
211

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2010, Vol.39, No.3

CONSTRUCTIVE INDUCTION OF GOAL CONCEPTS
FROM AGENT PERCEPTS AND REINFORCEMENT FEEDBACK

Jurgita Kapočiūtė-Dzikienė, Gailius Raškinis
Vytautas Magnus University

Vileikos St. 8, LT-3035 Kaunas, Lithuania
e-mail: j.kapociute@if.vdu.lt, g.raskinis@if.vdu.lt

Abstract. This paper investigates the ability of an agent to recognize unseen goal states in an observable grid-
world environment. This ability is important in order to allow the explicit planning of agent’s action sequences. Grid-
world states are described by the collection of attributes instead of “atomic” labels. This attribute-based state
representation allows generalizing over the attributes and discriminating goal (reinforced) states from non-goal states.
We argue that a biased induction technique is required to solve this supervised learning problem. A constructive induc-
tion technique is proposed which is able to discover goal concepts relevant to the grid-world environments, where trai-
ning instances are 2D image-like objects. The set of constructive operators is defined and a search procedure in the
space of sequences of these operators is described. The proposed technique was tested on two non-trivial sample tasks
and was successful in learning goal concepts. It allowed synonymous descriptions of the same goal concept to be learnt
depending on the set of operators and their activation order. The complete assessment of prospects and limits of the
proposed constructive induction technique still needs to be done.

Keywords: reinforcement, supervised, learning, bias, constructive induction, operators, agent, grid-world, simula-
tion, adaptive behavior.

1. Introduction

An adaptive agent is the system that perceives its
environment and acts upon it continuously updating
its internal configuration in order to improve its per-
formance over time. The interaction of an agent and
its environment is often simulated by the sequence of

iterations each consisting of the following steps: per-
cept information reaches the agent through its sensors,
the agent updates its internal configuration, the agent
selects some action and performs it through its effec-
tors. The action alters the state of the environment
resulting in new sensory data. This is the beginning of
the new percept-action iteration (Figure 1).

Figure 1. Illustration of an agent embedded into its environment

Reinforcement learning framework is the most
widespread approach to simulate agent behavior. It
assumes that there are some states1 of the environment
that are desirable to the agent. The information about
the desirability of the current environmental state
reaches the agent through the dedicated reinforcement
channel (Figure. 1). The agent is expected to maxi-

1 In this paper, we assume that the environment is

observable, thus state = percepts

mize its lifelong cumulative reinforcement, i.e. the
agent is successful if it spends more and more time in
these desirable states or if it finds them better.

Imagine one particular task in which the agent (A)
perceives a grid-world environment containing some
boxes (B) and trees (T). It disposes of a few actions
such as going, jumping and pushing boxes in four
directions. The agent is rewarded only if it collects all
boxes into one cluster. An illustrative sequence of
agent experiences in this world is shown in Figure 2.

effects percepts

Environment
Agent

effectorssensors
action

Reinforcement

Environment
state internal

architecture

J. Kapočiūtė-Dzikienė, G. Raškinis

212

Push
down

Push
down

Jump
right

Push
left

Jump
down

Reinforcement 0 0 0 0 10

Percepts

Actions
T A

B

B
B

T
A
B

B
B

T

A
B B

B

T

A
B B

B

T

B B
B A

T

B B
B A

Figure 2. The sequence of experiences of an agent (A) in a grid-world environment containing trees (T) and boxes (B).
The reinforcement is provided only if all boxes form one cluster

Traditional reinforcement learning techniques such
as TD-learning [15], Q-learning[17] and ADP[12]
model the above and similar tasks as a finite-state
Markov decision process (MDP). They learn utility
values of states or state-action pairs. Their action selec-
tion policy recommends an action that promises
maximum utility in the forthcoming state. The explicit
planning of action sequences consisting of more than
one action is not much studied. The first reason for this
is that many reinforcement learning techniques are
world model-free, i.e. agents do not construct the
knowledge body that would answer their questions of
the type “what will happen if I perform this or that
action?” The second reason is that the environment
states are assigned “atomic” labels in contrast to the
“distributed” state representation where states are
described by some set of attributes. The attribute-based
state representation is a necessary condition if we
expect an agent to generalize over state attributes and
discriminate unseen goal (reinforced) states from non-
goal states.

The first limitation related to the construction of a
world model has been addressed in our previous paper
[4]. An adaptive agent called LEAD1, which had a
world model as a part of its internal configuration, was
proposed. In this paper, we address the second limita-
tion, i.e. we investigate the feasibility of inducing abst-
ract goal descriptions from the sets of reinforced and
unreinforced states described by their attributes.

More formally the problem can be stated as
follows. Given two collections P and R, where P is the
collection of percepts P = 〈p1, p2, …, pn〉, pk = {pij}k
and R = 〈r1, r2, …, rn〉, rk∈{0,1} is the collection of
reinforcements corresponding to these percepts, find
the binary function F, such that F(pk)= rk, for every pk.
This is the standard description of a supervised
learning problem. It may seem that any supervised
learner, e.g. k-DNF learner, may suffice to solve it. In
fact, k-DNF learner may be sufficient to solve
problems where reinforcement value (class) is the
function of a few particular attributes, i.e. it depends on
the contents of particular cells in a grid-world
environment. Such a case is illustrated by Figure 3.

However, the majority of goals that are worth pur-
suing in a grid world environment are too hard for any
k-DNF learner. In case of the goal “boxes form one
cluster” (Figure. 2), there exists a huge number of
possibilities of arranging boxes in a grid-world so they
form one cluster. Any decision tree or a rule set pro-
duced by the k-DNF learner would represent a

memorization of past reinforced training instances
rather than an abstract concept. Thus, we propose a
solution based on constructive induction. The goal
concept F would be sought as a composite function of
pre-defined operators suitable for processing of 2D
image-like grid-world percepts.

Figure 3. Illustration of an easy task for a k-DNF learner.

The goal concept is p11 = B

2. Related work in image processing and
constructive induction

The research in the field of image classification
focuses on the discrimination of pixel-based images.
These images often represent noisy real-world objects
such as printed or handwritten characters, faces, facial
expressions, etc. Many efficient problem-specific fil-
ters were developed for noise reduction, image enhan-
cement, feature detection, image segmentation and
other low-level image processing tasks [11]. Once a
researcher defines a problem-specific sequence of low-
level image processing steps and compiles a training
set of pre-classified images, neural networks or
statistical machine learning techniques are used to
solve the image classification task. Grid world images
are not noisy. They are also truly discrete in nature in
comparison to semi-continuous pixel-based graphics.
However, the most important reason of why image
classification approach seems to be inadequate to solve
our goal concept induction problems is the desired
autonomy of an agent. The low-level image processing,
in fact, can be seen as the transformation of image
representation space. This transformation is defined by
a human researcher while we expect it could be
discovered by an agent itself.

Constructive induction is a double-search [1] pro-
cess. The search is performed both to find the transfor-
mation of the object representation space and to dis-
cover generalizations in this new transformed space.
The transformation usually involves the construction of
new attributes by combining existing attributes by
arithmetical, logical or domain-specific operators. The
early constructive induction methods are surveyed by
Wnek et al. [19] and Callan [2]. As application-specific

P=
A B

B B

A
B

T B

B
T A

 B

B

B
B B

B A

R= 0 0 1 1

Constructive Induction of Goal Concepts from Agent Percepts and Reinforcement Feedback

213

operator sets make constructive induction methods
application-specific, none of the existing approaches is
suitable to solve our problem. For instance, BACON
[6] and STAGGER [13] were not designed for
processing image-like objects while the method
proposed by Maksimov [7] was designed to process
pixel-based graphic images. Our technique is mostly
inspired by the latter method and borrows the idea of
recombination, i.e. constructing new attributes as
functions of old attributes from FRINGE [10] and
CITRE [8], the idea of introducing Boolean attributes
by clustering existing numeric attributes from STAG-
GER [13], and the idea of object pattern transforma-
tions, i.e. changing one pattern into another from
STABB [16].

The latest researches are orientated on constructive
induction application in different areas, besides it clas-
sification relies on genetic optimization and search
techniques: Otero et al.[9], Krawiec[5], Shafti et
al.[14], Weninger et al. [18], etc. (for review see [3]).
Image processing programs consisting of operator
sequences are encoded as gene strings. Natural selec-
tion mechanisms are applied to the population of these
gene strings in order to find good image processing
programs. The above methods focus on the optimiza-
tion of genetic search strategy, while our technique
would be purely symbolic and rely on exhaustive
search.

3. Algorithm description

The input to the proposed algorithm consists of two
collections P and R, where P is the collection of
percepts P = 〈p1, p2, …, pn〉, pk = {pij}k and R = 〈r1, r2,
…, rn〉, rk∈{0,1} is the collection of reinforcements
corresponding to these percepts. The objective of the
algorithm is to find a binary function F such that
F(pk)= rk for all pk. The search for such a function is
performed in a breadth first-manner in the space of
possible operator sequences. The search space is de-
fined both by the operator set and by their compati-
bility constraints.

3.1. Constructive operators

Constructive operators manipulate objects of four
basic types: Boolean value (L), integer value (N), Boo-
lean matrix (M) and percept matrix (I). Operators
accept one or two objects as their input and produce a
single object as their output. Some operators may de-
compose Boolean matrix type objects into a few com-
ponents of the same type. This set of components still
represents a single though compound object. This com-
pound type is denoted Mm, with the subscript m
indicating the number of components in the object.

All objects are organized in super-structures called
collections. The collection of objects of some basic
type T is denoted as <T>. Operators are subdivided
into two groups: intermediate operators and terminal
operators. Intermediate operators are applied to the col-
lection on an object-by-object basis. Terminal operators

are applied to the whole collection at once. The list of
constructive operators is given in Table 1.

3.2. Search strategy

Object collections are stored in the queue. The top
collection of the queue is the collection P of positively
and negatively reinforced percepts. All subsequent
collections are derived in a breadth-first search manner
from this top collection by applying constructive ope-
rators. Search is terminated when some collection of
the queue matches the collection of reinforcements R.

An operator can be applied to some collection (or a
pair of collections in the case of a 2-argument operator)
in the queue only if all objects in this collection(s)
match operator’s input type declaration. Intermediate
operators are applied to the collection on an object-by-
object basis. Terminal operators are applied to the
whole collection at once. The derived collection always
has the same number of objects as its parent collec-
tion(s) and thus the same number of objects as the
initial top collection.

Collections are assigned a depth value which re-
presents the number of transformation steps (operators)
that were necessary to produce that collection. The
depth of the top collection depth(P) is 0. The depth of
some derived collection colout ← Op(colin1, colin2) is
given by:

depth(colout)= 1 + max(depth(colin1), depth(colin2)).

The search is terminated if there isn’t any solution
found within collections bounded by max_depth.

The outline of our constructive induction technique
INDUCE is given by the pseudo code below. An
illustration of the same process is given by Figure 4.

4. Investigation of illustrated samples

Our algorithm of constructive induction was inves-
tigated on a pair of basic problems. These investiga-
tions had an objective to test the feasibility of construc-
tive induction approach for discovering goal concepts.
The complete evaluation of all possibilities and limits
of the proposed induction technique would require
further testing.

An agent was placed in a fully observable grid-
world environment. Grid-world cells could take values
from the set {A, B, T, ∅} denoting an agent, a box, a
tree, and an empty cell respectively. Agent was making
random moves, moves recommended by its teacher or
by its planner component [4]. Percepts and their res-
pective reinforcement values were stored until positive
(1) and negative (0) reinforcement was first received
and supervised learning was possible. Then construc-
tive induction algorithm was called for the first time to
induce the goal concept description F. Since then, the
goal concept description was continuously tested
against new incoming percept-reinforcement input
pairs. If the concept description F incorrectly predicted
some reinforcement value, it was discarded and
reconstructed in a batch-learning manner on the basis
of extended experience.

J. Kapočiūtė-Dzikienė, G. Raškinis

214

The agent was asked to learn two goal concepts
“the agent is next to some tree” (F1) and “the largest

cluster of boxes is next to some tree” (F2). The agent
succeeded in learning both concepts (Figures 5, 6).

Table 1. Constructive operators
Operator Illustration
Intermediate operators
M←Change{El}(I),
El∈Nom2

Replaces the value of El by 1 and other values by 0. Grey squares denote true (1)
and white squares denote false (0) value.

L←Conjunction(L,L)
L←Disjunction(L,L)
L←Negation(L)
L←Equivalence(L,L)

Return the result of logical conjunction (∧), disjunction (∨), negation (¬), and
equivalence (⇔).

L←Compare(Mm,Mm)

Returns 1 if all the respective components of both input arguments are equal.

Mm←ObjConj(Mm,Mm)

Returns an object consisting of component-by-component conjunction of both input
arguments.

Mm←ObjDisj(Mm,Mm)

Returns an object consisting of component-by-component disjunction of both input
arguments.

Mm←MultipleConj(M,Mm)

Returns an object consisting of components obtained via conjunction of the first input
argument with all the components of the second argument.

2 Nom is the set of possible values appearing in the grid-world cells

MultipleConj
M2=

M=

M2=

ObjDisj

M2=

M2=

M2=

ObjConj

M2=

M2=

M2=

Compare L= 1

M2=

M2=

C
B A

B
B

C

Change{B} M= I=

Constructive Induction of Goal Concepts from Agent Percepts and Reinforcement Feedback

215

Mm←MultipleDisj(M,Mm)

Returns an object consisting of components obtained via disjunction of the first input
argument with all the components of the second argument.

M←SelectiveDisj (Lm,Mm)

Returns an object consisting of disjunction of selected components of the second
argument.

N←CountTVal(M)

Counts the number of true values in the input argument.

N←CountComponents(Mm)

Counts the number of components in the input argument.

L←TValExists(M)

Tests if at least one true value is found in the input argument.

Lm←MaxComponent(Mm)

Finds the index of the first component having maximum number of true values.

Lm←MaxComponents(Mm)

Finds indices of all components having maximum number of true values.

Lm←MinComponent(Mm)

Finds the index of the first component having minimum number of true values.

Lm←MinComponents(Mm)

Finds indices of all components having minimum number of true values.

Mm←Put4Neighbors(Mm)

Extends true values to their neighborhood: if pij=1 then pi±1j=1 and pij±1=1.

Mm←Put8Neighbors(Mm)

Extends true values to their neighborhood: if pij=1 then pi±1j=1, pij±1=, pi±1j±1=1.

M2= M2=Put8Neighbours

M2= M2=Put4Neighbours

M4= L4= 0,1,0,1MinComponents

M4= L4= 0,1,0,0MinComponent

M4= L4= 1,0,1,0MaxComponents

M4= L4= 1,0,0,0MaxComponent

TValExists M= L= 1

N= 3 CountComponents M3=

CountTVal M= N= 4

SelectiveDisj

L3= 1 0 1

M3= M=

MultipleDisj
M2=

M=

M2=

J. Kapočiūtė-Dzikienė, G. Raškinis

216

Mm←SplitToGroups4(M)

Splits an object into spatially disconnected components. The connectedness is
defined as in Put4Neighbors operator.

Mm←SplitToGroups8(M)

Splits an object into spatially disconnected components. The connectedness is
defined as in Put8Neighbors operator.

Mm←SplitToGroups(M)

Splits an object into components, where every true value is a separate component.

Terminal operators:

<L>←Cluster(<N>)

Clusters all integer values of the input collection into two clusters.

<L>←MaxObjects(<N>)

Finds the indices of the greatest integer values in the input collection.

<L>←MinObjects(<N>)

Finds the indices of the smallest integer values in the input collection.

INDUCE(P, R, max_depth)
 // P – collection of percepts
 // R – collection of corresponding reinforcements
 // max_depth – maximum allowed length of operator sequence
 // Q – queue, initially empty

 Assign depth(P) := 0
 Add P to queue Q
 For depth d := 0 to max_depth
 For every collection coli∈Q such that depth(coli) = d
 For every intermediate 1-argument operator Op(type)
 IF all objects ok∈coli match the type THEN
 Append new collection colnew to the end of the queue Q
 Fill colnew with objects Op(ok) for all ok∈coli
 Assign depth(colnew) := 1 + d
 Apply TERMINAL_OPERATORS(colnew, R)
 For every collection colj∈Q such that depth(colj) ≤ d
 For every intermediate 2-argument operator Op(type1, type2)
 IF all pairs of objects {ok, ol} ok∈coli, ol∈colj
 match {type1, type2} THEN
 Append new collection colnew to the end of the queue Q
 Fill colnew with objects Op(ok, ol) for all ok∈coli, ol∈colj
 Assign depth(colnew) := 1 + d
 Apply TERMINAL_OPERATORS(colnew, R)
END

TERMINAL_OPERATORS(col, R)
 IF col=R THEN TERMINATE(success)
 For every terminal operator Op
 IF col is of the type <N> THEN
 Create new collection colnew:= Op(col)
 Append colnew to the end of the queue Q
 Assign depth(colnew) := 1 + depth(col)
 IF colnew=R THEN TERMINATE(success)
END

M= M3=
SplitToGroups

SplitToGroups8 M= M1=

SplitToGroups4 M= M2=

Cluster< 0,1,4,3,4,2,1 > < 0,0,1,1,1,0,0 >

MaxObjects< 0,1,4,3,4,2,1 > < 0,0,1,0,1,0,0 >

MinObjects< 0,1,4,3,4,2,1 > < 1,0,0,0,0,0,0 >

Constructive Induction of Goal Concepts from Agent Percepts and Reinforcement Feedback

217

Figure 4. Illustration of the search process at depth d = 2. Solid arrows lead to operators that are activated because of the
collections matching their input types are found in the queue. Operator arguments (collection indices) are indicated

beside the arrows. The order of operator activation is top-to-bottom

F1(P) ≡ TValExists(ObjCon(Put4Neighbors(Change{A}(P)), Change{T}(P)))

Figure 5. Learning the concept “the agent is next to some tree”. The graphs represent induced goal concepts.

Nodes of the graphs correspond to object collections in the queue. Arrows represent the transformations of object collections
by constructive operators. a)The solution graph F1 displaying the temporary content of object collections.
b) A slightly different solution obtained by changing operator ordering, i.e. moving operator Change{A}
before Change{T}. c) One more solution obtained after the operator TValExists has been eliminated from

the list of possible operators

a)
b) c)

Change{A} Change{T}

Put4Neighbors

ObjConj

TValExists CountTVal

MaxObjects

Change{A} Change{T}

Put4Neighbors

ObjConj

Put4Neighbors

ObjConj

TValExists

P P

R

R

R= 1 1 0

P=

Change{A} Change{T}

A T

 T

 T
 A

A

 T
 T

INTERMEDIATE OP.

Change{El}(I)
Negation(L)
TValExists(M)
CountTVal(M)
CountComponents(Mm)
SplitToGroups(M)
SplitToGroups4(M)
SplitToGroups8(M)

Put4Neighbors(Mm)
Put8Neighbors(Mm)
MaxComponent(Mm)
MaxComponents(Mm)
MinComponent(Mm)
MinComponents(Mm)

Conjunction(L,L)
Disjunction(L,L)
Equivalence(L,L)
Compare(Mm,Mm)
ObjConj(Mm,Mm)
ObjDisj(Mm,Mm)
MultipleConj(M,Mm)
MultipleDisj(M,Mm)

SelectiveDisj(Lm,Bm)

TERMINAL OP.

MaxObjects(<N>)
MinObjects(<N>)
Cluster(<N>)

3) L, L
2) M, M

10) M2, M3

9) M2, M4

8) M, M

7) N, N

6) N, N
5) L, L
4) M2, M4

3rd depth

depth=2

1) I, I
depth=0

…
11)…

5

(5,3)

8

4, 9, 10

8

4, 8, 9, 10

(8,2), (4, 9)

(4, 2), (9, 2), (10, 2) ,
(8, 4), (8, 9), (8, 10)

6, 7

depth=3

depth=1

〈
〈
〈
〈

〈

〈 〉
〉
〉
〉
〉
〉
〉
〉
〉
〉

Collections in
the queue

〈

〈

J. Kapočiūtė-Dzikienė, G. Raškinis

218

F2(P) ≡ TValExists(ObjConj(SelectiveDisj(MaxComponent(SplitToGroups4(Change{B}(P))),
 SplitToGroups4(Change{B}(P))), Put4Neghbors(Change{T}(P))))

Figure 6. Learning the concept “the largest cluster of boxes is next to some tree”. a) The excerpt from the training collections
P and R. b) The induced goal concept F2. Nodes of the graph correspond to object collections in the queue.

Arrows represent the transformations of object collections by constructive operators

The investigations revealed that:
• The proposed induction technique allows

synonymous ways of learning the same goal
concept. Which of these synonymous descriptions
would be found depends on the list of operators
and their activation order.

• The extent of the set of concepts learnable by the
proposed induction technique depends on the list
of operators and the search depth. For instance, the
lack of the operator SplitToGroups4 would have
inhibited learning the second goal concept. If the
value of max_depth had been limited to 3, none of
the concepts would have been learnt.
It is interesting to mention that the task presented

by fig. 3, which is very easy for any k-DNF learner, is
not solvable by the present technique unless operator
“extracting” grid cell values at particular positions
(pixels) would be added to the operator set.

5. Discussion and conclusions

The constructive induction technique, proposed in
this paper, is search-based like many other symbolic
induction techniques. However, it is biased for disco-
vering goal concepts relevant to grid-world environ-
ments where training instances are 2D image-like
objects, i.e. where the attributes of the training instan-
ces relate to each other as elements of a 2D spatial
matrix. This paper demonstrated that the proposed
technique can learn a few non-trivial goal concepts. It
allowed synonymous ways of learning the same goal
concept depending on the list of operators and their
order.

The described technique was integrated into the
agent called LEAD1 [4]. The planner of LEAD1
sought for the shortest action sequence leading to
some reinforced environment state. The planner

followed a forward breadth-first strategy on the basis
of the agent’s current world model. Expected out-
comes of every action sequence (states) were sub-
mitted to the goal description (constructed off-line by
the present constructive induction technique), which
served as a terminating condition for the action
planner.

While the agent has no knowledge of the con-
sequences of its actions and no knowledge of the goal
concept, it might be quite difficult to achieve the first
goal by just trying random action sequences. For ins-
tance, the goal “boxes form one cluster” (Figure. 2)
would be hard to achieve by random actions in a
sufficiently large environment. Without positively re-
inforced states the constructive induction technique
has nothing to learn, and any planner wanting for the
goal concept is “blind” as a result. Thus, an agent
would need some guidance from the teacher in se-
lecting its actions for achieving non-trivial goals. We
assume this is not an important limitation to our
approach because it is paralleled in living biological
agents.

Training set for our constructive induction tech-
nique (when it is embedded into an agent) consists
overwhelmingly of non-reinforced states. It would be
interesting to investigate the strategies about which
non-reinforced training samples should be kept in
agent’s memory and which ones should be dropped
from it. Another interesting and important research
question is the question of the relationship of the ope-
rator set to the extent of the tasks that can be solved by
our constructive induction technique as well as related
questions of minimum operator set and of complete-
ness of the operator set for grid-world environments.

ObjConj

SelectiveDisj

TValExists

Change{B}

SplitToGroups4

MaxComponent

P

R= 0 0 1 1

Change{T}

P=

a) b)

B B T
B B

T
B B

 T B

T B

 B

B

B
B B

T
B

Put4Neighbors

R

R

Constructive Induction of Goal Concepts from Agent Percepts and Reinforcement Feedback

219

References
 [1] E. Bloedorn, R.S. Michalski. Data-Driven Construc-

tive Induction in AQ17-PRE: A Method and Experi-
ments. Proceedings of the Third International Confe-
rence on Tools for AI, 1991, 30-37.

 [2] J. Callan. Use of Domain Knowledge in Constructive
Induction. Technical report UM-CS-1990-095. Univer-
sity of Massachusetts, Amherst, MA, USA, 1991.

 [3] C. Estebanez, R. Aler. Generating Automatic Projec-
tions by Means of Genetic Programming. Alba, E.,
Blum, C, Isasi, P. Optimization Techniques for Solving
Complex Problems (Eds.), 2009, 3-14.

 [4] J. Kapočiūtė-Dzikienė, G. Raškinis. Learning Expli-
cit Action Definitions in Deterministic Observable
Grid-World Environment. Informatica, MII, Vilnius,
Lithuania, 2009 (in review).

 [5] K. Krawiec. Constructive Induction in Learning of
Image Representation. Institute of Computing Science
Poznan University of Technology Research Report RA-
006/2000, Institute of Computing Science, Poznan,
Poland, 2000.

 [6] P. Langley, G. Bradshaw, H. Simon. Rediscovering
Chemistry with the BACON system. Machine lear-
ning: An artificial intelligence approach (chapter 10).
Palo Alto, CA, USA, 1983.

 [7] V.V. Maksimov. System, learning to classify geometri-
cal pictures. Smirnov, M.S. Modelirovanije. Obucenija
i povedenija (Eds.), Akademija nauk, 1975, 29-151 (in
Russian).

 [8] C.J. Matheus, L.A. Rendell. Constructive induction
on decision trees. Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence,
1989, 645-650.

 [9] F.E.B. Otero, M.M.S. Silva, A.A. Freitas, J.C. Nie-
vola. () Genetic programming for attribute construction
in data mining. In C. Ryan et al., (Eds), Genetic Prog-
ramming (Proceedings of EuroGP’03), Vol. 2610,
2003, 389–398.

[10] G. Pagallo. Learning DNF by decision trees. Procee-
dings of the Eleventh International Joint Conference on
Artificial Intelligence, 1989, 639-644.

[11] R. Poli. Genetic Programming for Image Analysis,
Technical Report CSRP-96-1, The University of Bir-
mingham, UK, 1996.

[12] S.J. Russell, P. Norvig. Artificial Intelligence: A Mo-
dern Approach (2nd edition). Pearson Education, Pub-
lishers Inc. Upper Saddle River, New Jersey, USA,
2003.

[13] J.C. Schlimmer. Incremental adjustment of represen-
tations. Proceedings of the Fourth International Work-
shop on Machine Learning, Irvine, 1987, 79-90.

[14] L.S. Shafti, E. Perez. Constructive induction and gene-
tic algorithms for learning concepts with complex
interaction. In H.-G. Beyer et al., eds., Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO’05), Washington, DC. ACM Press, New York,
2005, 1811–1818.

[15] R.S. Sutton. Learning to predict by the methods of
temporal differences. Machine Learning, Vol. 3, 1988,
9-44.

[16] P. E. Utgoff. Shift of bias for inductive concept
learning. Machine learning: An artificial intelligence
approach, 1986, 107-147.

[17] C. Watkins, P. Dayan. Q-learning. Machine learning,
Vol. 8 (3), 1992, 279-292.

[18] T. Weninger, W.H. Hsu, J. Xia, W. Aljandal. An
Evolutionary Approach to Constructive Induction for
Link Discovery. Proceedings of the Eleventh Annual
Conference Companion on Genetic and Evolutionary
Computation Conference, Montreal, Canada, 2009,
2167-2172.

[19] J. Wnek, R.S. Michalski. Hypothesis-Driven Const-
ructive Induction in AQ17-HCI: A Method and Expe-
riments. Machine Learning, Vol. 14(2), 1994, 139-
168.

Received January 2010.

