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Abstract. This paper investigates the ability of an agent to recognize unseen goal states in an observable grid-
world environment. This ability is important in order to allow the explicit planning of agent’s action sequences. Grid-
world states are described by the collection of attributes instead of “atomic” labels. This attribute-based state 
representation allows generalizing over the attributes and discriminating goal (reinforced) states from non-goal states. 
We argue that a biased induction technique is required to solve this supervised learning problem. A constructive induc-
tion technique is proposed which is able to discover goal concepts relevant to the grid-world environments, where trai-
ning instances are 2D image-like objects. The set of constructive operators is defined and a search procedure in the 
space of sequences of these operators is described. The proposed technique was tested on two non-trivial sample tasks 
and was successful in learning goal concepts. It allowed synonymous descriptions of the same goal concept to be learnt 
depending on the set of operators and their activation order. The complete assessment of prospects and limits of the 
proposed constructive induction technique still needs to be done. 

Keywords: reinforcement, supervised, learning, bias, constructive induction, operators, agent, grid-world, simula-
tion, adaptive behavior. 

 
 

1. Introduction 

An adaptive agent is the system that perceives its 
environment and acts upon it continuously updating 
its internal configuration in order to improve its per-
formance over time. The interaction of an agent and 
its environment is often  simulated by the  sequence of  

iterations each consisting of the following steps: per-
cept information reaches the agent through its sensors, 
the agent updates its internal configuration, the agent 
selects some action and performs it through its effec-
tors. The action alters the state of the environment 
resulting in new sensory data. This is the beginning of 
the new percept-action iteration (Figure 1). 

 
 
 
 
 
 

Figure 1. Illustration of an agent embedded into its environment 

Reinforcement learning framework is the most 
widespread approach to simulate agent behavior. It 
assumes that there are some states1 of the environment 
that are desirable to the agent. The information about 
the desirability of the current environmental state 
reaches the agent through the dedicated reinforcement 
channel (Figure. 1). The agent is expected to maxi-
                                                           
1 In this paper, we assume that the environment is 

observable, thus state = percepts 
 

mize its lifelong cumulative reinforcement, i.e. the 
agent is successful if it spends more and more time in 
these desirable states or if it finds them better.  

Imagine one particular task in which the agent (A) 
perceives a grid-world environment containing some 
boxes (B) and trees (T). It disposes of a few actions 
such as going, jumping and pushing boxes in four 
directions. The agent is rewarded only if it collects all 
boxes into one cluster. An illustrative sequence of 
agent experiences in this world is shown in Figure 2. 
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Figure 2. The sequence of experiences of an agent (A) in a grid-world environment containing trees (T) and boxes (B).  
The reinforcement is provided only if all boxes form one cluster 

Traditional reinforcement learning techniques such 
as TD-learning [15], Q-learning[17] and ADP[12] 
model the above and similar tasks as a finite-state 
Markov decision process (MDP). They learn utility 
values of states or state-action pairs. Their action selec-
tion policy recommends an action that promises 
maximum utility in the forthcoming state. The explicit 
planning of action sequences consisting of more than 
one action is not much studied. The first reason for this 
is that many reinforcement learning techniques are 
world model-free, i.e. agents do not construct the 
knowledge body that would answer their questions of 
the type “what will happen if I perform this or that 
action?”  The second reason is that the environment 
states are assigned “atomic” labels in contrast to the 
“distributed” state representation where states are 
described by some set of attributes. The attribute-based 
state representation is a necessary condition if we 
expect an agent to generalize over state attributes and 
discriminate unseen goal (reinforced) states from non-
goal states.  

The first limitation related to the construction of a 
world model has been addressed in our previous paper 
[4]. An adaptive agent called LEAD1, which had a 
world model as a part of its internal configuration, was 
proposed. In this paper, we address the second limita-
tion, i.e. we investigate the feasibility of inducing abst-
ract goal descriptions from the sets of reinforced and 
unreinforced states described by their attributes.  

More formally the problem can be stated as 
follows. Given two collections P and R, where P is the 
collection of percepts P = 〈p1, p2, …, pn〉, pk = {pij}k  
and R = 〈r1, r2, …, rn〉, rk∈{0,1} is the collection of 
reinforcements corresponding to these percepts, find 
the binary function F, such that F(pk)= rk, for every pk. 
This is the standard description of a supervised 
learning problem. It may seem that any supervised 
learner, e.g. k-DNF learner, may suffice to solve it. In 
fact, k-DNF learner may be sufficient to solve 
problems where reinforcement value (class) is the 
function of a few particular attributes, i.e. it depends on 
the contents of particular cells in a grid-world 
environment. Such a case is illustrated by Figure 3. 

However, the majority of goals that are worth pur-
suing in a grid world environment are too hard for any 
k-DNF learner. In case of the goal “boxes form one 
cluster” (Figure. 2), there exists a huge number of 
possibilities of arranging boxes in a grid-world so they 
form one cluster. Any decision tree or a rule set pro-
duced by the k-DNF learner would represent a 

memorization of past reinforced training instances 
rather than an abstract concept. Thus, we propose a 
solution based on constructive induction. The goal 
concept F would be sought as a composite function of 
pre-defined operators suitable for processing of 2D 
image-like grid-world percepts. 

 

 

 

 
Figure 3. Illustration of an easy task for a k-DNF learner. 

The goal concept is p11 = B 

2.  Related work in image processing and 
constructive induction 

The research in the field of image classification 
focuses on the discrimination of pixel-based images. 
These images often represent noisy real-world objects 
such as printed or handwritten characters, faces, facial 
expressions, etc. Many efficient problem-specific fil-
ters were developed for noise reduction, image enhan-
cement, feature detection, image segmentation and 
other low-level image processing tasks [11]. Once a 
researcher defines a problem-specific sequence of low-
level image processing steps and compiles a training 
set of pre-classified images, neural networks or 
statistical machine learning techniques are used to 
solve the image classification task. Grid world images 
are not noisy. They are also truly discrete in nature in 
comparison to semi-continuous pixel-based graphics. 
However, the most important reason of why image 
classification approach seems to be inadequate to solve 
our goal concept induction problems is the desired 
autonomy of an agent. The low-level image processing, 
in fact, can be seen as the transformation of image 
representation space. This transformation is defined by 
a human researcher while we expect it could be 
discovered by an agent itself. 

Constructive induction is a double-search [1] pro-
cess. The search is performed both to find the transfor-
mation of the object representation space and to dis-
cover generalizations in this new transformed space. 
The transformation usually involves the construction of 
new attributes by combining existing attributes by 
arithmetical, logical or domain-specific operators. The 
early constructive induction methods are surveyed by 
Wnek et al. [19] and Callan [2]. As application-specific 
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operator sets make constructive induction methods 
application-specific, none of the existing approaches is 
suitable to solve our problem. For instance, BACON 
[6] and STAGGER [13] were not designed for 
processing image-like objects while the method 
proposed by Maksimov [7] was designed to process 
pixel-based graphic images. Our technique is mostly 
inspired by the latter method and borrows the idea of 
recombination, i.e. constructing new attributes as 
functions of old attributes from FRINGE [10] and 
CITRE [8], the idea of introducing Boolean attributes 
by clustering existing numeric attributes from STAG-
GER [13], and the idea of object pattern transforma-
tions, i.e. changing one pattern into another from 
STABB [16]. 

The latest researches are orientated on constructive 
induction application in different areas, besides it clas-
sification relies on genetic optimization and search 
techniques: Otero et al.[9], Krawiec[5], Shafti et 
al.[14], Weninger et al. [18], etc. (for review see [3]). 
Image processing programs consisting of operator 
sequences are encoded as gene strings. Natural selec-
tion mechanisms are applied to the population of these 
gene strings in order to find good image processing 
programs. The above methods focus on the optimiza-
tion of genetic search strategy, while our technique 
would be purely symbolic and rely on exhaustive 
search.  

3. Algorithm description  

The input to the proposed algorithm consists of two 
collections P and R, where P is the collection of 
percepts P = 〈p1, p2, …, pn〉, pk = {pij}k and R = 〈r1, r2, 
…, rn〉, rk∈{0,1} is the collection of reinforcements 
corresponding to these percepts. The objective of the 
algorithm is to find a binary function F such that 
F(pk)= rk for all pk. The search for such a function is 
performed in a breadth first-manner in the space of 
possible operator sequences. The search space is de-
fined both by the operator set and by their compati-
bility constraints. 

3.1. Constructive operators 

Constructive operators manipulate objects of four 
basic types: Boolean value (L), integer value (N), Boo-
lean matrix (M) and percept matrix (I). Operators 
accept one or two objects as their input and produce a 
single object as their output. Some operators may de-
compose Boolean matrix type objects into a few com-
ponents of the same type. This set of components still 
represents a single though compound object. This com-
pound type is denoted Mm, with the subscript m 
indicating the number of components in the object.  

All objects are organized in super-structures called 
collections. The collection of objects of some basic 
type T is denoted as <T>. Operators are subdivided 
into two groups: intermediate operators and terminal 
operators. Intermediate operators are applied to the col-
lection on an object-by-object basis. Terminal operators 

are applied to the whole collection at once. The list of 
constructive operators is given in Table 1. 

3.2. Search strategy 

Object collections are stored in the queue. The top 
collection of the queue is the collection P of positively 
and negatively reinforced percepts. All subsequent 
collections are derived in a breadth-first search manner 
from this top collection by applying constructive ope-
rators. Search is terminated when some collection of 
the queue matches the collection of reinforcements R. 

An operator can be applied to some collection (or a 
pair of collections in the case of a 2-argument operator) 
in the queue only if all objects in this collection(s) 
match operator’s input type declaration. Intermediate 
operators are applied to the collection on an object-by-
object basis. Terminal operators are applied to the 
whole collection at once. The derived collection always 
has the same number of objects as its parent collec-
tion(s) and thus the same number of objects as the 
initial top collection. 

Collections are assigned a depth value which re-
presents the number of transformation steps (operators) 
that were necessary to produce that collection. The 
depth of the top collection depth(P) is 0. The depth of 
some derived collection colout ← Op(colin1, colin2) is 
given by: 

depth(colout)= 1 + max(depth(colin1), depth(colin2)). 

The search is terminated if there isn’t any solution 
found within collections bounded by max_depth.  

The outline of our constructive induction technique 
INDUCE is given by the pseudo code below. An 
illustration of the same process is given by Figure 4. 

4. Investigation of illustrated samples 

Our algorithm of constructive induction was inves-
tigated on a pair of basic problems. These investiga-
tions had an objective to test the feasibility of construc-
tive induction approach for discovering goal concepts. 
The complete evaluation of all possibilities and limits 
of the proposed induction technique would require 
further testing. 

An agent was placed in a fully observable grid-
world environment. Grid-world cells could take values 
from the set {A, B, T, ∅} denoting an agent, a box, a 
tree, and an empty cell respectively. Agent was making 
random moves, moves recommended by its teacher or 
by its planner component [4]. Percepts and their res-
pective reinforcement values were stored until positive 
(1) and negative (0) reinforcement was first received 
and supervised learning was possible. Then construc-
tive induction algorithm was called for the first time to 
induce the goal concept description F. Since then, the 
goal concept description was continuously tested 
against new incoming percept-reinforcement input 
pairs. If the concept description F incorrectly predicted 
some reinforcement value, it was discarded and 
reconstructed in a batch-learning manner on the basis 
of extended experience.  
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The agent was asked to learn two goal concepts 
“the agent is next to some tree” (F1) and “the largest 

cluster of boxes is next to some tree” (F2). The agent 
succeeded in learning both concepts (Figures 5, 6).

 
Table 1. Constructive operators 
Operator Illustration 
Intermediate operators 
M←Change{El}(I), 
El∈Nom2 
 

 
Replaces the value of El by 1 and other values by 0. Grey squares denote true (1) 
and white squares denote false (0) value. 

L←Conjunction(L,L) 
L←Disjunction(L,L) 
L←Negation(L) 
L←Equivalence(L,L) 

Return the result of logical conjunction (∧), disjunction (∨), negation (¬), and 
equivalence (⇔). 

L←Compare(Mm,Mm) 

 
Returns 1 if all the respective components of both input arguments are equal.  

Mm←ObjConj(Mm,Mm) 

 
Returns an object consisting of component-by-component conjunction of both input 
arguments. 

Mm←ObjDisj(Mm,Mm) 

 
Returns an object consisting of component-by-component disjunction of both input 
arguments. 

Mm←MultipleConj(M,Mm) 

 
Returns an object consisting of components obtained via conjunction of the first input 
argument with all the components of the second argument.  

                                                           
2 Nom is the set of possible values appearing in the grid-world cells  
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Mm←MultipleDisj(M,Mm) 

 
Returns an object consisting of components obtained via disjunction of the first input 
argument with all the components of the second argument. 

M←SelectiveDisj (Lm,Mm) 

 
Returns an object consisting of disjunction of selected components of the second 
argument.  

N←CountTVal(M) 

 
Counts the number of true values in the input argument. 

N←CountComponents(Mm) 

 
Counts the number of components in the input argument. 

L←TValExists(M) 

 
Tests if at least one true value is found in the input argument. 

Lm←MaxComponent(Mm) 

 
Finds the index of the first component having maximum number of true values.  

Lm←MaxComponents(Mm) 

 
Finds indices of all components having maximum number of true values.  

Lm←MinComponent(Mm) 

 
Finds the index of the first component having minimum number of true values. 

Lm←MinComponents(Mm) 

 
Finds indices of all components having minimum number of true values. 

Mm←Put4Neighbors(Mm) 

 
Extends true values to their neighborhood: if pij=1 then pi±1j=1 and pij±1=1.  

Mm←Put8Neighbors(Mm) 

 
Extends true values to their neighborhood: if pij=1 then pi±1j=1, pij±1=, pi±1j±1=1. 

M2= M2=Put8Neighbours 

M2= M2=Put4Neighbours 

M4= L4=  0,1,0,1MinComponents 

M4= L4=  0,1,0,0MinComponent 

M4= L4=  1,0,1,0MaxComponents 

M4= L4=  1,0,0,0MaxComponent 

TValExists M= L= 1

N= 3 CountComponents M3= 

CountTVal M= N= 4

SelectiveDisj 

L3=         1             0            1

M3= M= 

MultipleDisj 
M2= 

M= 

M2=
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Mm←SplitToGroups4(M) 

 
Splits an object into spatially disconnected components. The connectedness is 
defined as in Put4Neighbors operator. 

Mm←SplitToGroups8(M) 

 
Splits an object into spatially disconnected components. The connectedness is 
defined as in Put8Neighbors operator. 

Mm←SplitToGroups(M) 

 
Splits an object into components, where every true value is a separate component. 

Terminal operators: 

<L>←Cluster(<N>) 

 
Clusters all integer values of the input collection into two clusters.  

<L>←MaxObjects(<N>) 

 
Finds the indices of the greatest integer values in the input collection.  

<L>←MinObjects(<N>) 

 
Finds the indices of the smallest integer values in the input collection.  

INDUCE(P, R, max_depth) 
 // P – collection of percepts 
 // R – collection of corresponding reinforcements 
 // max_depth – maximum allowed length of operator sequence 
 // Q – queue, initially empty 

 Assign depth(P) := 0 
 Add P to queue Q 
 For depth d := 0 to max_depth     
  For every collection coli∈Q such that depth(coli) = d  
   For every intermediate 1-argument operator Op(type) 
    IF all objects ok∈coli match the type THEN 
     Append new collection colnew to the end of the queue Q 
     Fill colnew with objects Op(ok) for all ok∈coli 
     Assign depth(colnew) := 1 + d 
     Apply TERMINAL_OPERATORS(colnew, R) 
   For every collection colj∈Q such that depth(colj) ≤ d  
    For every intermediate 2-argument operator Op(type1, type2) 
     IF all pairs of objects {ok, ol} ok∈coli, ol∈colj  
     match {type1, type2} THEN 
      Append new collection colnew to the end of the queue Q 
      Fill colnew with objects Op(ok, ol) for all ok∈coli, ol∈colj 
      Assign depth(colnew) := 1 + d 
      Apply TERMINAL_OPERATORS(colnew, R) 
END 

TERMINAL_OPERATORS(col, R) 
 IF col=R THEN TERMINATE(success) 
 For every terminal operator Op 
  IF col is of the type <N> THEN  
   Create new collection colnew:= Op(col) 
   Append colnew to the end of the queue Q 
   Assign depth(colnew) := 1 + depth(col)   
   IF colnew=R THEN TERMINATE(success) 
END 

M= M3=
SplitToGroups 

SplitToGroups8 M= M1=

SplitToGroups4 M= M2=

Cluster< 0,1,4,3,4,2,1 >   < 0,0,1,1,1,0,0 > 

MaxObjects< 0,1,4,3,4,2,1 >    < 0,0,1,0,1,0,0 > 

MinObjects< 0,1,4,3,4,2,1 >    < 1,0,0,0,0,0,0 > 
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Figure 4. Illustration of the search process at depth d = 2. Solid arrows lead to operators that are activated because of the 
collections matching their input types are found in the queue. Operator arguments (collection indices) are indicated  

beside the arrows. The order of operator activation is top-to-bottom 

F1(P) ≡ TValExists(ObjCon(Put4Neighbors(Change{A}(P)), Change{T}(P))) 

 
Figure 5. Learning the concept “the agent is next to some tree”. The graphs represent induced goal concepts.  

Nodes of the graphs correspond to object collections in the queue. Arrows represent the transformations of object collections  
by constructive operators. a)The solution graph F1 displaying the temporary content of object collections.  
b) A slightly different solution obtained by changing operator ordering, i.e. moving operator Change{A}  
before Change{T}. c) One more solution obtained after the operator TValExists has been eliminated from  

the list of possible operators 
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F2(P) ≡ TValExists(ObjConj(SelectiveDisj(MaxComponent(SplitToGroups4(Change{B}(P))),  
                   SplitToGroups4(Change{B}(P))), Put4Neghbors(Change{T}(P)))) 

 

 
 

Figure 6. Learning the concept “the largest cluster of boxes is next to some tree”. a) The excerpt from the training collections  
P and R. b) The induced goal concept F2. Nodes of the graph correspond to object collections in the queue.  

Arrows represent the transformations of object collections by constructive operators 

The investigations revealed that:  
• The proposed induction technique allows 

synonymous ways of learning the same goal 
concept. Which of these synonymous descriptions 
would be found depends on the list of operators 
and their activation order. 

• The extent of the set of concepts learnable by the 
proposed induction technique depends on the list 
of operators and the search depth. For instance, the 
lack of the operator SplitToGroups4 would have 
inhibited learning the second goal concept. If the 
value of max_depth had been limited to 3, none of 
the concepts would have been learnt.  
It is interesting to mention that the task presented 

by fig. 3, which is very easy for any k-DNF learner, is 
not solvable by the present technique unless operator 
“extracting” grid cell values at particular positions 
(pixels) would be added to the operator set.  

5. Discussion and conclusions 

The constructive induction technique, proposed in 
this paper, is search-based like many other symbolic 
induction techniques. However, it is biased for disco-
vering goal concepts relevant to grid-world environ-
ments where training instances are 2D image-like 
objects, i.e. where the attributes of the training instan-
ces relate to each other as elements of a 2D spatial 
matrix. This paper demonstrated that the proposed 
technique can learn a few non-trivial goal concepts. It 
allowed synonymous ways of learning the same goal 
concept depending on the list of operators and their 
order. 

The described technique was integrated into the 
agent called LEAD1 [4]. The planner of LEAD1 
sought for the shortest action sequence leading to 
some reinforced environment state. The planner 

followed a forward breadth-first strategy on the basis 
of the agent’s current world model. Expected out-
comes of every action sequence (states) were sub-
mitted to the goal description (constructed off-line by 
the present constructive induction technique), which 
served as a terminating condition for the action 
planner. 

While the agent has no knowledge of the con-
sequences of its actions and no knowledge of the goal 
concept, it might be quite difficult to achieve the first 
goal by just trying random action sequences. For ins-
tance, the goal “boxes form one cluster” (Figure. 2) 
would be hard to achieve by random actions in a 
sufficiently large environment. Without positively re-
inforced states the constructive induction technique 
has nothing to learn, and any planner wanting for the 
goal concept is “blind” as a result. Thus, an agent 
would need some guidance from the teacher in se-
lecting its actions for achieving non-trivial goals. We 
assume this is not an important limitation to our 
approach because it is paralleled in living biological 
agents.  

Training set for our constructive induction tech-
nique (when it is embedded into an agent) consists 
overwhelmingly of non-reinforced states. It would be 
interesting to investigate the strategies about which 
non-reinforced training samples should be kept in 
agent’s memory and which ones should be dropped 
from it. Another interesting and important research 
question is the question of the relationship of the ope-
rator set to the extent of the tasks that can be solved by 
our constructive induction technique as well as related 
questions of minimum operator set and of complete-
ness of the operator set for grid-world environments. 
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