
291

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2010, Vol.39, No.4

DISCOVERY OF COMPLEX MODEL IMPLEMENTATION PATTERNS
IN SOURCE CODE

Linas Ablonskis, Lina Nemuraitė
Kaunas University of Technology, Department of Information Systems

Studentų St. 50, LT−51368 Kaunas, Lithuania
e-mail: linas.ablonskis@ktu.lt, lina.nemuraite@ktu.lt

Abstract. We present a method for discovering complex model implementation patterns in a hand written program
code. A model implementation pattern is understood as a repeatedly used humanly meaningful transformation from a
set of model elements to a piece of corresponding program code. Complex model implementation patterns are compo-
sed from atomic model implementation patterns treated as black boxes. We use the same definition of model imple-
mentation pattern for recognizing implementation patterns and generating program code. The method is applied for
automated configuring a program code generator.

Keywords: complex implementation pattern, atomic implementation pattern, implementation pattern recognition,
model to code transformation, program code generator configuration, MDA.

1. Introduction

In Model Driven Architecture (MDA) [1] related
software development, program code generators are
used to automatically produce program code from
program models. In order to work, program code
generators must be provided with program code
templates and template application rules. Currently all
these configuration data must be written by hand,
which is a labor intensive process [2] requiring a lot of
expertise to execute correctly [3]. We have proposed a
program code generator that can configure itself auto-
matically by recognizing the patterns that human has
used to write a partial program code and exploit those
patterns to generate program code for yet unimple-
mented model elements [4]. In our previous work we
have created an algorithm that allows recognition of
simple, atomic model implementation patterns [5]. In
this work we describe a method that allows defining
and recognizing complex model implementation pat-
terns composed from atomic model implementation
patterns described earlier [5].

The remainder of this paper is structured as fol-
lows: in Section 2 we present related works; in Sec-
tion 3 we present models used to express program mo-
del and code together with atomic and complex model
implementation patterns, called atomic and complex
transformations; in Section 4 we present an algorithm
for detecting complex transformations in a program
code; Section 5 is devoted for method testing; and fi-
nally in Section 6 we provide conclusions and outline
the future work.

2. Related works

Model driven development has become the com-
mon practice of creating software related artifacts. The
main principles of model driven development are se-
paration of concerns and raising level of abstraction. A
program code generator is the definitive component of
model driven development chain. The program code
generation is strictly separated from other levels of
MDA and can be performed from such artifacts as
ontologies, business process models, business rules,
domain models, or design models [6–10]. When rela-
ted techniques are applied to produce one kind of mo-
dels from other kind of models, the process is known
as transformation [11]. Program code generation
intrinsically depends on technology and domain
changes; therefore, it is not efficient in quickly chang-
ing world. Currently, researchers are looking for more
efficient ways of creating program code generators
e.g. using meta-programming [12] or domain specific
languages [13]. Our idea for improving program code
generation is to separate transformations that are used
to generate program code from the actual program-
ming language that the generated program code must
be expressed in. Also, the manner of program model
traversal used for generating program code in our me-
thod differs from conventional approaches because we
use formal concept analysis to select the sets of model
elements that can be implemented by an application of
a specific pattern.

Our method of model implementation pattern re-
cognition in a program code is inspired by works in

L. Ablonskis, L. Nemuraitė

292

the area of design pattern recovery. Design patterns
[14] are reusable solutions to common software en-
gineering problems modeled by a certain composition
of software artifacts. Design pattern recovery methods
find instances of design patterns in a program code
and are primarily used to assist program comprehen-
sion.

Some design pattern recovery methods use static
analysis of program code to extract available elements
and their relationships and dynamic analysis to extract
execution traces and call graphs. The data received
from static analysis are enriched with data received
from dynamic analysis and analyzed by a set of prede-
fined algorithms made to detect a single design pattern
[15, 16]. Alternatively, only data from static analysis
can be used [17].

A variation [18] is to use graphs for describing de-
sign pattern templates and an algorithm that evaluates
edge similarity of two graphs [19] for finding corres-
pondences between design pattern templates and a
source code element tree. While not published as a de-
sign pattern recovery method, a similar approach [20]
uses attributed flow graphs to describe both design
patterns and program code. The flow graph based de-
scriptions of design patterns are treated as graph gram-
mars and a special algorithm [21] is used to find the
places in a program code flow graph that match the
flow grammar expressions of design patterns. Design
pattern detection can also be considered to be a const-
raint satisfaction problem where each design pattern
provides a constraint on a set of elements and relations
that compose it [17]. There are suggestions [22, 23] to
use XML based language for describing design pat-
terns and then applying the same principle to detect
them.

Since design pattern detection algorithms can be
computationally expensive, there is a work that finger-
prints design patterns through a set of code metrics
(size, filiations, cohesion and coupling) and then uses
these fingerprints to quickly reject invalid candidates
before employing standard design pattern recovery
techniques [24]. This requires a rule engine and an
initial source code base for teaching that rule engine.
There is also a method that uses decision trees and
neural networks for recognizing design patterns
through code metrics [25]. The neural networks must
be trained by supplying manually evaluated design
pattern candidates extracted from sample source code.

Another approach is to describe design patterns
with logical formulas that operate on a set of predica-
tes extracted from source code [26]. These predicates
describe the existence of various types of elements
and relationships in a parsed program code. The
predicates extracted from the source code and logical
formulas describing design patterns are fed to a logic
engine. The advantage of this method is its ability to
find non-standard variants of design patterns, as long
as they can be logically reduced to a standard form.
There is a paper [27] that suggests standardization of
logic predicates used for program code analysis as this

would allow making a tool working with a wide
variety of programming languages as long as there are
suitable extractors for those languages.

Finally, there is a design pattern recovery method
that uses formal concept analysis [28] to analyze a set
of predicates extracted from program code when de-
tecting design patterns [29]. Predicates describe exis-
tence of entities and their relationships. Application of
formal concept analysis enables detection of ad-hock
design patterns and does not require design pattern
definitions. However, results must be manually inter-
preted by a human.

The direct application of design pattern recovery
methods proved to be unsuitable for our needs. Predi-
cates-with-logical-formulas, one-algorithm-per-pattern
and graph-subgraph-matching methods require a lot of
work for building predicate sets, logical formulas,
algorithms or graphs that correspond to artifacts being
detected. Code metrics and Artificial Intelligence (AI)
based methods are either approximate, or they only
use code metrics and AI techniques to quickly reject
candidates. Ad-hoc design pattern detection method
[29] is unsuitable for our needs as it will detect some-
thing that can be viewed as design patterns, but it will
always need a human to comprehend the meaning of
those design patterns. Also, we wanted to use the same
definition of a program model implementation pattern
both for pattern recognition in a program code and
program code generation, which is not possible with
design pattern models used in existing methods for
recovery of design patterns. To satisfy our needs, we
have created algorithms for model implementation
pattern definition and model implementation pattern
recognition while taking the inspiration from the
graph-subgraph matching based design pattern reco-
very methods [17, 19].

From the perspective of program code generation,
a model implementation pattern, as it is understood in
our work, is conceptually equal to the program code
template together with template application rules [11].
While the usual way to define program code templates
is in a textual form, we define model implementations
patterns as transformations from an abstract represen-
tation of a program model to an abstract representation
of a program code in an effort to make our method a
modeling and programming language agnostic. The
meta-model of complex model implementation pat-
terns used in our work allows expression of simple
blocks, iterators and conditional evaluation matching
only the basic expression capabilities of other temp-
late languages commonly used for program code gene-
ration, such as Velocity [30], XSLT [31], Xpand [32],
JET [33], etc. Relatively weak expression capabilities
of complex model implementation patterns are par-
tially compensated by the fact that they are built from
atomic model implementation patterns, which are
defined as black box functions, allowing any comp-
lexity inside.

When it comes to program code generation and
reverse engineering, there is a method that allows

Discovery of Complex Model Implementation Patterns in Source Code

293

analyzing generated source code and recognizing
templates that were used to generate it, by using the
same definition of a program code template for both
tasks [34]. The method is independent from source
code language; however, it cannot recognize reordered
program code and cannot reverse engineer program
code directly into the same level of abstraction that it
was generated from. Thus it is unsuitable to analyze
hand written program code and does not fit our needs.

3. Specifying model implementation patterns

A model implementation pattern describes how a
piece of a program model can be expressed in a piece
of program code. Thus a model implementation pat-
tern is a transformation from a piece of program mo-
del to a piece of program code. From now on we will
call complex model implementation patterns as comp-
lex transformations and simple, atomic model imple-
mentation patterns as atomic transformations.

The method for definition and recognition of
complex transformations presented in this paper is
based on our previous work dedicated to definition
and recognition of atomic transformations, called
basic transformations in the previous paper [5]. Since
then we have devised a slightly improved model for
definition of atomic transformations and a slightly im-
proved algorithm for detecting instances of atomic
transformations in a program code that we will briefly
present here.

We represent elements of a program model
through instances of model concepts and elements of a
program code through instances of code concepts.
Both types of concepts can be joined in respective
concept graphs. A concept is an instance of a concept
template. Each unique concept template corresponds
to some unique concept in a modeling or program-
ming language. An example of modeling language
concepts can be taken from Unified Modeling Lan-
guage (UML) [35]: class, interface, method, etc. An
example of programming language concepts can be
taken from Java language: package, class, method,
loop, conditional branch, etc.

A concept has a set of slots and a set of attributes.
Slots are used for building concept graphs and contain
references to other concepts in a graph. Attributes are
used to store literal values that describe a literal
property of the concept. In our previous work we had
to split base hierarchies of model concepts into
concept, concept-with-name and concept-with-value
branches to express name and value attributes. Current
model of attributes allows defining the same things
and more while retaining single base types of model
and code concepts. The new concept meta-model is
shown in Figure 1.

Model concept graphs are used to represent models
and code concept graphs are used to represent
program code. Model concepts and model concept
graphs follow the meta-model shown in Figure 2.

Figure 1. A common part of model and code concept

meta-models

Figure 2. Meta-model of model concepts and model
of model concept graphs

A model concept graph is represented by a
container that allows accessing top model concepts.
Top model concepts are considered to be those that
represent top containers in a program model.

Code concepts and code concept graphs follow the
meta-model shown in Figure 3.

Figure 3. Meta-model of code concepts and model of code
concept graphs

Holes are used to specify possible connection
points to other code concept graphs. A hole has a
unique identifier id and a function accept that returns
if given code concept can be placed into a hole. A
code concept graph is represented by a container that
allows accessing top code concepts. Top code con-
cepts are considered to be those that represent top con-
tainers in a program code.

We describe model implementation patterns
through atomic and complex transformations. Atomic
transformations are designed to describe the basic
humanly meaningful mappings of program model

L. Ablonskis, L. Nemuraitė

294

elements into program code elements as black box
functions and are discussed in our previous paper
under the name of basic transformations [5]. Complex
transformations, the subject of this paper, are made by
composing atomic transformations and are designed to
describe complex humanly meaningful mappings of
program model elements into program code elements.
The requirement for transformations to be humanly
meaningful has a twofold purpose. First, it limits the
number of possible transformation functions. Second,
it allows credible application of transformations for
analysis of a hand written program code, because hand
written program model implementation in a program
code is a result of a humanly meaningful transfor-
mation from a program model to a program code.

The meta-model of atomic transformations is
shown in Figure 4.

Figure 4. Meta-model of atomic transformations

An atomic transformation function run takes a list
of inputs and produces a code concept graph with
holes. Holes mark points where other code concept
graphs may be attached when joining the outputs of
several atomic transformations. A list of input defi-
nitions inputDef tells what number and kind of inputs
are accepted by an atomic transformation. A list of in-
put filters inputFilters defines additional conditions
for valid inputs of an atomic transformation. The ato-
mic transformation function run accepts a list of in-
puts that must follow the list of input definitions and
distinguishes individual inputs by the corresponding id
field. A valid input definition list must have no input
definitions with matching conceptType; this condition
is necessary for correct operation of the algorithm that
detects instances of atomic transformations in a prog-
ram code.

The meta-model of complex transformations is
shown in Figures 5–8.

A complex transformation has a list of input
definitions inputDefs specifying the number and type
of model concepts that the transformation accepts.
When complex transformation is executed, it is sup-
plied with a list of inputs that match the input defini-
tions. Complex transformation has a list of input fil-
ters inputFilters that can be used to impose additional

restrictions on valid inputs. Input filters are based on
white box condition expressions. Complex transfor-
mation also has a body that is a tree of atomic trans-
formation wrappers and control nodes as shown in
Figure 6.

Figure 5. Meta-model of a complex transformation

Figure 6. Model of a complex transformation body

An atomic transformation wrapper node BnAtf re-
ferences a single atomic transformation and specifies
how to provide the inputs of that atomic transforma-
tion from the inputs of host complex transformation.
Atomic transformation inputs are provided through a
list of input paths, described further in the text. Ato-
mic transformation wrapper also contains a list of
joints that place other body nodes of complex trans-
formation into holes of code concept graphs produced
by atomic transformation functions.

A loop node BnLoop takes a list of model concepts
provided by a given input path and evaluates its body
for each of those concepts. Input paths within loop
body can read the value of loop iterator. Strict loops
are supposed to iterate at least once, non strict loops
can iterate zero times.

A conditional evaluation node BnIf has a list of
branches that contain conditions. The first branch
whose condition is satisfied has its body evaluated.
Strict conditional nodes are supposed to evaluate a bo-
dy of one branch; non strict conditional nodes are allo-
wed to evaluate zero branches.

An input path (Figure 7) allows specifying a se-
quence of actions for extracting one or more concepts
from an input of a complex transformation. They are
used to provide inputs of wrapped atomic transfor-
mations and in the white box condition expressions.

Discovery of Complex Model Implementation Patterns in Source Code

295

IpnInput node reads from a given input of a complex
transformation and can be followed by IpnSlot,
IpnOne and IpnFilter. IpnSlot node reads from the gi-
ven concept slot and can be followed by IpnSlot,
IpnOne and IpnFilter. IpnOne node selects one con-
cept from the list and can be followed by IpnSlot.
IpnFilter node rejects concepts from a list and can be
followed by IpnOne. IpnLoop selects the current ite-
rator value of a given loop and can be followed by
IpnSlot. IpnLoop must be used only inside the body of
the loop it extracts from.

Figure 7. Model of input paths

Figure 8. Model of white box conditions

Finally, white box condition expressions (Figure 8)
are used for filtering the inputs of complex transfor-
mation and branches of conditional evaluation nodes.
Leaf nodes of the expression are CnInputPath nodes
that specify an input path and a condition function on
its result. CnAnd node corresponds to logical conjunc-
tion of its operands, CnOr node to logical disjunction
and CnNot to negation.

4. Detecting complex model implementation
patterns

The method for detecting the presence of atomic
transformation instances in a program code is descri-
bed in our previous paper [5]. The algorithm works
with code concept trees, but can be trivially improved
to operate on code concept graphs by adding the sup-
port for graph cycle avoidance with a simple trace of
nodes being visited. In our current work, we use the
improved version. Detections of atomic transforma-
tion instances correspond to the model shown in Fi-
gure 9. Fields of an atomic transformation instance
detection have the following meaning: atf – an atomic
transformation, inputs – inputs to atomic transforma-
tion, output – output of atomic transformation and
matches – a list of code concepts from the given code
concept graph that matched top code concepts of an
atomic transformation output.

Figure 9. Model of an atomic transformation instance

detection

This way, instances of AtfDetection specify the
atomic transformation instance detected and the start-
ing position of a detection in a given code concept
graph.

Figure 10. An algorithm for detecting how complex transformation relates parts of program model with parts of program code

L. Ablonskis, L. Nemuraitė

296

By exploiting the ability to detect instances of ato-
mic transformations in a program code, we can also
detect instances of complex transformations. For this,
we take complex transformations one by one and de-
tect how they relate parts of given program model
with parts of given program code. The outline of the
algorithm for detecting complex transformation ins-
tance is shown in Figure 10.

Given a model concept graph, we compose a list of
all model concepts present and create an input space
for a given complex transformation by composing lists
of model concepts that satisfy input definitions and
pass input filters (Figure 10, action 1). Then we prune
the input space by removing inputs for which we can
prove that using those inputs will result in a failure of
complex transformation evaluation in every possible
scenario (Figure 10, action 2). To prune the input
space, a complex transformation is roughly emulated
and all members of a given input space are verified
against input paths found in complex transformation
body. If some member of an input space fails an input
path at every possible execution scenario of a complex
transformation, it is thrown out.

Once the input space is pruned, we start making
permutations of inputs (Figure 10, action 3) and for
each permutation we evaluate a complex transforma-
tion (Figure 10, action 4). Evaluation of a complex
transformation can fail. Failure can happen if at some
point of complex transformation evaluation it is found
that some input path cannot be evaluated due to in-
compatible model structure or if some input path,
when evaluated, produces model concept that is not
accepted by a filter of atomic transformation used in
some body node. If evaluation of a complex trans-
formation fails against some permutation of inputs, we
skip that permutation and move on to the next one.

If evaluation of a complex transformation suc-
ceeds, the result is a graph of nested atomic transfor-
mation instances that corresponds to a model shown in
Figure 11.

Figure 11. Model of atomic transformation instance graphs

AtfGraph represents an instance of an atomic
transformation instance graph where field ctf points
to a complex transformation whose instance is de-
scribed by a graph and field inputs stores inputs of that
complex transformation instance. A graph has a set of
nodes represented by a class Node. Each node points
to an atomic transformation through field atf and field

inputs stores inputs of that atomic transformation.
Each node has a list of edges represented by a class
Edge. Each edge corresponds to a hole in an atomic
transformation represented by a source node. The id of
that hole is stored in a field holeId. Each edge points
to a list of destination nodes.

An atomic transformation instance graph repre-
sents a partially evaluated complex transformation
with loops unrolled, conditional branches selected and
input paths evaluated. Since we can detect instances of
atomic transformations in code concept graphs, any
code concept graph together with a set of atomic
transformation instances detected in that graph can be
used to detect complex transformation instances repre-
sented by atomic transformation instance graphs.

Once an evaluation of a given complex transfor-
mation produces an atomic transformation instance
graph G , the complex transformation instance detec-
tion process starts traversing the code concept graph,
that represents a given program code (Figure 10, ac-
tion 5). Each step of traversal produces a set of sibling
code concepts S . For each S , a set B of atomic trans-
formation instance detections is composed, where
each atomic transformation instance detection Bb∈
starts with code concepts from S . Then a list M of
atomic transformation instance detections from B
with related coverage values is composed for every
top node of G .

Let us define A as a set of all nodes in G . To com-
pute the coverage of some Aa∈ over some Bb∈ ,
a is overlaid on top of b and the best possible match
of the atomic transformation instance graphs that start
with a and b is found. Once the match is found, the
graph that starts with a is taken and the coverage is
computed by dividing the number of matched nodes
by the number of nodes in the graph. This yields the
coverage value in range [0; 1], where 0 means that
there is no match between the graphs spanned by a
and b and 1 means that there is a total match. The
algorithm for that is shown in Figure 12.

Once a list M of atomic transformation instance
detections from B together with related coverage va-
lues is computed for every top node of G , we take all
those lists and make permutations from their items. In
each permutation there are no duplicate Bb∈ . We
register each permutation as a detection of a complex
transformation instance in the position specified by
the positions of b ’s (Figure 10, action 6). The cove-
rage of each detection is calculated by taking a total
number of matched nodes in the graphs spawned by
related a ‘s, and dividing that number by the number
of nodes in those graphs. This yields the coverage
value in range [0; 1] where 0 means that there is no
complex transformation instance detection at the given
position of a given code concept graph and 1 means
that the complex transformation was fully detected at
the given position of a given code concept graph. The
algorithm for that is shown in Figure 13.

Discovery of Complex Model Implementation Patterns in Source Code

297

def checkMatch(node : Node, atfd : AtfDetection) : Match = {
val theMatch = new Match(node = node, atfd = atfd);
if(node.atf.id != atfd.atf.id) return theMatch;
val inputsMatch = check if items from node.inputs matches items in atfd.inputs;
if(!inputsMatch) return theMatch;
theMatch.coverage.raw = 1;
for(edge <- node.edges) {
val hole = the hole in atfd.output having the same id as edge.holeId;
val holeConcepts = concepts in a given code concept graph that fall into the hole;
val holeAtfds = atomic transformation instance detections that start with holeConcepts,
except those that rely on concepts consumed by the atfd;
var matchLists = List[List[Match]]();
for(dstNode <- edge.nodes) {
var matchList = List[Match]();
for(holeAtfd <- holeAtfds) {
val holeAtfdMatch = check(dstNode, holeAtfd);
if(holeAtfdMatch.coverage.raw > 0)
matchList = matchList :+ holeAtfdMatch;

}
if(matchList.size > 0) matchLists = matchLists :+ matchList;

}
bestMatchPerm = make permutations from the items in match lists; each permutation does not
contain two matching atomic transformation instance detections; find permutation with the
best unit coverage;
theMatch.matches = theMatch.mathes ++ bestMatchPerm;

}
calculate the total raw and unit coverage of the match by using coverage information from
the sub matches and total size of the sub graph that starts with the node;
return theMatch;

}

Figure 12. The algorithm for computing the match between a node of an atomic transformation instance graph
and atomic transformation instance detection

val atfds : List[AtfDetection]() = …;
val graph : AtfGraph = …;
var matchLists = List[List[Match]();
for(node <- graph.top) {
var matchList = List[Match]();
for(atfd <- atfds) {
val theMatch = checkMatch(node, atfd);
if(theMatch.coverage.raw > 0)
matchList = matchList :+ theMatch;

}
if(matchList.size > 0) matchLists = matchLists :+ matchList;

}
val perms = a list of permutations from the items of matchLists where in each permutation
there are no items with matching atomic transformation instance detections;
for(matchPermutation <- perms)
register a detection from a matchPermuation

Figure 13. The algorithm for recognizing the complex transformation instance graph in a given code concept graph
with atomic transformation instance detections

A model of complex transformation instance de-
tection is shown in Figure 14.

Figure 14. Model of complex transformation instance
detections

Complex transformation instance detection stores
an atomic transformation graph that was detected, a
code where detection took place, a coverage

measurement, and a list of matches for top nodes of
the graph. Each match stores a node of an atomic
transformation instance graph and a corresponding
atomic transformation instance detection atfd together
with coverage measurement stored as coverage and a
list of submatches matches. Each coverage measure-
ment is represented by two fields. The field raw
describes how many nodes (and sub nodes) have been
detected to match. The field unit stores a normalized
coverage value in range [0; 1] computed as raw/total-
Nodes where totalNodes is a total number of nodes in
an atomic transformation instance graph, or in a case
of a single match, a total number of nodes in a sub-
graph that starts with the head node of the match.

Each complex transformation detection means that
some model concepts in a given program model relate
to some code concepts in a program given code by the

L. Ablonskis, L. Nemuraitė

298

algorithm described in the complex transformation
and the measure of that relation can be normalized
into an interval [0; 1] where 0 means that complex
transformation instance was not detected at given
point at all, and 1 means that complex transformation
instance fully matches program code at a given point.
Since a complex transformation represents a complex
program model implementation pattern, detection of
some complex transformation instances are recogni-
tions of related model implementation patterns in a
program source code.

5. Method testing

We have used the method for definition and recog-
nition of complex transformations, described in this
paper, to implement an automatically configured prog-
ram code generator that can detect program model im-
plementation patterns in a partial handwritten source
code provided by a human and automatically use those
patterns to generate program code for yet unimple-
mented model elements. The in-depth description of
an automatically configured program code generator
includes the method for detecting implementation si-
milarity of program model elements and is beyond the
scope of this paper.

We have performed the experiment to validate and
test the prototype of an automatically configured prog-
ram code generator. Inherently, the method of complex
transformation instance detection got tested as well.
The experiment was supplied with the sample sets of
atomic transformations (15 items), complex transfor-
mations (8 items) and a sample set of model and code
concepts, together with transformations from UML
models to model concept graphs and bidirectional
transformations between Java code and code concept
graphs.

The model concept set allowed expression of
packages, classes, interfaces, class and interface deri-
vations, class and interface properties, stereotypes and
stereotype applications, class and interface operation
definitions, primitive and non primitive types and va-
rious associations. The code concept set allowed ex-
pression of array related definitions and operations;
the concept of value assignment; various control flow
related concepts; concepts for the definition of prog-
ram artifacts, such as classes, interfaces, methods, va-
riables, etc; concepts for object oriented programming
such as type cast and instance creation; literal value
definitions and a type reference concept.

Complex transformations provided several types of
mappings from model classes and interfaces to code
classes and interfaces with varying levels of infor-
mation transfer. Atomic transformations provided the
primitive mappings between individual types of model
elements and related code concept graphs that were
necessary to express the complex transformations.

The experiment was supplied with the input model
shown in Figure 15.

Figure 15. An input model used for experiment

The sample implementation of classes Sound,
Point and interface SoundTag were used to drive the
configuration of a program code generator and thus
were the ones were the recognition of complex trans-
formation instances took place. The implementations
of other classes and interfaces were generated by ap-
plying the complex transformation whose instance
was detected in a related sample implementation of
Sound, Point or SoundTag.

The experiment was performed in seven steps. The
first step has provided simple POJO (Plain Old Java
Object) implementations of the classes Sound, Point
and interface SoundTag. The second step added pro-
perty accessor methods to implementation of Sound.
The third step added property accessor methods to
implementation of Point. The fourth step has provided
implementation of Sound through class and interface
pair. The fifth step has provided the implementation of
SoundTag as interface and interface adapter pair. The
sixth step has once again added property accessor
methods to previous implementation of Sound. And
the seventh step has added property accessor methods
to the previous implementation of SoundTag.

In each step of the experiment the complex trans-
formation instance detection algorithm, described
above, has correctly detected appropriate complex
transformation instances in the sample implementa-
tions of Sound, Point and SoundTag. Since there were

Discovery of Complex Model Implementation Patterns in Source Code

299

7 steps with 3 sample implementations per step a total
of 21 sample pieces of code were examined in respect
to a total of 8 complex transformations and the pre-
sence of complex transformation instances and the de-
gree of complex transformation instance coverage
were correctly detected each time.

6. Conclusions and future work

We have created a method that allows detecting
complex program model implementation patterns in a
handwritten program code. The method was used in an
automatically configured program code generator that
can detect program model implementation patterns in
a partial handwritten program code and use those
implementation patterns to generate program code for
yet unimplemented model elements. We have defined
program model implementation patterns as humanly
meaningful transformations from pieces of program
model to pieces of program code and have graded
them into atomic and complex where atomic model
implementation patterns are black box model-to-code
transformation functions and complex model imple-
mentation patterns are composed from atomic ones.
Our method allows using the same definition of an
implementation pattern both for recognitions and
program code generation purposes.

While the usual way to define program code gene-
rator templates uses a textual form, we define model
implementation patterns as transformations from an
abstract representation of a program model to an ab-
stract representation of a program code in an effort to
make our method of implementation pattern recogni-
tion a modeling and programming language agnostic.
The meta-model of complex model implementation
patterns used in our work allows expression of simple
blocks, iterators and conditional evaluations.

In certain cases it may be desirable to use the
abbreviated version of a complex transformation for
implementation pattern detection and the longer ver-
sion for program code generation. Addition of such
feature would require appending the complex trans-
formation meta-model with artifacts for differentiating
between the parts used for complex transformation
detection and the parts used for program code genera-
tion. On that score, the essence of complex transfor-
mation detection algorithm would not change.

Current model of complex transformations cannot
express the difference between complex transforma-
tion parts where ordering of sibling elements matters
and those parts where it does not, thus either one or
another must be assumed for the whole complex trans-
formation. Current complex transformation instance
detection algorithm assumes that ordering of sibling
elements does not matter. Removing this weakness re-
quires adding scope constructs into complex transfor-
mation model and supporting those constructs in a
complex transformation instance detection algorithm.

References
 [1] J. Bézivin. On the unification power of models. Soft-

ware and Systems Modeling, 4(2), 2005, 171–188.
 [2] R.L. Glass. Some Thoughts on Automatic Code Ge-

neration. ACM SIGMIS Database, 27(2), 1996, 16-18.
 [3] J. Herrington. Code generation in action. Manning

Publications Co, 2003.
 [4] L. Ablonskis. An approach to generating program

code in quickly evolving environments. In G. A. Papa-
dopoulos, G.. Wojtkowski, W. W. Wojtkowski, S. Wry-
cza, J. Zupancic (Eds.): Information Systems Develop-
ment: Towards a Service Provision Society, Springer-
Verlag: New York, 2009, 259–267.

 [5] L. Ablonskis, L. Nemuraitė. Discovery of model im-
plementation patterns in source code. Information
Technology and Control, 39(1), 2010, 68–76.

 [6] A. Čaplinskas, A. Lupeikienė, O. Vasilecas. Shared
Conceptualization of Business Systems, Information
Systems and Supporting Software. In Haav, H.-M.;
Kalja, A. (Eds.): Databases and Information Systems
II. Fifth International Baltic Conference "Baltic-
DB&IS'2002", June 3-6, 2002, Tallinn, Estonia. Dord-
recht / Boston / London: Kluwer Academic Publishers,
2002, 109–120.

 [7] O. Vasilecas, D. Kalibatienė, G. Guizzardi. Towards
a Formal Method for the Transformation of Ontology
Axioms to Application Domain Rules. Information
Technology and Control, 2009, 38(4), 271–282.

 [8] O. Vasilecas, S. Sosunovas. Practical Application of
BRTL Approach for Financial Reporting Domain. In-
formation Technology and Control, 2008, 37(2), 106–
113.

 [9] T. Skersys. Business Knowledge-Based Generation of
the System Class Model. Information Technology and
Control, 2008, 37(2), 145–153.

[10] A. Armonas, L. Nemuraitė. Using Attributes and
Merging Algorithms for Transforming OCL Expres-
sions to Code. Information Technology and Control,
2009, 38(4), 283–293.

[11] K. Czarnecki, S. Helsen. Classification of model
transformation approaches. OOPSLA2003, Workshop
on Generative Techniques in the Context of MDA,
2003 Anaheim, CA, USA.

[12] R. Damaševičius, V. Štuikys. Taxonomy of the Fun-
damental Concepts of Metaprogramming. Information
Technology and Control, 2008, 37(2), 124–132.

[13] J.R. Cordy. Eating our own dog food: DSLs for gene-
rative and transformational engineering. In GPCE '09:
Proceedings of the eighth international conference on
Generative programming and component engineering,
October 2009, ACM, 3–4.

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides. De-
sign Patterns – Elements of Reusable Object-Oriented
Software. Addison-Wesley Publishing Co., 1995.

[15] D. Heuzeroth, T. Holl, G. Högström, W. Löwe.
Automatic design pattern detection. In proceedings of
the 11th IEEE International Workshop on Program
Comprehension, 2003, 94–103.

[16] N. Shi, R.A. Olsson. Reverse engineering of design
patterns from java source code. In proceedings of the
21st IEEE/ACM International Conference on Automa-
ted Software Engineering, 2006, 123–134.

L. Ablonskis, L. Nemuraitė

300

[17] H. Albin-Amiot, P. Cointe, Y.G. Guéhéneuc, N.
Jussien. Instantiating and detecting design patterns:
putting bits and pieces together. In proceedings of the
16th Annual International Conference on Automated
Software Engineering, 2001, 166–173.

[18] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides,
S.T. Halkidis. Design pattern detection using simila-
rity scoring. IEEE Transactions on Software Enginee-
ring, 32(11), 2006, 896–909.

[19] V.D. Blondel, A. Gajardo, M. Heymans, P. Senel-
lart, P.Van Dooren. A measure of similarity between
graph vertices: applications to synonym extraction and
web searching. SIAM Review, 46(4), 2004, 647–666.

[20] C. Rich, L.M. Wills. Recognizing a program's design:
a graph-parsing approach. IEEE Software, 7(1), 1990,
82–89.

[21] D.C. Brotsky. An Algorithm for Parsing Flow
Graphs. Technical report TR-704, MIT Artificial In-
telligence Laboratory, 1984.

[22] Z. Balanyi, R. Ferenc. Mining design patterns from
C++ source code. In proceedings of the International
Conference on Software Maintenance, 2003, 305–314.

[23] J.M. Smith, D. Stotts. SPQR: Flexible automated de-
sign pattern extraction from source code. In procee-
dings of the 18th IEEE International Conference on
Automated Software Engineering, 2003, 215–224.

[24] Y-G. Gueheneuc, H. Sahraoui, F. Zaidi. Fingerprin-
ting design patterns. In proceedings of the 11th
Working Conference on Reverse Engineering, 2004,
172–181.

[25] R. Ferenc, A. Beszedes, L. Fulop, J. Lele. Design
pattern mining enhanced by machine learning. In
proceedings of the 21st IEEE International Confe-
rence on Software Maintenance, 2005, 295–304.

[26] J. McC. Smith, D. Stotts. Elemental design patterns:
A logical inference system and theorem prover support
for flexible discovery of design patterns. Technical
Report TR02-038, Department of Computer Science,
University of North Carolina, 2002.

[27] J. Fabry, T. Mens. Language independent detection
of object-oriented design patterns. Computer Lan-
guages, Systems & Structures, 30(1-2), 2004, 21–33.

[28] R. Wille. Formal Concept Analysis as Mathematical
Theory of Concepts and Concept Hierarchies. Formal
Concept Analysis, Springer, 2005, 1-33.

[29] P. Tonella, G. Antoniol. Object Oriented Design Pat-
tern Inference. In proceedings of the 5th Symposium
on Software Development Environments, 1999, 230–
238.

[30] Apache Velocity. [interactive][accessed 2010-09-20].
http://velocity.apache.org/.

[31] W3C consortium. XSLT specification. [interactive]
[accessed 2010-09-20]. http://www.w3.org/TR/xslt.

[32] Eclipse Modeling, Model to Text, Xpand. [interactive]
[accessed 2010-09-20].
http://www.eclipse.org/modeling/m2t/?project=xpand.

[33] Eclipse Modeling, Model to Text, JET. [interactive]
[accessed 2010-09-20].
http://www.eclipse.org/modeling/m2t/?project=jet.

[34] M. Bork, L. Geiger, C. Schneider, A. Zündorf. To-
wards Roundtrip Engineering – a Template-Based Re-
verse Engineering Approach. In proceedings of the 4th
European conference on Model Driven Architecture:
Foundations and Applications, LNCS, 5095, 2008, 33–
47.

[35] OMG group. Unified modeling language: superstruc-
ture. [interactive][accessed 2010-09-20].
http://www.omg.org/cgi-bin/doc?formal/07-02-03.

Received September 2010.

