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1. STATEMENT OF THE PROBLEM

The paper is devoted to the analysis of queue-
ing systems in the context of the network and com-
munications theory. We investigate a theorem on the
law of the iterated logarithm (LIL) for the queue of
customers in an open queueing network and its appli-
cations to the mathematical models of the Negative
ACKnowledgement (NACK) and Internet systems.

Now we try to outline the research of the LIL in
queueing systems. In [2], Bingham familiarizes with
the general theory on the LIL and its numerous ap-
plications in various fields of probability theory. The
main part in the development of the theory on the
LIL was played by Strassen [24], where the functional
variant of the LIL for a Wiener process was proved.
The paper of Iglehart [9] can be considered as the first
work on the LIL in the queueing theory. Applying the
approach of Strassen [24], Iglehart proved the LIL in
[9] under the conditions of heavy traffic for the queue
of customers, waiting time of a customer, a virtual
waiting time of a customer, and other important prob-
ability characteristics of the classical queueing sys-
tem G1/G/1 and more general systems (e.g., a mul-
tiple queueing system). Also, a functional variant of
the LIL for a renewal process was proved in his work
[9]. Using the results of Iglehart [10] and [11], the
survey of Whitt [25] presents the proof of theorems
on the LIL for the waiting time of a customer, the oc-
cupation time process, and the extreme value of the
waiting time of a customer in the queueing system
G1/G/1. The works of Glynn and Whitt [7, 8] pre-
——————————————
* Corresponding author

sent the proof of theorems on the LIL for a cumula-
tive process associated with the queue of customers
and waiting time of a customer in an ordinary queue-
ing system G1/G/1.

We note that the research of the LIL in more
general systems than the queueing system G1/G/1
or multiphase queueing systems has just started (see
the article of Asmussen [1]). In the papers of Minke-
vičius [15] and [16] the LIL is proved for the queue
of customers, the waiting time of a customer, a virtual
waiting time of a customer in heavy traffic in a multi-
phase queueing system. The work of Sakalauskas and
Minkevičius [23] also gives the proof of the theorem
on the LIL under the conditions of heavy traffic for a
virtual waiting time of a customer in the open Jackson
network.

Now we try to consider the papers on a queue
in heavy traffic conditions. In the paper of Chen,
Xinyang and Yao [5] a semi-martingale reflected
Brownian motion approximation is developed for the
performance processes such as workload, queue, and
sojourn time. In the paper of Massey and Srinivasan
[14], the steady-state distribution of the queue pro-
cess, using tensor and Kronecker products, shows that
it is of the matrix-geometric structure. Dai and Dai
in [6] proved that an appropriately normalized queue
process converges in distribution to a d-dimensional
reflecting Brownian motion under the heavy traffic
condition. Puhalskii in [20] established moderate-
deviation principles for the queue, virtual waiting
time and sojourn processes. In [12], Yamada has
showed that the normalized queue processes at the
nodes converge in distribution to a reflected, multi-
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variate diffusion process whose drift and diffusion
coefficients are state dependent and nonsingular. In
the article of Kushner and Martins [13], the authors
study the pathwise average cost per unit time prob-
lems for controlled and uncontrolled open queueing
networks in heavy traffic. In the paper of Zhang Han-
qin and Xu Guang-hui [26] strong approximations
for an open queueing network in heavy traffic are
proved. Peterson [19] has proved that, under heavy
traffic conditions, the vector processes of total unfin-
ished workloads converge to a multidimensional reg-
ulated Brownian motion. In the article of Reiman and
Simon [22], the authors consider an open queueing
network with multiple classes, priorities, "arbitrary"
routing, and general service time distribution. Using
a heavy traffic limit theorem for open queueing net-
works, Reiman in [21] found the correct diffusion ap-
proximation for sojourn times in Jackson networks
with a single-server station. As one can see, there are
only several works designed to explore a queue in
a more complicated than the classical single- server
queue: tandem, multiphase queue, open queueing net-
work (see the articles of Boxma [3, 4], Zhang Hanqin
and Xu Guang-hui [26], Massey and Srinivasan [14],
and Sakalauskas and Minkevičius [23]).

In this paper, we investigate an open queueing
network model in heavy traffic. We present the LIL
for the queue of customers in an open queueing net-
work. The main tool for the analysis of these queue-
ing systems in heavy traffic is a functional LIL for the
renewal process (the proof can be found in [24] and
[9]).

The service discipline is “first come, first served”
(FCFS). We consider open queueing networks with
the FCFS service discipline at each station and gen-
eral distributions of interarrival and service times. We
study the queueing network with k single server sta-
tions, each of which has an associated infinite capac-
ity waiting room. Every station has an arrival stream
from outside the network, and the arrival streams are
assumed to be mutually independent renewal pro-
cesses. Customers are served in the order of arrival
and after service they are randomly routed to either
another station in the network, or out of the network
entirely. Service times and routing decisions form
mutually independent sequences of independent iden-
tically distributed random variables.

The basic components of the queueing network
are arrival processes, service processes, and routing
processes. In particular, there are mutually indepen-
dent sequences of independent identically distributed
random variables

{
z
(j)
n , n ≥ 1

}
,
{

S
(j)
n , n ≥ 1

}
and{

Φ(j)
n , n ≥ 1

}
for j = 1, 2, . . . , k. The random vari-

ables z
(j)
n and S

(j)
n are strictly positive, and Φ(j)

n

has support in {0, 1, 2, . . . , k}. We define µj =(
M

[
S

(j)
n

])−1

> 0, σj = D
(
S

(j)
n

)
> 0, λj =

(
M

[
z
(j)
n

])−1

> 0, and aj = D
(
z
(j)
n

)
>

0, j = 1, 2, ..., k; all of these sequences are as-
sumed to be finite. We denote pij = P

(
Φ(i)

n = j
)

>

0, i, j = 1, 2, . . . , k. In the context of the queue-
ing network, the random variables z

(j)
n function as

interarrival times (from outside the network) at the
station j, while S

(j)
n is the nth service time at sta-

tion j, and Φ(j)
n is a routing indicator for the nth

customer served at the station j. If Φ(i)
n = j

(which occurs with probability pij), then the nth cus-
tomer served at the station i is routed to the sta-
tion j. When Φ(i)

n = 0, the associated customer
leaves the network. To construct renewal processes
generated by the interarrival and service times, we

assume zj(0) = 0, zj(l) =
l∑

m=1
z
(j)
m , Sj(0) =

0, Sj(l) =
l∑

m=1
S

(j)
m , l ≥ 1, j = 1, 2, . . . , k. We

now define aj(t) = max (l ≥ 0 : zj(l) ≤ t), xj(t) =
max (l ≥ 0 : Sj(l) ≤ t), τ̃j(t) as the total number of
customers routed to the jth station of the network un-
til time t, τj(t) as the total number of customers af-
ter service departure from the jth station of the net-
work until time t, τij(t) as the total number of cus-
tomers after service departure from the ith station of
the network and routed to the jth station of network
until time t, pt

ij = τij(t)
τi(t)

as part of the total num-
ber of customers which, after service at the ith sta-
tion of the network, are routed to the jth station of
the network, i, j = 1, 2, . . . , k and t > 0. Note that
this system is quite general, encompassing the tan-
dem system, acyclic networks of GI/G/1 queues,
networks of GI/G/1 queues with feedback, and an
open queueing network.

First, let us denote by Qj(t) the queue of cus-
tomers at the jth station of the queueing network

at time t; βj = λj +
k∑

i=1

µi · pij − µj > 0, σ̂2
j =

(λj)
3 · aj +

k∑
i=1

(µi)
3 · σi · (pij)

2 + (µj)
3 · σj > 0,

j = 1, 2, . . . , k.

Suppose that the queue of customers in each sta-
tion of the open queueing network is unlimited. All
random variables are defined on one common proba-
bility space (Ω,F ,P).

We assume that the following conditions are ful-
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filled:

λj +
k∑

i=1

µi · pij > µj , j = 1, 2, . . . , k. (1)

Note that these conditions quarantee that there
exists a queue of customers and it is constantly grow-
ing.

2. The Main Result

One of the results of the paper is the following
theorem on the LIL for the queue of customers in an
open queueing network.

Theorem 1. If conditions (1) are fulfilled, then

P

(
lim

t→∞
Qj(t)− βj · t

σ̂j · a(t)
= 1

)
= 1, j = 1, 2, . . . , k

and a(t) =
√

2t ln ln t.

Proof. First define x̂j(t) =
k∑

i=1

xi(t) · pij + aj(t) −

xj(t), wj(t) = xj(t) ·
{

k∑
i=1

∣∣pt
ij − pij

∣∣
}

, γj(t) =

sup
0≤s≤t

(xj(s)− τj(s)), j = 1, 2, . . . , k and t > 0.

By definition of the queue of customers at the
stations of the network, we get that

Qj(t) = τ̃j(t)− τj(t) = τ̃j(t)− xj(t) + xj(t)
− τj(t) ≤ τ̃j(t)− xj(t) + sup

0≤s≤t
(xj(s)− τj(s))

=
k∑

i=1

τi(t) · pt
ij + aj(t)− xj(t) + sup

0≤s≤t
(xj(s)− τj(s))

≤
k∑

i=1

xi(t) · |pt
ij − pij |+ sup

0≤s≤t
(xj(s)− τj(s))

≤ x̂j(t) +
k∑

i=1

wi(t) + sup
0≤s≤t

(xj(s)− τj(s)),

j = 1, 2, . . . , k and t > 0.

(2)

This implies that

Qj(t) ≤ x̂j(t) + γj(t) +
k∑

i=1

wi(t), (3)

j = 1, 2, . . . , k and t > 0.

Also, note that

Qj(t) ≥ τ̃j(t)− xj(t) =
k∑

i=1

τi(t) · pt
ij

+ aj(t)− xj(t) =
k∑

i=1

xi(t) · pt
ij + aj(t)

− xj(t) +
k∑

i=1

(τi(t)− xi(t)) · pt
ij

=
k∑

i=1

xi(t) · pij + aj(t)− xj(t)

+
k∑

i=1

xi(t) · (pt
ij − pij)

= x̂j(t) +
k∑

i=1

xi(t) · (pt
ij − pij)

+
k∑

i=1

(τi(t)− xi(t)) · pt
ij

≥ x̂j(t)−
k∑

i=1

xi(t) · |pt
ij − pij |

−
k∑

i=1

(xi(t)− τi(t)) · pt
ij ≥ x̂j(t)

−
k∑

i=1

wi(t)−
k∑

i=1

(xi(t)− τi(t))

≥ x̂j(t)−
k∑

i=1

wi(t)

− sup
0≤s≤t

k∑

i=1

(xi(t)− τi(t))

≥ x̂j(t)−
k∑

i=1

wi(t)−
k∑

i=1

γi(t),

(4)

j = 1, 2, . . . , k and t > 0.
Hence it follows that

Qj(t) ≥ x̂j(t)−
k∑

i=1

wi(t)−
k∑

i=1

γi(t), (5)

j = 1, 2, . . . , k and t > 0. By combining (3) and (5),
we can write

|Qj(t)− x̂j(t)| ≤
k∑

i=1

wi(t) +
k∑

i=1

γi(t), (6)
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j = 1, 2, . . . , k and t > 0. The further proof is the
same as in [18]. The proof of the theorem is complete.

Note that inequality (6) is the key inequality to
prove several laws (fluid approximations, functional
limit theorems and LIL) for a queue of customers in
open queueing networks in heavy traffic conditions.

3. On the model of the NACK-type switching fa-
cility

In this section, we consider a switching facility
that transmits packages of data to a required destina-
tion (see Figure 1). A NACK is sent to the destination
when a package has not been properly transmitted. In
this case, the package in error is retransmitted as soon
as the NACK has been received. We assume that the
switching facility is composed of k nodes in series,
each modelled as a G/GI/1 queue with the com-
mon service rate µ. In other words, we now have an
open Jackson network with k G/GI/1 queues where
λj = 0 for j = 1, 2, 3, . . . , k (no external arrivals
at nodes 2, 3, . . . , k), µi = µ for i = 2, 3, . . . , k,

pii+1 = 1 for i = 1, 2, . . . , k − 1, pk0 = p and
pk1 = 1− p (usually p = 0.9).

Thus, we investigate a NACK-type switching
system which consists of k service nodes and in
which S

(j)
n = Sn, j = 1, 2, . . . , k (the service pro-

cess is identical in the phases of the system). We de-
note by Q̄j(t) the queue of packages in the jth phase
of the NACK-type switching system at the time mo-
ment t, j = 1, 2, . . . , k and t > 0.

Let us define β̄1 = λ1−µ · (1− pk1) > 0, σ̄2
1 =

(λ1)3·a1+(µ)3·DSn·((pk1)2+1) > 0, β̄j = λj−µ·
(1−pj−1j) = 0, σ̄2

j = (µ)3 ·DSn ·((pj−1j)2 +1) =
2 · (µ)3 ·DSn > 0, j = 2, 3, . . . , k.

Applying Theorem 2.1, we present a theorem and
corollary about the queue of packages in the NACK-
type switching system.

Theorem 2. If conditions (1) are fulfilled, then

P
(

lim
t→∞

Q̄j(t)− β̄j · t
σ̄j · a(t)

= 1
)

= 1, j = 1, 2, . . . , k.

Corollary 1. If conditions (1) are fulfilled, then, for
fixed ε > 0, there exists t(ε) such that for every t ≥
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Figure 1. NACK-type switching system 
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t
, j = 2, 3, . . . , k

t(ε)

(1−ε)·σ̄j ·a(t)+β̄j ·t ≤ Q̄j(t) ≤ (1+ε)·σ̄j ·a(t)+β̄j ·t

j = 1, 2, . . . , k.
Evidently, Corollary 1 implies that, for fixed ε >

0, there exists t(ε) such that for every t ≥ t(ε),

(1−ε)·σ̄j ·a(t)+β̄j ·t ≤ Q̄j(t) ≤ (1+ε)·σ̄j ·a(t)+β̄j ·t,

where ε > 0, t > 0, j = 1, 2, . . . , k.
Hence we can derive

(1−ε)·σ̄j ·a(t)+β̄j ·t ≤ MQ̄j(t) ≤ (1+ε)·σ̄j ·a(t)
+ β̄j · t, |M(Q̄j(t)− β̄j · t)− (1− ε) · σ̄j · a(t)|
≤ 2 · ε · σ̄j · a(t),

∣∣∣∣M
(

Q̄j(t)− β̄j · t)
σ̄j · a(t)

)
− (1− ε)

∣∣∣∣ ≤ 2 · ε, (7)

j = 1, 2, . . . , k.
Thus, it follows from (7) that

MQ̄j(t) ∼ β̄j · t + (1− ε) · σ̄j · a(t), (8)

j = 1, 2, . . . , k. MQ̄j(t) is the average queue of
packages in the NACK-type switching system at the
time moment t, j = 1, 2, . . . , k and t > 0. We see
from (8) that MQ̄j(t), j = 1, 2, . . . , k, t > 0 con-
sists of the linear function β̄j ·t and a nonlinear slowly
increasing function (1− ε) · σ̄j · a(t).

Now we present an example from the network
practice. Assume that packages of data (queries or
messages) routed to the first device V1 at the rate λ1

of 21 per second during business hours. These pack-
ages are served at the rate µ of 20 per second at the
device V1. After they have been served at the device
V1, the packages are routed to the second device V2.
Also, note that the packages are served at the rate µ of
20 per second at the device V2. So, the packages are

served in the devices V1, V2, . . . , Vk, and after they
have been served at the device Vk, with the probabil-
ity p = 0.9 (probability that a package is received
correctly) they leave the NACK-type system and are
sent to the device V1 with probability 1− p = 0.1.

Thus, DSn = 1
µ = 1

20 , λ1 = (M(z(1)
n ))−1 =

21, D(z(1)
n ) = 1

λ1
= 1

21 , β̄1 = 3, σ̄2
1 = 845, σ̄1 =

29.0688, β̄j = 0, σ̄2
j = 800, σ̄j = 28.2843,

j = 2, 3, . . . , k, ε = 0.001, t ≥ 10.
Consequently,

MQ̄1(t) ∼ β̄1 · t + (1− ε) · σ̄1 · a(t)
= (3) · t + (29.0688) · a(t).

(9)

From (9) we get (see Figure 2)

MQ̄1(t)
t

= (3) + (29.0688) ·
√

2 ln ln t

t
. (10)

Similarly as in (10), we can obtain (see Figure 3)

MQ̄j(t)
t

= (28.2843) ·
√

2 ln ln t

t
, (11)

j = 2, 3, . . . , k.

4. On the model of the Internet linear network

In this section, we consider an Internet linear net-
work with two resources and three routes (see Figure
4). We now assume that the linear network is com-
posed of two nodes, each modelled as a G/GI/1
queue. In other words, we have an open Jackson net-
work with two G/GI/1 queues where external ar-
rivals at the first node are λ11 and λ12. The packages
are served in the first node with the rate µ1, afterwards
Internet packages of data (queries or messages) with
probability p12 = p (usually p = 0.1) are sent to the

Nonlinear Phenomena in Digital Networks 
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6 S. Minkevičius, L. Sakalauskas

t

second node and with probability p10 = 1 − p leave
the system, an external route to the second node is
λ2. The packages are served in the second node with
the rate µ2, then Internet packages, with probability
p20 = q (usually q = 0.1), leave the system in one
direction, and with probability 1 − q they leave the
system in another direction. Next, denote by Q̃j(t)
the queue of Internet packages in the jth node of the
Internet-type network at the time moment t, j = 1, 2
and t > 0. Define β̃1 = λ11 + λ12 − µ1 > 0,

σ̃2
1 = a1 · (λ11 + λ12)3 + (µ1)3 · σ1 > 0, β̃2 =

λ2 +µ1 · p12−µ2 > 0, σ̃2
2 = (λ2)3 · a2 +(µ1)3 ·σ1 ·

(p12)2 + (µ2)3 · σ2 > 0.
Applying Theorem 2.1, we obtain the following

theorem and corollary on the queue of packages in the
Internet linear network system.

Theorem 3. If conditions (1) are fulfilled, then

P
(

lim
t→∞

Q̃j(t)− β̄j · t
σ̄j · a(t)

= 1
)

= 1, j = 1, 2.

Corollary 1. If conditions (1) are fulfilled, then, for
fixed ε > 0, there exists t(ε) such that for every t ≥

S. Minkevičius, L. Sakalauskas 

 
192 

 

 
Figure 4. Model of the Internet linear network 

 

 

Figure 5. Values for 1( )MQ t
t

 



Nonlinear Phenomena in Digital Networks 7

t

t(ε)
(1− ε) · σ̃j · a(t) + β̃j · t ≤ Q̃j(t)

≤ (1 + ε) · σ̃j · a(t) + β̃j · t, j = 1, 2.

Similarly as in (8) we can obtain

MQ̃j(t) ∼ β̃j · t+(1− ε) · σ̃j ·a(t), j = 1, 2. (12)

MQ̃j(t) is the average queue of packages in the
Internet linear network at the time moment t, j =
1, 2 and t > 0. We see from (12) that MQ̃j(t) con-
sists of the linear function β̃j ·t and a nonlinear slowly
increasing function (1 − ε) · σ̃j · a(t), j = 1, 2 and
t > 0.

Now we give an example from the Internet net-
work practice. Assume that packages are routed to the
first node W1 at the rate λ11 of 5200 and λ12 of 5000
per second during business hours. These packages are
served at the rate µ1 of 10000 per second in the first
node W1. After service in the node W1 packages are
routed to the second node W2 at the rates λ12 · p
of 1000 and λ2 of 9300 per second during business
hours. Also note that the packages are served at the
rate µ2 of 10000 per second in the node W2. After the
packages have been served in the node W2, they leave
the system.

So, β̃1 = 200, σ̃2
1 = 204040, σ̃1 =

14284.2, β̃2 = 300, σ̃2
2 = 187430, σ̃2 = 13690.5.

Thus,

MQ̃1(t) ∼ β̃1 · t + (1− ε) · σ̃1 · a(t)
= (200) · t + (14284.2) · a(t).

(13)

From (13) we get (see Figure 5)

MQ̃1(t)
t

= (200) + (14284.2) ·
√

2 ln ln t

t
. (14)

Similarly as in (14) we can obtain (see Figure 6)

MQ̃2(t)
t

= (300) + (13690.5) ·
√

2 ln ln t

t
. (15)

Remark 1. When modelling an Internet network sys-
tem, we apply an heuristic argument, - in real condi-
tions, an average Internet network system receives 10
Mg data per second. An average IP package of data is
about 1100 bytes. Thus, the average number of pack-
ages of data in a system is about 10000 packages per
second.
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