 5 processors for 20-50-100MB documents.

Summary of the performance gain percentage for
Query3 with Dewey numbering is given in Table 13.

Table 13. Summary of the performance gain for Query3
using Dewey Numbers

Document Size 5 Processors 10 Processors
20 MB 67 72
50 MB 88 91
100 MB 88 93

Figure 5. Query3 execution time with 1-5 processors

using Dewey numbering

5. Conclusions

Encrypted query processing is a time consuming
process. The methodology presented in this paper de-
creases the time spent for query processing. Query
processing time decreases significantly and proportio-
nally to the number of processors used. Moreover, we
add extra security to the indexes stored at server side
by adding bogus data and flagging it by an extra en-
crypted index so that it becomes difficult for an
attacker to decrypt the content. The methodology pre-
sented is independent of the encryption algorithm
used.

One of the important application areas of XML do-
cument systems is clinical documents [30] which may
contain large amounts of data. They contain personal
information and records that have to be kept private.
The methodology proposed enables the clinic authori-
ties to query the document without revealing the con-
tent to the service provider. We are not aware of any
other methodology in the literature for parallel proces-
sing of encrypted XML documents in database as a
service concept.

References
 [1] H. Hacıgümüş, S. Mehrotra, B. Iyer. Providing

Database as a Service. Proceedings of the 18th Inter-
national Conference on Data Engineering, 2002, 29-
40.

 [2] E. Mykletun, G. Tsudik. Incorporating a Secure Co-
processor in the Database-as-a-Service Model. Inter-
national Workshop on Innovative Architecture for
Future Generation High-Performance Processors and
Systems, 2005, 38-44.

 [3] H. Wang, L. Lakshmanan. An Efficient Secure
Query Evaluation over Encrypted XML Databases.
Proceedings of the 32nd International Conference on
Very Large Databases, 2006, 127-138.

 [4] O. Ünay, T.I. Gündem. A Survey on Querying En-
crypted XML Documents for Databases as a Service.
ACM SIGMOD Record, Vol. 37, 2008, 12-20.

Parallel Processing of Encrypted XML Documents in Database as a Service Concept

309

 [5] Y. Yang, W. Nig, H. Lau , J. Cheng. An Efficient
Approach to Support Querying Secure Outsourced
XML Information. Proceedings of the 19th Interna-
tional Conference on Advanced Information Systems
Engineering, LNCS 4001, 2006, 157-171.

 [6] B.Carminati, E. Ferrai. Confidentiality Enforcement
for XML Outsourced Data. Proc. of the Second Inter-
national EDBT Workshop on Database Technologies
for Handling XML Information on the Web, LNCS
4254, 2006, 234-249.

 [7] E. Damiani, S. Wimercati, S. Paraboschi. A Fine-
Grained Access Control System for XML Documents.
ACM Transactions on Information and System Securi-
ty, 2002, Vol.5, Issue 2, 169-202.

 [8] S. Hada, M. Kudo. Provisional Authorization for
XML Documents. http://www.trl.ibm.com/projects
/xml/xss4j/docs/xacl-spec.html.

 [9] E. Bertino, E. Ferrari. Secure and selective dissemi-
nation of XML documents. ACM Transactions on In-
formation and System Security, 2002, Vol. 5, Issue 3,
290-331.

[10] M.M. Kocatürk, T.I. Gündem. A Fine-grained Ac-
cess Control System Combining MAC and RBACK
Models for XML. Informatica, 2008, Vol.19, Issue 4,
517-534.

[11] G.I. Davida, D.L. Wells, J.B. Kam. A Database En-
cryption System with Subkeys. ACM Transactions on
Database Systems, 1981, Vol.6, Issue 2, 312-328.

[12] D.X. Song, D. Wagner, A. Perrig. Practical Tech-
niques for Searches on Encrypted Data. Proceedings
of the IEEE Symposium on Security and Privacy,
2000, 44–55.

[13] H. Hacıgümüş, B. Lyer, C. Li, S. Mehrotra. Execu-
ting SQL over Encrypted Data in Database-Service-
Provider Model. Proceedings of the 2002 ACM
SIGMOD International Conference on Management of
Data, 2002, 216-227.

[14] R. Agrawall, J. Kiernan, R. Srikant, Y. Xu. Order
Preserving Encryption for Numeric Data, Proceedings
of the 2004 ACM SIGMOD International Conference
on Management of Data, 2004, 563-574.

[15] G. Ozsoyoglu, D.A. Singer, S.S. Chung. Antitamper
databases: Querying Encrypted Databases. Proc. of the
17th Annual IFIP WG 11.3 Working Conference on
Database Applications and Security, 2003, 133-146.

[16] S.S. Chung, G. Ozsoygolu. Anti-tamper databases:
Processing Aggregate Queries over Encrypted Data-
bases. Proc. of the 22nd International Conference on
Data Engineering Workshops, 2006, 98.

[17] E. Damiani, S.D.C. Vimerati, S. Jajodia, S. Para-
boschi, P. Samarati. Balancing confidentiality and
efficiency in untrusted relational DBMSs. Proceedings
of the 10th ACM Conference on Computer and Com-
munications Security, 2003, 93-102.

[18] B. Hore, S. Mehrotra, G. Tsudik. A Privacy Preser-
ving Index for Range-Queries. Proceedings of the 30th
International Conference on Very Large Data Bases,
2004, 720-731.

[19] T. Immamura, B. Dillaway, E. Simon. XML En-
cryption Syntax and Processing.
http://www.w3.org/TR/xmlenc-core.

[20]. J. Reagle. XML Encryption Requirements.
http://www.w3.org/TR/xml-encryption-req.

[21] L.Feng, W. Jonker. Efficient Processing of Secured
XML Metadata. On the Move to meaningful Internet
Systems: OTM Workshops, LNCS 2889, 2003, 704-
717.

[22] P. Buneman, B. Choi, W. Fan, R. Hutchison, R.
Mann, S. Viglas. Vectorizing and querying large
XML repositories. Proceedings of the 21st Internatio-
nal Conference on Data Engineering, 2005, 261–272.

[23] J. Cheng, W. Ng. XQzip: Querying compressed XML
using structural indexing. 9th International Conference
on Extending Database Technology, 2004, 219–236.

[24] CDA Schema. http://xml.coverpages.org/CDA-
ReleaseTwoSchema-200408.xsd.

[25] CDA Instance. http://xml.coverpages.org/CDA-
ReleaseTwoSample200403.xml.

[26] Encryption.
http://en.wikipedia.org/wiki/XML_Encryption.

[27] H. Kurita, K. Hatano, J. Miyazaki, S. Uemura. Ef-
ficient Query Processing for Large XML Data in Dis-
tributed Environments. 21st International Conference
on Advanced Information Networking and Applica-
tions, 2007, 317-322.

[28] O. Li, B. Moon. Indexing and Querying XML Data
for Regular Path Expressions. Proceedings of the 27th
International Conference on Very Large Databases,
2001, 361-370.

[29] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasun-
daram, E. Shekita, C. Zhang. Storing and Querying
Ordered XML Using a Relational Database System.
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, 2002, 204-215.

[30] N. Aksu, T.I.Gündem. Indexing of Medical XML
Documents Stored in WORM Storage. Information
Technology and Control, 2009, Vol.38, No.1, 72 - 80

Received November 2009.

