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Abstract. We present a method for discovering complex model implementation patterns in a hand written program 
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1. Introduction 

In Model Driven Architecture (MDA) [1] related 
software development, program code generators are 
used to automatically produce program code from 
program models. In order to work, program code 
generators must be provided with program code 
templates and template application rules. Currently all 
these configuration data must be written by hand, 
which is a labor intensive process [2] requiring a lot of 
expertise to execute correctly [3]. We have proposed a 
program code generator that can configure itself auto-
matically by recognizing the patterns that human has 
used to write a partial program code and exploit those 
patterns to generate program code for yet unimple-
mented model elements [4]. In our previous work we 
have created an algorithm that allows recognition of 
simple, atomic model implementation patterns [5]. In 
this work we describe a method that allows defining 
and recognizing complex model implementation pat-
terns composed from atomic model implementation 
patterns described earlier [5]. 

The remainder of this paper is structured as fol-
lows: in Section 2 we present related works; in Sec-
tion 3 we present models used to express program mo-
del and code together with atomic and complex model 
implementation patterns, called atomic and complex 
transformations; in Section 4 we present an algorithm 
for detecting complex transformations in a program 
code; Section 5 is devoted for method testing; and fi-
nally in Section 6 we provide conclusions and outline 
the future work. 

2. Related works 

Model driven development has become the com-
mon practice of creating software related artifacts. The 
main principles of model driven development are se-
paration of concerns and raising level of abstraction. A 
program code generator is the definitive component of 
model driven development chain. The program code 
generation is strictly separated from other levels of 
MDA and can be performed from such artifacts as 
ontologies, business process models, business rules, 
domain models, or design models [6–10]. When rela-
ted techniques are applied to produce one kind of mo-
dels from other kind of models, the process is known 
as transformation [11]. Program code generation 
intrinsically depends on technology and domain 
changes; therefore, it is not efficient in quickly chang-
ing world. Currently, researchers are looking for more 
efficient ways of creating program code generators 
e.g. using meta-programming [12] or domain specific 
languages [13]. Our idea for improving program code 
generation is to separate transformations that are used 
to generate program code from the actual program-
ming language that the generated program code must 
be expressed in. Also, the manner of program model 
traversal used for generating program code in our me-
thod differs from conventional approaches because we 
use formal concept analysis to select the sets of model 
elements that can be implemented by an application of 
a specific pattern. 

Our method of model implementation pattern re-
cognition in a program code is inspired by works in 
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the area of design pattern recovery. Design patterns 
[14] are reusable solutions to common software en-
gineering problems modeled by a certain composition 
of software artifacts. Design pattern recovery methods 
find instances of design patterns in a program code 
and are primarily used to assist program comprehen-
sion. 

Some design pattern recovery methods use static 
analysis of program code to extract available elements 
and their relationships and dynamic analysis to extract 
execution traces and call graphs. The data received 
from static analysis are enriched with data received 
from dynamic analysis and analyzed by a set of prede-
fined algorithms made to detect a single design pattern 
[15, 16]. Alternatively, only data from static analysis 
can be used [17].   

A variation [18] is to use graphs for describing de-
sign pattern templates and an algorithm that evaluates 
edge similarity of two graphs [19] for finding corres-
pondences between design pattern templates and a 
source code element tree. While not published as a de-
sign pattern recovery method, a similar approach [20] 
uses attributed flow graphs to describe both design 
patterns and program code. The flow graph based de-
scriptions of design patterns are treated as graph gram-
mars and a special algorithm [21] is used to find the 
places in a program code flow graph that match the 
flow grammar expressions of design patterns. Design 
pattern detection can also be considered to be a const-
raint satisfaction problem where each design pattern 
provides a constraint on a set of elements and relations 
that compose it [17]. There are suggestions [22, 23] to 
use XML based language for describing design pat-
terns and then applying the same principle to detect 
them. 

Since design pattern detection algorithms can be 
computationally expensive, there is a work that finger-
prints design patterns through a set of code metrics 
(size, filiations, cohesion and coupling) and then uses 
these fingerprints to quickly reject invalid candidates 
before employing standard design pattern recovery 
techniques [24]. This requires a rule engine and an 
initial source code base for teaching that rule engine. 
There is also a method that uses decision trees and 
neural networks for recognizing design patterns 
through code metrics [25]. The neural networks must 
be trained by supplying manually evaluated design 
pattern candidates extracted from sample source code.  

Another approach is to describe design patterns 
with logical formulas that operate on a set of predica-
tes extracted from source code [26]. These predicates 
describe the existence of various types of elements 
and relationships in a parsed program code. The 
predicates extracted from the source code and logical 
formulas describing design patterns are fed to a logic 
engine. The advantage of this method is its ability to 
find non-standard variants of design patterns, as long 
as they can be logically reduced to a standard form. 
There is a paper [27] that suggests standardization of 
logic predicates used for program code analysis as this 

would allow making a tool working with a wide 
variety of programming languages as long as there are 
suitable extractors for those languages.  

Finally, there is a design pattern recovery method 
that uses formal concept analysis [28] to analyze a set 
of predicates extracted from program code when de-
tecting design patterns [29]. Predicates describe exis-
tence of entities and their relationships. Application of 
formal concept analysis enables detection of ad-hock 
design patterns and does not require design pattern 
definitions. However, results must be manually inter-
preted by a human. 

The direct application of design pattern recovery 
methods proved to be unsuitable for our needs. Predi-
cates-with-logical-formulas, one-algorithm-per-pattern 
and graph-subgraph-matching methods require a lot of 
work for building predicate sets, logical formulas, 
algorithms or graphs that correspond to artifacts being 
detected. Code metrics and Artificial Intelligence (AI) 
based methods are either approximate, or they only 
use code metrics and AI techniques to quickly reject 
candidates. Ad-hoc design pattern detection method 
[29] is unsuitable for our needs as it will detect some-
thing that can be viewed as design patterns, but it will 
always need a human to comprehend the meaning of 
those design patterns. Also, we wanted to use the same 
definition of a program model implementation pattern 
both for pattern recognition in a program code and 
program code generation, which is not possible with 
design pattern models used in existing methods for 
recovery of design patterns. To satisfy our needs, we 
have created algorithms for model implementation 
pattern definition and model implementation pattern 
recognition while taking the inspiration from the 
graph-subgraph matching based design pattern reco-
very methods [17, 19]. 

From the perspective of program code generation, 
a model implementation pattern, as it is understood in 
our work, is conceptually equal to the program code 
template together with template application rules [11]. 
While the usual way to define program code templates 
is in a textual form, we define model implementations 
patterns as transformations from an abstract represen-
tation of a program model to an abstract representation 
of a program code in an effort to make our method a 
modeling and programming language agnostic. The 
meta-model of complex model implementation pat-
terns used in our work allows expression of simple 
blocks, iterators and conditional evaluation matching 
only the basic expression capabilities of other temp-
late languages commonly used for program code gene-
ration, such as Velocity [30], XSLT [31], Xpand [32], 
JET [33], etc. Relatively weak expression capabilities 
of complex model implementation patterns are par-
tially compensated by the fact that they are built from 
atomic model implementation patterns, which are 
defined as black box functions, allowing any comp-
lexity inside.  

When it comes to program code generation and 
reverse engineering, there is a method that allows 
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analyzing generated source code and recognizing 
templates that were used to generate it, by using the 
same definition of a program code template for both 
tasks [34]. The method is independent from source 
code language; however, it cannot recognize reordered 
program code and cannot reverse engineer program 
code directly into the same level of abstraction that it 
was generated from. Thus it is unsuitable to analyze 
hand written program code and does not fit our needs.  

3. Specifying model implementation patterns 

A model implementation pattern describes how a 
piece of a program model can be expressed in a piece 
of program code. Thus a model implementation pat-
tern is a transformation from a piece of program mo-
del to a piece of program code. From now on we will 
call complex model implementation patterns as comp-
lex transformations and simple, atomic model imple-
mentation patterns as atomic transformations. 

The method for definition and recognition of 
complex transformations presented in this paper is 
based on our previous work dedicated to definition 
and recognition of atomic transformations, called 
basic transformations in the previous paper [5]. Since 
then we have devised a slightly improved model for 
definition of atomic transformations and a slightly im-
proved algorithm for detecting instances of atomic 
transformations in a program code that we will briefly 
present here. 

We represent elements of a program model 
through instances of model concepts and elements of a 
program code through instances of code concepts. 
Both types of concepts can be joined in respective 
concept graphs. A concept is an instance of a concept 
template. Each unique concept template corresponds 
to some unique concept in a modeling or program-
ming language. An example of modeling language 
concepts can be taken from Unified Modeling Lan-
guage (UML) [35]: class, interface, method, etc. An 
example of programming language concepts can be 
taken from Java language: package, class, method, 
loop, conditional branch, etc. 

A concept has a set of slots and a set of attributes. 
Slots are used for building concept graphs and contain 
references to other concepts in a graph. Attributes are 
used to store literal values that describe a literal 
property of the concept. In our previous work we had 
to split base hierarchies of model concepts into 
concept, concept-with-name and concept-with-value 
branches to express name and value attributes. Current 
model of attributes allows defining the same things 
and more while retaining single base types of model 
and code concepts. The new concept meta-model is 
shown in Figure 1. 

Model concept graphs are used to represent models 
and code concept graphs are used to represent 
program code. Model concepts and model concept 
graphs follow the meta-model shown in Figure 2. 

 
Figure 1. A common part of model and code concept  

meta-models 

 

Figure 2. Meta-model of model concepts and model  
of model concept graphs 

A model concept graph is represented by a 
container that allows accessing top model concepts. 
Top model concepts are considered to be those that 
represent top containers in a program model. 

Code concepts and code concept graphs follow the 
meta-model shown in Figure 3. 

 

Figure 3. Meta-model of code concepts and model of code 
concept graphs 

Holes are used to specify possible connection 
points to other code concept graphs. A hole has a 
unique identifier id and a function accept that returns 
if given code concept can be placed into a hole. A 
code concept graph is represented by a container that 
allows accessing top code concepts. Top code con-
cepts are considered to be those that represent top con-
tainers in a program code. 

We describe model implementation patterns 
through atomic and complex transformations. Atomic 
transformations are designed to describe the basic 
humanly meaningful mappings of program model 
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elements into program code elements as black box 
functions and are discussed in our previous paper 
under the name of basic transformations [5]. Complex 
transformations, the subject of this paper, are made by 
composing atomic transformations and are designed to 
describe complex humanly meaningful mappings of 
program model elements into program code elements. 
The requirement for transformations to be humanly 
meaningful has a twofold purpose. First, it limits the 
number of possible transformation functions. Second, 
it allows credible application of transformations for 
analysis of a hand written program code, because hand 
written program model implementation in a program 
code is a result of a humanly meaningful transfor-
mation from a program model to a program code. 

The meta-model of atomic transformations is 
shown in Figure 4. 

 

Figure 4. Meta-model of atomic transformations 

An atomic transformation function run takes a list 
of inputs and produces a code concept graph with 
holes. Holes mark points where other code concept 
graphs may be attached when joining the outputs of 
several atomic transformations. A list of input defi-
nitions inputDef tells what number and kind of inputs 
are accepted by an atomic transformation. A list of in-
put filters inputFilters defines additional conditions 
for valid inputs of an atomic transformation. The ato-
mic transformation function run accepts a list of in-
puts that must follow the list of input definitions and 
distinguishes individual inputs by the corresponding id 
field. A valid input definition list must have no input 
definitions with matching conceptType; this condition 
is necessary for correct operation of the algorithm that 
detects instances of atomic transformations in a prog-
ram code. 

The meta-model of complex transformations is 
shown in Figures 5–8. 

A complex transformation has a list of input 
definitions inputDefs specifying the number and type 
of model concepts that the transformation accepts. 
When complex transformation is executed, it is sup-
plied with a list of inputs that match the input defini-
tions. Complex transformation has a list of input fil-
ters inputFilters that can be used to impose additional 

restrictions on valid inputs. Input filters are based on 
white box condition expressions. Complex transfor-
mation also has a body that is a tree of atomic trans-
formation wrappers and control nodes as shown in 
Figure 6.  

 

Figure 5. Meta-model of a complex transformation 

 

Figure 6. Model of a complex transformation body 

An atomic transformation wrapper node BnAtf re-
ferences a single atomic transformation and specifies 
how to provide the inputs of that atomic transforma-
tion from the inputs of host complex transformation. 
Atomic transformation inputs are provided through a 
list of input paths, described further in the text. Ato-
mic transformation wrapper also contains a list of 
joints that place other body nodes of complex trans-
formation into holes of code concept graphs produced 
by atomic transformation functions. 

A loop node BnLoop takes a list of model concepts 
provided by a given input path and evaluates its body 
for each of those concepts. Input paths within loop 
body can read the value of loop iterator. Strict loops 
are supposed to iterate at least once, non strict loops 
can iterate zero times. 

A conditional evaluation node BnIf has a list of 
branches that contain conditions. The first branch 
whose condition is satisfied has its body evaluated. 
Strict conditional nodes are supposed to evaluate a bo-
dy of one branch; non strict conditional nodes are allo-
wed to evaluate zero branches. 

An input path (Figure 7) allows specifying a se-
quence of actions for extracting one or more concepts 
from an input of a complex transformation. They are 
used to provide inputs of wrapped atomic transfor-
mations and in the white box condition expressions. 
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IpnInput node reads from a given input of a complex 
transformation and can be followed by IpnSlot, 
IpnOne and IpnFilter. IpnSlot node reads from the gi-
ven concept slot and can be followed by IpnSlot, 
IpnOne and IpnFilter. IpnOne node selects one con-
cept from the list and can be followed by IpnSlot. 
IpnFilter node rejects concepts from a list and can be 
followed by IpnOne. IpnLoop selects the current ite-
rator value of a given loop and can be followed by 
IpnSlot. IpnLoop must be used only inside the body of 
the loop it extracts from. 

 
Figure 7. Model of input paths 

 
Figure 8. Model of white box conditions 

Finally, white box condition expressions (Figure 8) 
are used for filtering the inputs of complex transfor-
mation and branches of conditional evaluation nodes. 
Leaf nodes of the expression are CnInputPath nodes 
that specify an input path and a condition function on 
its result. CnAnd node corresponds to logical conjunc-
tion of its operands, CnOr node to logical disjunction 
and CnNot to negation. 

4. Detecting complex model implementation 
patterns  

The method for detecting the presence of atomic 
transformation instances in a program code is descri-
bed in our previous paper [5]. The algorithm works 
with code concept trees, but can be trivially improved 
to operate on code concept graphs by adding the sup-
port for graph cycle avoidance with a simple trace of 
nodes being visited. In our current work, we use the 
improved version. Detections of atomic transforma-
tion instances correspond to the model shown in Fi-
gure 9. Fields of an atomic transformation instance 
detection have the following meaning: atf – an atomic 
transformation, inputs – inputs to atomic transforma-
tion, output – output of atomic transformation and 
matches – a list of code concepts from the given code 
concept graph that matched top code concepts of an 
atomic transformation output.  

  
Figure 9. Model of an atomic transformation instance 

detection 

This way, instances of AtfDetection specify the 
atomic transformation instance detected and the start-
ing position of a detection in a given code concept 
graph. 

 
Figure 10. An algorithm for detecting how complex transformation relates parts of program model with parts of program code 
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By exploiting the ability to detect instances of ato-
mic transformations in a program code, we can also 
detect instances of complex transformations. For this, 
we take complex transformations one by one and de-
tect how they relate parts of given program model 
with parts of given program code. The outline of the 
algorithm for detecting complex transformation ins-
tance is shown in Figure 10. 

Given a model concept graph, we compose a list of 
all model concepts present and create an input space 
for a given complex transformation by composing lists 
of model concepts that satisfy input definitions and 
pass input filters (Figure 10, action 1). Then we prune 
the input space by removing inputs for which we can 
prove that using those inputs will result in a failure of 
complex transformation evaluation in every possible 
scenario (Figure 10, action 2). To prune the input 
space, a complex transformation is roughly emulated 
and all members of a given input space are verified 
against input paths found in complex transformation 
body. If some member of an input space fails an input 
path at every possible execution scenario of a complex 
transformation, it is thrown out.  

Once the input space is pruned, we start making 
permutations of inputs (Figure 10, action 3) and for 
each permutation we evaluate a complex transforma-
tion (Figure 10, action 4). Evaluation of a complex 
transformation can fail. Failure can happen if at some 
point of complex transformation evaluation it is found 
that some input path cannot be evaluated due to in-
compatible model structure or if some input path, 
when evaluated, produces model concept that is not 
accepted by a filter of atomic transformation used in 
some body node. If evaluation of a complex trans-
formation fails against some permutation of inputs, we 
skip that permutation and move on to the next one. 

If evaluation of a complex transformation suc-
ceeds, the result is a graph of nested atomic transfor-
mation instances that corresponds to a model shown in 
Figure 11. 

 
Figure 11. Model of atomic transformation instance graphs 

AtfGraph represents an instance of an atomic 
transformation instance graph where field ctf points 
to a complex transformation whose instance is de-
scribed by a graph and field inputs stores inputs of that 
complex transformation instance. A graph has a set of 
nodes represented by a class Node. Each node points 
to an atomic transformation through field atf and field 

inputs stores inputs of that atomic transformation.  
Each node has a list of edges represented by a class 
Edge. Each edge corresponds to a hole in an atomic 
transformation represented by a source node. The id of 
that hole is stored in a field holeId. Each edge points 
to a list of destination nodes. 

An atomic transformation instance graph repre-
sents a partially evaluated complex transformation 
with loops unrolled, conditional branches selected and 
input paths evaluated. Since we can detect instances of 
atomic transformations in code concept graphs, any 
code concept graph together with a set of atomic 
transformation instances detected in that graph can be 
used to detect complex transformation instances repre-
sented by atomic transformation instance graphs. 

Once an evaluation of a given complex transfor-
mation produces an atomic transformation instance 
graph G , the complex transformation instance detec-
tion process starts traversing the code concept graph, 
that represents a given program code (Figure 10, ac-
tion 5). Each step of traversal produces a set of sibling 
code concepts S . For each S , a set B of atomic trans-
formation instance detections is composed, where 
each atomic transformation instance detection Bb∈  
starts with code concepts from S . Then a list M of 
atomic transformation instance detections from B  
with related coverage values is composed for every 
top node of G .  

Let us define A  as a set of all nodes in G . To com-
pute the coverage of some Aa∈  over some Bb∈ , 
a  is overlaid on top of b  and the best possible match 
of the atomic transformation instance graphs that start 
with a  and b  is found. Once the match is found, the 
graph that starts with a  is taken and the coverage is 
computed by dividing the number of matched nodes 
by the number of nodes in the graph. This yields the 
coverage value in range [0; 1], where 0 means that 
there is no match between the graphs spanned by a  
and b  and 1 means that there is a total match. The 
algorithm for that is shown in Figure 12. 

Once a list M  of atomic transformation instance 
detections from B  together with related coverage va-
lues is computed for every top node of G , we take all 
those lists and make permutations from their items. In 
each permutation there are no duplicate Bb∈ . We 
register each permutation as a detection of a complex 
transformation instance in the position specified by 
the positions of b ’s (Figure 10, action 6). The cove-
rage of each detection is calculated by taking a total 
number of matched nodes in the graphs spawned by 
related a ‘s, and dividing that number by the number 
of nodes in those graphs. This yields the coverage 
value in range [0; 1] where 0 means that there is no 
complex transformation instance detection at the given 
position of a given code concept graph and 1 means 
that the complex transformation was fully detected at 
the given position of a given code concept graph. The 
algorithm for that is shown in Figure 13. 
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def checkMatch(node : Node, atfd : AtfDetection) : Match = {
val theMatch = new Match(node = node, atfd = atfd);
if( node.atf.id != atfd.atf.id) return theMatch;
val inputsMatch = check if items from node.inputs matches items in atfd.inputs;
if( !inputsMatch ) return theMatch;
theMatch.coverage.raw = 1;
for( edge <- node.edges ) {
val hole = the hole in atfd.output having the same id as edge.holeId;
val holeConcepts = concepts in a given code concept graph that fall into the hole;
val holeAtfds = atomic transformation instance detections that start with holeConcepts, 
except those that rely on concepts consumed by the atfd;
var matchLists = List[List[Match]]();
for( dstNode <- edge.nodes ) {
var matchList = List[Match]();
for( holeAtfd <- holeAtfds ) {
val holeAtfdMatch = check(dstNode, holeAtfd);
if( holeAtfdMatch.coverage.raw > 0 )
matchList = matchList :+ holeAtfdMatch;

}
if( matchList.size > 0 ) matchLists = matchLists :+ matchList;

}
bestMatchPerm = make permutations from the items in match lists; each permutation does not 
contain two matching atomic transformation instance detections; find permutation with the 
best unit coverage;
theMatch.matches = theMatch.mathes ++ bestMatchPerm;

}
calculate the total raw and unit coverage of the match by using coverage information from 
the sub matches and total size of the sub graph that starts with the node;
return theMatch;

}
 

Figure 12. The algorithm for computing the match between a node of an atomic transformation instance graph  
and atomic transformation instance detection 

val atfds : List[AtfDetection]() = …;
val graph : AtfGraph = …;
var matchLists = List[List[Match]();
for( node <- graph.top ) {
var matchList = List[Match]();
for( atfd <- atfds ) {
val theMatch = checkMatch(node, atfd);
if( theMatch.coverage.raw > 0 )
matchList = matchList :+ theMatch;

}
if( matchList.size > 0 ) matchLists = matchLists :+ matchList;

}
val perms = a list of permutations from the items of matchLists where in each permutation 
there are no items with matching atomic transformation instance detections;
for( matchPermutation <- perms )
register a detection from a matchPermuation

 

Figure 13. The algorithm for recognizing the complex transformation instance graph in a given code concept graph  
with atomic transformation instance detections 

A model of complex transformation instance de-
tection is shown in Figure 14. 

 

Figure 14. Model of complex transformation instance 
detections 

Complex transformation instance detection stores 
an atomic transformation graph that was detected, a 
code where detection took place, a coverage 

measurement, and a list of matches for top nodes of 
the graph. Each match stores a node of an atomic 
transformation instance graph and a corresponding 
atomic transformation instance detection atfd together 
with coverage measurement stored as coverage and a 
list of submatches matches. Each coverage measure-
ment is represented by two fields. The field raw 
describes how many nodes (and sub nodes) have been 
detected to match. The field unit stores a normalized 
coverage value in range [0; 1] computed as raw/total-
Nodes where totalNodes is a total number of nodes in 
an atomic transformation instance graph, or in a case 
of a single match, a total number of nodes in a sub-
graph that starts with the head node of the match. 

Each complex transformation detection means that 
some model concepts in a given program model relate 
to some code concepts in a program given code by the 
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algorithm described in the complex transformation 
and the measure of that relation can be normalized 
into an interval [0; 1] where 0 means that complex 
transformation instance was not detected at given 
point at all, and 1 means that complex transformation 
instance fully matches program code at a given point. 
Since a complex transformation represents a complex 
program model implementation pattern, detection of 
some complex transformation instances are recogni-
tions of related model implementation patterns in a 
program source code. 

5. Method testing 

We have used the method for definition and recog-
nition of complex transformations, described in this 
paper, to implement an automatically configured prog-
ram code generator that can detect program model im-
plementation patterns in a partial handwritten source 
code provided by a human and automatically use those 
patterns to generate program code for yet unimple-
mented model elements. The in-depth description of 
an automatically configured program code generator 
includes the method for detecting implementation si-
milarity of program model elements and is beyond the 
scope of this paper. 

We have performed the experiment to validate and 
test the prototype of an automatically configured prog-
ram code generator. Inherently, the method of complex 
transformation instance detection got tested as well. 
The experiment was supplied with the sample sets of 
atomic transformations (15 items), complex transfor-
mations (8 items) and a sample set of model and code 
concepts, together with transformations from UML 
models to model concept graphs and bidirectional 
transformations between Java code and code concept 
graphs.  

The model concept set allowed expression of 
packages, classes, interfaces, class and interface deri-
vations, class and interface properties, stereotypes and 
stereotype applications, class and interface operation 
definitions, primitive and non primitive types and va-
rious associations. The code concept set allowed ex-
pression of array related definitions and operations; 
the concept of value assignment; various control flow 
related concepts; concepts for the definition of prog-
ram artifacts, such as classes, interfaces, methods, va-
riables, etc; concepts for object oriented programming 
such as type cast and instance creation; literal value 
definitions and a type reference concept. 

Complex transformations provided several types of 
mappings from model classes and interfaces to code 
classes and interfaces with varying levels of infor-
mation transfer. Atomic transformations provided the 
primitive mappings between individual types of model 
elements and related code concept graphs that were 
necessary to express the complex transformations. 

The experiment was supplied with the input model 
shown in Figure 15. 

 
Figure 15. An input model used for experiment 

The sample implementation of classes Sound, 
Point and interface SoundTag were used to drive the 
configuration of a program code generator and thus 
were the ones were the recognition of complex trans-
formation instances took place. The implementations 
of other classes and interfaces were generated by ap-
plying the complex transformation whose instance 
was detected in a related sample implementation of 
Sound, Point or SoundTag. 

The experiment was performed in seven steps. The 
first step has provided simple POJO (Plain Old Java 
Object) implementations of the classes Sound, Point 
and interface SoundTag. The second step added pro-
perty accessor methods to implementation of Sound. 
The third step added property accessor methods to 
implementation of Point. The fourth step has provided 
implementation of Sound through class and interface 
pair. The fifth step has provided the implementation of 
SoundTag as interface and interface adapter pair. The 
sixth step has once again added property accessor 
methods to previous implementation of Sound. And 
the seventh step has added property accessor methods 
to the previous implementation of SoundTag.  

In each step of the experiment the complex trans-
formation instance detection algorithm, described 
above, has correctly detected appropriate complex 
transformation instances in the sample implementa-
tions of Sound, Point and SoundTag. Since there were 
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7 steps with 3 sample implementations per step a total 
of 21 sample pieces of code were examined in respect 
to a total of 8 complex transformations and the pre-
sence of complex transformation instances and the de-
gree of complex transformation instance coverage 
were correctly detected each time.  

6. Conclusions and future work 

We have created a method that allows detecting 
complex program model implementation patterns in a 
handwritten program code. The method was used in an 
automatically configured program code generator that 
can detect program model implementation patterns in 
a partial handwritten program code and use those 
implementation patterns to generate program code for 
yet unimplemented model elements. We have defined 
program model implementation patterns as humanly 
meaningful transformations from pieces of program 
model to pieces of program code and have graded 
them into atomic and complex where atomic model 
implementation patterns are black box model-to-code 
transformation functions and complex model imple-
mentation patterns are composed from atomic ones. 
Our method allows using the same definition of an 
implementation pattern both for recognitions and 
program code generation purposes. 

While the usual way to define program code gene-
rator templates uses a textual form, we define model 
implementation patterns as transformations from an 
abstract representation of a program model to an ab-
stract representation of a program code in an effort to 
make our method of implementation pattern recogni-
tion a modeling and programming language agnostic. 
The meta-model of complex model implementation 
patterns used in our work allows expression of simple 
blocks, iterators and conditional evaluations. 

In certain cases it may be desirable to use the 
abbreviated version of a complex transformation for 
implementation pattern detection and the longer ver-
sion for program code generation. Addition of such 
feature would require appending the complex trans-
formation meta-model with artifacts for differentiating 
between the parts used for complex transformation 
detection and the parts used for program code genera-
tion. On that score, the essence of complex transfor-
mation detection algorithm would not change.  

Current model of complex transformations cannot 
express the difference between complex transforma-
tion parts where ordering of sibling elements matters 
and those parts where it does not, thus either one or 
another must be assumed for the whole complex trans-
formation. Current complex transformation instance 
detection algorithm assumes that ordering of sibling 
elements does not matter. Removing this weakness re-
quires adding scope constructs into complex transfor-
mation model and supporting those constructs in a 
complex transformation instance detection algorithm.  
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