
89

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2010, Vol.39, No.2

A MODEL-DRIVEN VIEW TO META-PROGRAM
DEVELOPMENT PROCESS

Vytautas Štuikys, Robertas Damaševičius, Aleksandras Targamadzė
Software Engineering Department, Kaunas University of Technology

Studentų 50-415, LT-51368, Kaunas, Lithuania
e-mail: vytautas.stuikys@ktu.lt; damarobe@soften.ktu.lt; aleksandras.targamadze@ktu.lt

Abstract. We propose a general framework for the model-driven analysis of the meta-program development pro-
cesses. Our approach considers: 1) a hierarchy of related meta-models and models that are represented at different
levels of abstractions for problem and solution domains; and 2) vertical transformations of the introduced meta-models
and models for lowering the abstraction level of their representation until the executable specification. The framework
provides a theoretical background to understand the meta-program development process and creates well-grounded
pre-conditions for the semi-automatic design of meta-programs. We also formulate the requirements for tools to
support such automation.

Keywords: meta-programming, model-driven development, meta-program, meta-model.

1. Introduction

The development of modern complex software
systems is impossible without representation of do-
main concepts at multiple levels of abstraction, wide-
range reuse and automatic program generation. Cur-
rently, two software development methodologies have
been widely researched and used for this purpose:
Model-Driven Engineering (MDE) [1] and Product
Line Engineering (PLE) [2].

The PLE methodology focuses on maximizing re-
use in software product lines (i.e., families of prog-
rams that share common assets), and mainly operates
with features (i.e., externally-visible characteristics of
programs that can be recombined in different ways to
achieve different versions of program functionality).
First, architecture of the product family is created
based on product communalities and planned vari-
abilities. Then different product variants are derived
from this architecture by reusing components and
structures as much as possible and using a variety of
component-based and generative reuse techniques [3].

 The MDE methodology, on the other hand, advo-
cates for the use of domain models (i.e., abstractions
of domain concepts), which are independent of cha-
racteristics of technological platforms, as the key
artifacts in all phases of the software development
process. Such models can be introduced at multiple
levels of abstraction, i.e., also above other models,
thus leading to the multi-level modeling hierarchies.
Models are created using concepts defined in a meta-
model that represents domain concepts, relationships

and semantics. Domain models are then transformed
into platform-specific models using transformation
rules, which are defined by meta-model concepts: a
rule (rules) transforms source model elements, which
conform to a source meta-model, into target model
elements, which conform to a target meta-model [4].

In this paper, we apply the concepts of both metho-
dologies to the development of meta-programs. We
treat meta-programming [5, 6] as a process of deve-
loping meta-programs in a very abstract way. Meta-
programs are program generators that produce other
programs. Being executable higher-level specifica-
tions, meta-programs are much more complicated
items than the product they produce. Abstractly, meta-
programming (or building of program generators)
links two domains: problem domain (a domain model
that represents domain concepts and their relation-
ships) and solution domain (meta-programming tech-
niques used to develop meta-programs).

The aim of this paper is to introduce a framework
that outlines the basic technical aspects of the meta-
program development process and the relationships
among these aspects in order to create a theoretical
background for the automation of the process. At the
core of the technical aspects are models and abstrac-
tions, which belong either to the problem domain or to
the solution domain. The relationships between meta-
models and models are described through transforma-
tions. More precisely, we introduce the model-driven
view that is widely discussed today in many different
contexts (e.g., software product line design [7, 8],

V. Štuikys, R. Damaševičius, A. Targamadzė

90

hardware design [9], and business processes design
[10]) and apply it to the development of meta-prog-
rams. Our approach considers: 1) a hierarchy of rela-
ted meta-models and models that are represented at
different levels of abstraction for both domains; and 2)
various kinds of transformations of the introduced
meta-models and models aiming to lowering the abst-
raction level of their representation until the execut-
able specification is achieved.

To our knowledge, the proposed model-driven
framework, when the problem domain is presented by
Feature Diagram (FD) at three levels (i.e., meta-
model, model and model instance), in the context of
heterogeneous meta-program development, is discus-
sed for the first time; though many other authors
considerably contributed to the development and ex-
tension of the FD notation and heterogeneous meta-
programming itself in recent years (see related works).
We hope that our framework creates well-grounded
pre-conditions for semi-automatic design of meta-
programs.

 The rest of the paper is structured as follows. Sec-
tion 2 overviews the related works. Section 3 de-
scribes a framework for the model-driven analysis of
the meta-program development processes. Section 4
provides an interpretation of transformations within
the framework. Section 5 formulates the requirements
for tools to support (semi-) automatic development of
meta-programs. Finally, Section 6 presents summary
and conclusions.

2. Related works

The overview we present below consists of two
parts. First, we analyze the Model-Driven Develop-
ment (MDD) and transformations (OMG view [4]);
and then we focus on the feature–based models and
their transformations.

MDD is based on the principle of separating the
description of abstract properties and logic of an
application from a description of its platform-specific
implementation, and the automation of the transforma-
tion of the former into the latter using Model Trans-
formation Tools (MTTs). The most mature formulation
of this vision at present is the OMG's Model-Driven
Architecture (MDA) [11], which refers to a high-level
description of an application as a platform indepen-
dent model (PIM) and a more concrete implementa-
tion-oriented description as a platform specific model
(PSM).

An important aspect of the MDD approach is
model transformation: a transformation of one or more
source models to one or more target models, based on
the meta-models of each of these models. Such
transformations are defined by transformation/map-
ping rules and can be summarized as taxonomy [12]
that can help developers in deciding which model
transformation approach is best suited to deal with a
particular problem. The models themselves can be

represented differently (using formal, textual, graphi-
cal notations), but the most suitable formalism is
based on graph transformation rules. Grunske et al.
[13] provide an overview about the needed concepts to
apply graph transformations in the context of model-
driven engineering and show the technical feasibility
based on several tools and applications.

In feature modeling, especially for PLE, formal
models of product features and different interactions
between them are important for further implementa-
tion of meta-programs or software generators imple-
menting product lines. Janota and Kiniry [14] present
a formalized feature modeling meta-model to support
reasoning about feature models, feature trees and their
configurations. Westfechtel and Conradi [15] present a
formal description of multi-variant models, describe
transformation processes on such models including
change and product configuration, and discuss the
construction and representation of models incorpo-
rating multiple variants. Ebraert et al. [16] describe a
formal model of change-oriented programming based
on Feature Diagrams (FDs), in which features are seen
as sets of changes (or high-level transformations) that
can be applied to a source program.

We can summarize that feature modeling is very
well adapted towards the description of domain vari-
ability but it lacks structural organization and expres-
siveness that is needed for developing complex soft-
ware systems and that shortcoming may be provided
by using the MDE approach. On the other hand, MDD
notations such as UML lack capabilities for modeling
variability and software families (product lines). Ef-
forts to overcome this gap include extension of the
UML meta-model to include features for variability
modeling [17] or using both UML and feature models
for modeling a domain [18].

3. Framework for model-driven analysis of
the meta-program development processes

3.1. Basic assumptions and terminology

First, we need to introduce some assumptions to-
gether with relevant terminology that enable to receive
some validity of the assumptions and better under-
standability of the topic. The assumptions are as
follows.

1. The framework focuses on the meta-program
design phase only using the model-based approach.

2. We use feature-based models to describe and
represent a domain model and problem domain tasks.
The reason is that feature models are suitable to ex-
press, analyze and configure variability and commona-
lity [19] of domain tasks to be implemented using
meta-programming.

3. Feature Diagrams (FDs) as a domain model
enable to express structural, functional, behavioral
variability in the unified way using feature types and
relationships. A FD, when linked to concrete problem
domain tasks aiming to build generators, is seen as a

A Model-Driven View to Meta-Program Development Process

91

high-level model to specify and create meta-programs.
Note that FDs still is an open notation with many
proposals and extensions introduced in recent years
(for more details see, e.g., [20]). Here we adopt the FD
notation, which we call the canonical form. It has
been devised as an extension of the generic feature
diagram [20] with explicitly represented context [21].

4. As it is not reasonable to build meta-program-
ming-based generators for any domain that is de-
scribed by a FD, some restrictions should be
introduced to that model. Restrictions relate to the
notation itself, domain scope, i.e., complexity of
feature diagrams [21] and extent of variability that is
expressed through variant points and variants.

5. The model-based approach to deal with meta-
programming directly relates to program and model
transformations. Thus we need to introduce relevant
terminology. We use meta-modeling concepts and
techniques inherited from the OMG approach [4] to
describe the framework for both problem and solution
domain abstractions (see also Figure 2) as follows:
meta-model, program transformation, model transfor-
mation, model mapping, vertical transformation, hori-
zontal transformation, model merging.

6. We accept the vision proposed in [12] that the
term “model transformation” encompasses the term
“program transformation” since a model can range
from the abstract analysis models, over more concrete
design models, to very concrete models of the source
code. Transformation is a general term that can be

used either “at design time” or “at run time” when the
transformation context is not essential and is omitted
(it is assumed that transformation is the automatic
process); as in reality “at design time” transformations
are not yet always automatic, we use the term
“mapping”. By merging we mean a mechanism of
how source models are combined together to produce
the output model. Horizontal transformation (or map-
ping) defines transformations at the “same” abst-
raction level (no matter high or low), while vertical
transformation (or mapping) defines transformations
at the “different” abstraction levels (usually adjacent
from higher to lower in terms of forward engineering,
but not in reverse engineering). Instantiation is the
process of the vertical transformation when a model
instance is created from its meta-model.

3.2. Description of the framework

The framework is represented using the Y-chart
(see Figure 1). The Y-chart [22] is a tripartite repre-
sentation of design process from different points of
view. Here we consider problem domain, solution
domain, and the result of design, i.e., executable sys-
tem specification. Every branch has crossings which
denote the specific level of abstraction. Traversing
along the branches, a designer can refine or abstract
designs (vertical transformations), while a move to
another branch means a change of the representation,
i.e., a horizontal transformation.

Figure 1. Representation of the framework using Y-chart

V. Štuikys, R. Damaševičius, A. Targamadzė

92

In Figure 1, we outline the Y-chart in which the
abstraction levels and a hierarchy of models for each
domain are specified. Such a structure will serve as a
tool to present the mapping framework later. Schema-
tically, the left branch of the structure represents the
abstraction levels and models of the problem domain.
The right branch represents the solution domain, the
abstraction levels and models of the solution domain.
The vertical branch of the Y-chart represents the
product (i.e., meta-specification or meta-program) to
be created when the framework is implemented. At the
highest level there are meta-models for each (left and
right) branch of the structure. At the next (i.e.,
intermediate) level there are model instances and
below them – elements of model instances. In the next
section, we describe this abstraction and model
hierarchy in detail.

As we can see from Figure 1, the design phase is
extremely rich with models of various kinds. The mo-
dels differ in their abstraction level, i.e. by the extent
of detail in which the model is presented. A model is
described at a high abstraction level if many unneces-
sary details are omitted in the description and, as a
result, it is very concise, but not very accurate. It is
convenient to express abstractions through levels. In
our framework, we introduce three levels of abstrac-
tion: high, intermediate and low. Their meaning may
be interpreted as follows: high level is relevant to
meta-models that describe lower-level models; inter-
mediate level relates to those models that might be
used to transform (manually) specification models into
low-level executable specification; and low level
abstractions describe the elements of models, which
allow implementation of low-level executable specifi-
cation per se. Designing a meta-program means
lowering the abstraction level through the use of two
kinds of processes: instantiation of (meta-) models,
and transformations and merging of the instantiated
model instances. Further we describe the processes
more precisely.

A meta-designer manages those model transforma-
tions via the development process. Abstractly, the de-
velopment of a software system is a process of
mapping of the given problem domain onto the solu-
tion domain. In this context, by the problem domain,
we mean the abstractions that are used to express and
represent the domain, i.e., application tasks. We have
already identified the relevance of the feature-based
abstractions to specify the problem domain tasks in
order to implement meta-programs. Therefore, further
we use the FD notation for the description of feature-
based abstractions. By the solution domain, we mean
meta-programming per se. As both domains are
described at the high abstraction level by adequate
meta-models and models, we can speak about model
mappings. To describe the mapping, first, we need to
specify abstractly both domains separately using high-
level modeling abstractions as it is analyzed below.

3.3. Meta-model to specify problem domain
abstractions

We express the problem domain abstractions
through feature-based notation represented using
Feature Diagrams (FDs). Therefore the task is to build
a meta-model for the abstraction of FDs. In general, a
meta-model is the description that specifies all pos-
sible model representations of a given class. More
shortly, a meta-model is about other models of the
same class. In the case of FDs, the task is to obtain the
formalism that describes all possible representations
of FDs. The feature-based notion is described using
the only two kinds of main abstractions (<feature>,
<feature relationships>) and a set of derivative abst-
ractions. Derivative abstractions of the main two are
such as <feature type>, <feature class>, <variant
points>, <variants>, <relationships types>, etc. The
meta-model (see Figures 1 and 2) specifies the abs-
tractions and enumerates the relationships among
these abstractions. Following the object-based view of
OMG to meta-modeling, we use two kinds of rela-
tionships (i.e., is-a and has-a) to represent our meta-
model. Therefore, the FD meta-model describes all
types of abstraction as objects that are represented
with boxes and links among boxes as relationships
either of type is-a or has-a. Note that FD meta-models
also have been defined by other authors, see [23-26].

One problem should be taken into account in the
context of the FD meta-model development: the open
status of the abstraction per se. The FD notation is yet
not standardized, and the notation is still evolving (see
[20], for details). As a result, various proposals and
extensions have been proposed in recent years. Due to
the open status of the notation some inconsistence of
the syntax has also been identified [27]. The meta-
model, however, should be built on the basis of the
generally accepted notation. Furthermore, there are
two visions to a FD: the notation is treated either as a
tree (if there are constraints between leafs, these are
considered separately from other relationships), or it
treated as a directed graph if the constraints are com-
bined together with parent-child relationships. The
presented meta-model (see Figure 3) is based on the
generic semantics concept of FDs proposed in [27]
and the tree-based view. We consider some extensions
of the generic model further in the paper together with
changes related to the meta-model.

Other important abstraction related to meta-mo-
deling is the instantiation of the meta-models. In terms
of OMG [4], instantiation is the process of creating
lower-level models from the higher-level ones, i.e.
from the meta-models or even from the meta-meta-
models. Before instantiating, one needs to answer the
following question: is the created meta-model correct?
To our knowledge, there are no formal methods to
proving the correctness of such kind of models; thus
we restrict ourselves only by formulating basic as-
sumptions that give some confidence of correctness.

A Model-Driven View to Meta-Program Development Process

93

Figure 2. Meta-model of feature diagram to represent a domain

Figure 3. FD as a domain model instantiated from its meta-model

The assumptions are as follows:

1. Analysis of meta-model entities and identification
whether all entities have been included in the
meta-model.

2. Checking of the relationships and identification of
the following situations:
a) Are there omitted relationships?
b) Is there no redundancy within relationships?

Explanation

R1 – Relationship "variant - variant". "AND" requires any <number> from the group
Note 1. The only one relationship "variant - variant" is shown
An example: a derivative instance of equation is y = x1 AND x2 AND x3
C1 – Constraint of type REQUIRE: "NOT" requires only 1 input
Note 2. Function type is the variant point <VP1> with 3 variants and

Input number is the variant point <VP2> with 16 variants one is a
solitary feature variant the rest are grouped

V. Štuikys, R. Damaševičius, A. Targamadzė

94

c) Is the given relationship of a correct type?
3. Checking of the correctness of relationship car-

dinalities.
4. Checking of the correctness of the constraints.

3.4. Instances of FD meta-model

The model instantiation in the model-driven ap-
proach is a vertical process of lowering the abstraction
level, when we start from the higher-level model and
create its lower-level representation until the level
suitable for implementation is reached. For example,
the result of the instantiation of the problem domain
meta-model in our context is the creation of a concrete
FD for the given application. Therefore, to perform
the instantiation, first, we need to introduce the prob-
lem (or application) domain. Two aspects are impor-
tant to focus in that case.

If we assume that the problem domain is a priori
known for both the analyst and the meta-designer, the
first aspect is the identification of the scope for that
domain. More precisely, the identification of scope
means dealing with two tasks: a) specifying domain
boundaries (i.e., what is within and what is outside of
the domain); and b) specifying requirements, includ-
ing requirements for change. These tasks are to be
solved by the domain analyst, perhaps, with the pos-
sible partial involvement of the meta-designer. The
result of the scope identification should be expressed
through features. As it is not an easy task one can
consider initially the “reduced scope”, i.e. a sub-do-
main of the selected domain, and later extend the
domain model based on the evolving FD diagram, we
propose in [28, 29].

The second aspect is to draw a FD that conforms
to its meta-model (Figure 2). Checking correctness of
the FD instantiation from its meta-model includes the
following: a) checking whether or not the FD is de-
picted according to the pre-specified syntax (a full
syntax of FDs as a graphical notation is given in [20]);
b) checking semantics of the FD, i.e. validation of
representing requirements for change and constraints.
As requirements for change express domain variability
and evolution, some difficulties may arise in order to
perform the checking procedure. As a result, a meta-
designer needs to build and consider a few variants of
FDs. These variants can be treated as an evolution
model describing a family of instances of the related
FDs. We illustrate the instantiation process and present
a FD as an instantiated model instance. Consider, for
example, the entire domain of homogeneous logic
equations (in terms of the prescribed requirements) for
the efficient derivation (when implemented) of any
instance of the equation. The domain is represented by
its model given as a FD in Figure 3 (for details, read
the explanation and legend within Figure 3). It de-
scribes basically all the properties depicted in meta-
model (see Figure 2).

Though, in this paper, it is not our intention to
describe in detail the instantiation process for deriving

the FD instances from the FD meta-model (this
problem requires the separate investigation), we
provide some useful observations on this account
below.
 1. The formal use of the FD meta-model (Figure 2) is

not enough for achieving the goal, i.e. for creating
FD instances. A domain analyzer, first, should
understand the domain under consideration well;
and next, he/she needs to apply well-formed
principles for representing the domain model,
when it is derived from its meta-model.

 2. The basic principle we have used implicitly for
creating the model in Figure 3 is separation of
concepts (also the relevant terms, such as aspects
or features, may also be used). The use of the
principle is governed by the assumption that con-
cerns are orthogonal (i.e. independent or not cross-
cutting). Another important item is as follows:
when to start applying the principle for some con-
cept in the decomposition process, either as early
as possible (i.e., at a higher level) or as late as
possible (i.e., at a lower level)? Depending on that,
we can derive instances having the different struc-
ture (syntax) but the same functionality (seman-
tics).
For example, we have introduced the concern

<functional aspects> as early as possible while const-
ructing the FD instance (see Figure 3). However, it
was possible to introduce the concern later after con-
sidering the concept <right side>. If applied, that
would imply receiving another configuration of the
FD instance with the same functionality. Now one can
easily reconstruct the instance and receive another
shape of the instance.

Yet another remark is important to outline: consti-
tuents of the feature model (see Figure 3) are also
treated as elements or patterns of the model (see also
Figure 1). Though all types of elements are important
to form transformation rules, however, constraints and
variant points have the highest priority when trans-
forming the model into meta-program. This property
can be easily disclosed by comparing the model (Fi-
gure 3) with the presented example in Section 4 (see
Figure 7).

3.5. Meta-model of meta-program

A meta-model of the solution domain (i.e., meta-
programming) is indicated at the highest level in the
right branch of the Y-chart (see Figure 1). Here by the
meta-model we mean a description that specifies all
theoretically possible variants of meta-programs,
which are indicated by the meta-model. To specify the
meta-model, we use the same notation (extended by
the <describes> relationship), which was used in
Section 3.1. The specification of that meta-model
contains two types of entities, i.e. <meta-interface
model> and <meta-body model>, and entities that are
used to construct these two models (see Figure 4). For
example, the <meta-interface model> is constructed

A Model-Driven View to Meta-Program Development Process

95

from meta-parameters that are described using meta-
constructs derived from a meta-language. The <meta-
body> is constructed from two parts: modification/
change model and program instance model. The latter
is derived from a domain language.

The structure of the meta-model should be inter-
preted as follows. All entities in the description (see
Figure 4) are abstractions of the solution domain, i.e.
meta-programming per se. By adding the word model

to any entity, we intend to specify any entity of its
kind, but not its concrete instance. For example, the
modification/change model describes all possible
changes within the meta-model. A set of domain lan-
guages means that a concrete domain language is not
specified at this level, yet. The same relates to meta-
languages. We consider the instantiation of the meta-
model in the next sub-section.

Figure 4. Specification of meta-program meta-model

Figure 5. Instance of meta-program model derived from its meta-model

3.6. Instance of the meta-program meta-model

The model instance is created through the instan-
tiation process using the meta-model that is one level
higher then the instance model itself. The instance of
the meta-program meta-model is given in Figure 5.
This description differs from the previous one (see
Figure 4) in the following: a) a concrete domain

language is derived from the set of domain languages
that is described by the meta-model; b) a concrete
meta-language is derived from the set of meta-
languages; c) modification/change model is substi-
tuted by the concrete algorithm to implement changes
pre-specified by the given requirements; d) program

V. Štuikys, R. Damaševičius, A. Targamadzė

96

instance, meta-parameters and meta-interface are also
concretized in the same way.

In order to create an instance of a modification
algorithm, however, we need to know requirements
for change. Though the requirements are formulated
by the user or/and domain analyst at the level that is
higher than the meta-program model, we have inclu-
ded requirements for change in the description of the
model for clearness.

3.7. Elements of the instance of meta-program
meta-model

The elements of a meta-program are derived from
the meta-program model through the instantiation
process in the same way as the meta-program model is
derived from its meta-model. As we can see in Figure
5, there are two basic elements: meta-interface and
meta-body. For simplicity, we assume that a meta-
program contains only one meta-interface and meta-
body. Each element has its internal structure. When
the structure is of interest in a predefined context, one
can identify the constituent parts of the element. For
example, meta-interface contains a set of meta-para-
meters. Meta-body consists of a set of domain prog-
ram instances that are represented using the domain
language. A program instance has its own interface
and functionality. The program instance has specific
locations specified where change can be applied. What
level of granularity is to be achieved in the elements

elicitation is the matter related to the transformation
rules that should describe how input elements are
transformed or merged into target elements.

4. Interpretation of transformations within
the framework

So far we have considered transformations of the
problem domain abstractions and solution domain
abstractions separately. Those transformations have
been called model instantiations. Model instantiation
is a vertical transformation aiming to derive a lower-
level model from its meta-model. Here we describe all
transformations very abstractly without details. Figure
6 outlines the view to all transformations, as they
should be conceived using the framework.

At the beginning, the abstract goal for transfor-
mations at the highest level, that is, at the meta-model
level is specified. As the abstract goal is not achiev-
able, one needs to make the lowering of abstraction
level by one step (level) moving in the vertical direc-
tion in each branch of the Y-chart. The result of such a
vertical transformation is the creation of meta-model
instances for both domains. Having the models ins-
tances we can narrow the abstract goal transforming it
into the achievable goal (in Figure 6 it is denoted by
the single line). Though the goal may be achievable
the practical mechanism of its implementation is yet
not devised.

Figure 6. Abstract interpretation of transformations in meta-program development framework

Therefore, we need to make yet another step of
horizontal transformation for transforming models in-
to constituent elements in each branch. Again, the
achievable goal is transformed through a vertical
transformation into the concrete goal that can be al-
ready implemented by transformation rules for each
kind of model elements. Note that the definition of

transformation rules is not the intention of the frame-
work.

Though the proposed framework does not include
the definition of detailed transformation rules in order
to produce the encoded specification (meta-program),
for the sake of better understanding of the framework,
we present, at the end of the discussion, a result of

A Model-Driven View to Meta-Program Development Process

97

such a transformation. The example (Figure 7) out-
lines the implementation of the FD depicted in Figure
3, using Open PROMOL [30] as a meta-language, and
logical equations in plain text as a domain language.

Note that names of external meta-parameters are given
in italic and Open PROMOL functions are given in
bold (see Figure 7).

Figure 7. Encoding of FD given in Figure 3 using Open PROMOL (a); (b) one of derivative instances

5. Requirements for tools to support (semi-)
automatic development of meta-programs

In terms of the OMG approach, a transformation is
the process that should be performed automatically by
adequate tools. In general, however, this maturity level
of design technologies is still not achieved, but we can
assume that the creation of meta-programs automati-
cally for some specific cases with some prescribed
assumptions might be considered as a real scientific
task already now. We analyze those cases and assump-
tions and formulate requirements for tools to support
automation of meta-program development as follows:
1. Well-defined syntax and semantic of FDs.
2. Tools for automatic or semi-automatic drawing of

FD.
3. Automatic validation of correctness of feature mo-

dels.
4. Automatic decomposition of a feature model into

sub-models with respect to prescribed require-
ments.

5. Well-defined formalism to specify requirements
for change.

6. Well-defined transformation rules to support trans-
formation of the feature-based model specification
into the meta-program specification.

7. Support of meta-language processors (depending
on the application domains).

8. Support of different domain language compilers,
domain program analyzers and parsers (depending
on the application domains).

6. Summary and conclusions

We have proposed a general framework for the
model-driven analysis of processes related with meta-
program design. Abstractly, the meta-program design
framework can be represented as the Y-chart.

Branches of the chart represent three important items:
problem domain (left branch), solution domain (right
branch) and the result of their linking, i.e., the de-
veloped meta-program (vertical branch). We represent
problem domain and solution domain at three abstrac-
tion levels: meta-model, model and instance. By the
problem domain, we mean abstractions used to repre-
sent domain models. By the solution domain, we mean
meta-programming abstractions (languages and meta-
models, models, etc.). We have selected the feature-
based abstraction (i.e., Feature Diagram) to specify
and represent domain models because it allows ex-
pressing functional, structural behavioral aspects in
terms of feature variability and commonality
relationships explicitly and precisely; furthermore,
those relationships are captured intuitively and simply.

The important aspect of the model-driven analysis
of meta-programming, or how meta-programs should
be devised using a transformative approach, is the
traversing across the abstraction levels within the
branches of the Y-chart. The traversing starts at the
highest abstraction level in the right branch, and can
be interpreted as either horizontal or vertical transfor-
mation. The intention of the horizontal transformation
is to achieve the abstract goal (i.e., to check a pos-
sibility to combine domains) at the highest abstraction
level. If at this abstraction level there is no enough
information about model elements to derive
transformation rules in order to perform the horizontal
transformation, a meta-designer needs to go through a
series of vertical transformations to lower the abstrac-
tion level and to consider more details within the
model representations. Vertical transformation is the
model instantiation process, when lower-level models
or their elements are derived from their meta-models.
Vertical transformation in both the left and the right
branch of the Y-chart is performed step-by-step that
leads to lowering of the abstraction level by one
consecutive level.

$
 "Select input variable name:" {x, u} input := x;
 "Select output variable name:" {y, z} output := y;
 "Select function type:" {AND, OR, XOR, NOT} function := AND;
[function neq {NOT}]
 "Select number of input variables:" {2..16} number := 3;
$
@sub[output] = @if[function eq {NOT},{NOT @sub[input]1}, a)

{@sub[input]1 @for[i,2,number,{ @sub[function] sub[input]@sub[i]}]}];

y = x1 AND x2 AND x3; b)

V. Štuikys, R. Damaševičius, A. Targamadzė

98

At the lowest level, i.e. at the model element repre-
sentation level, we can already formulate and preci-
sely express transformation rules stating how to merge
(i.e. to transform) model elements of problem and
solution domains. Though we have not yet presented
those rules explicitly (that will be a subject of further
work), the introduced framework gives a solid theore-
tical background to understand the meta-program de-
velopment process and also contributes to the auto-
mation of this process per se. We have also formulated
requirements for tools to support the automation.

 The introduced framework enables: 1) to better
understand the meta-program development process
using the model-driven approach; 2) to identify some
essential aspects of model-driven transformations,
such as reachability of goals in horizontal transfor-
mation, or the property to induce the multiple repre-
sentation forms of the feature diagram instance with
the same semantics for the same domain task, when
the instance is instantiated from its meta-model in the
vertical transformation. As a result, the discussed
framework creates well-founded pre-conditions to de-
velop a model transformation-based approach to the
semi-automatic construction of meta-programs.

References
 [1] D.C. Schmidt. Model-Driven Engineering. IEEE

Computer 39 (2): 2006, 25-31.
 [2] J. Bosch. Design and use of software architectures:

adopting and evolving a product–line approach. Addi-
son-Wesley, 2000.

 [3] G. Butler, D.S. Batory, K. Czarnecki, U.W. Eisene-
cker. Generative Techniques for Product Lines. Proc.
of the 23rd Int. Conf. on Software Engineering, ICSE
2001, 12-19 May 2001, Toronto, Ontario, Canada,
2001, 760-761.

 [4] OMG. MDA Guide Version 1.0.1, 2003. Version
1.0.1, OMG document omg/03-06-01.

 [5] R. Damaševičius, V. Štuikys. Taxonomy of the Fun-
damental Concepts of Metaprogramming. Information
Technology and Control, 37(2), 2008, 124-132.

 [6] V. Štuikys, M. Montvilas, R. Damaševičius. Deve-
lopment of WEB Component Generators Using One-
Stage Metaprogramming. Information Technology and
Control, 38(2), 2009, 108-118.

 [7] D. Batory. Multilevel Models in Model-Driven En-
gineering, Product Lines, and Metaprogramming. IBM
Systems Journal, 45(3), 2006, 527–539.

 [8] S. Trujillo, D.S. Batory, O. Díaz. Feature-Oriented
Model Driven Development: A Case Study for Port-
lets. Proc. of 29th Int. Conf. on Software Engineering
(ICSE 2007), Minneapolis, MN, USA, May 20-26,
2007, 44-53.

 [9] W. Mueller, Y. Vanderperren. UML and Model-dri-
ven Development for SoC Design. Proc. of the 4th Int.
Conf. on Hardware/Software Codesign and System
Synthesis (CODES+ISSS’06), 22-25 Oct. 2006, 1.

[10] P. Hruby. Mapping Business Processes to Software
Design Artifacts. In S. Demeyer, J. Bosch (Eds.):
Proc. of Object-Oriented Technology, ECOOP'98

Workshop Reader, Brussels, Belgium, July 20-24,
1998. LNCS 1543, Springer 1998, 234-236.

[11] A.G. Kleppe, J. Warmer, W. Bast. MDA Explained,
The Model-Driven Architecture: Practice and Promise.
Addison Wesley, 2003.

[12] T. Mens, K. Czarnecki, P. Van Gorp. A Taxonomy
of Model Transformations. Electronic Notes in Theo-
retical Computer Science, Vol.152, 2006, 125-142.

[13] L. Grunske, L. Geiger, A. Zundorf, N. Van Eetvel-
de, P. Van Gorp, D. Varro. Using Graph Trans-
formation for Practical Model-Driven Software
Engineering. In S. Beydeda, M. Book, V. Gruhn, eds.,
Model-Driven Software Development, Springer, 2006,
91-118.

[14] M. Janota, J. Kiniry. Reasoning about Feature Mo-
dels in Higher-Order Logic. Proc. of 11th Int. Conf. on
Software Product Lines, SPLC 2007, Kyoto, Japan,
September 10-14, 2007, 13-22.

[15] B. Westfechtel, R. Conradi. Multi-Variant Modeling
Concepts, Issues and Challenges. European Confe-
rence on Model-Driven Architecture (ECMDA), Twen-
te, The Netherlands, June 24, 2009, 57-67.

[16] P. Ebraert, A. Classen, P. Heymans, T. D’Hondt.
Feature Diagrams for Change-Oriented Programming.
Proc. of the 10th Int. Conf. on Feature Interactions in
Software and Communication Systems (ICFI’09), Lis-
bon, Portugal, June, 2009. IOS Press, 2009, 107-122.

[17] T. Ziadi, J.M. Jezequel, Product Line Engineering
with the UML: Deriving Products. In: Software
Product Lines, Springer, 2006, 557-586.

[18] G. Perrouin, J. Klein, N. Guel, J.M. Jezequel. Re-
conciling automation and extensibility in product deri-
vation. Proc. of 12th Int. Software Product Line
Conference (SPLC 2008), Limerick, Ireland, 339-348.

[19] J. Coplien, D. Hoffman, D. Weiss. Commonality and
Variability in Software Engineering, IEEE Software,
15: 1998, 37-45.

[20] P.-Y. Schobbens, P. Heymans, J.-Ch. Trigaux, Y.
Bontemps. Feature Diagrams: A Survey and a Formal
Semantics. 14th IEEE Int. Requirements Engineering
Conference (RE'06), Minneapolis, Minnesota, USA,
September 2006, 139–148.

[21] V. Štuikys, R. Damaševičius. Measuring Complexity
of Domain Models Represented by Feature Diagrams.
Information Technology and Control, 38(3), 2009,
179-187.

[22] D.D. Gajski, R.H. Kuhn. Guest Editor’s Introduction:
New VLSI Tools. IEEE Computer, December 1983,
11-14.

[23] T. von der Massen, H. Lichter. RequiLine: A Re-
quirements Engineering Tool for Software Product
Lines. Proc. of Software Product-Family Engineering,
PFE 2003, Siena, Italy, Lecture Notes in Computer
Science (LNCS), 3014, 168-180.

[24] K. Czarnecki, S. Helsen, U. Eisenecker. Staged
Configuration through Specialization and Multi-Level
Configuration of Feature Models. Software Process
Improvement and Practice, 10, 2005, 143-169.

[25] M.A. Laguna, J.M. Corral. Feature Diagrams and
their Transformations: an Extensible Meta-model.
Proc. of 35th Euromicro Conf. on Software Enginee-
ring and Advanced Applications, SEAA 2009, Patras,
Greece, August 27-29, 2009, 97-104.

A Model-Driven View to Meta-Program Development Process

99

[26] B. Morin, G. Perrouin, P. Lahire, O. Barais, G.
Vanwormhoudt, J.-M. Jézéquel. Weaving Variabili-
ty into Domain Metamodels. In A. Schürr, B. Selic
(Eds.): Proc. of 12th Int. Conf. on Model Driven En-
gineering Languages and Systems, MODELS 2009,
Denver, CO, USA, October 4-9, 2009. LNCS 5795
Springer 2009, 690-705.

[27] P. Heymans, P.-Y. Schobbens, J.-C. Trigaux, R.
Matulevičius, A. Classen, Y. Bontemps. Towards the
Comparative Evaluation of Feature Diagram Lan-
guages. Proc. of the Software and Services Variability
Management Workshop – Concepts, Models and Tools
(SVM-WS 2007), Helsinki, Finland, April 2007, 1-16.

[28] R. Damaševičius, V. Štuikys, E. Toldinas. Domain
Ontology-Based Generative Component Design Using
Feature Diagrams and Meta-Programming Techni-
ques. Proc. of 2nd European Conference on Software
Architecture ECSA 2008, September 29 - October 1,
Paphos, Cyprus. ECSA 2008, LNCS 5292, Springer-
Verlag, 2008, 338-341.

[29] V. Štuikys, R. Damaševičius. Design of Domain On-
tology-Based Generative Components Using Enriched
Feature Diagrams and Meta-Programming. Informa-
tion Technology and Control, 37(4), 2008, 301-310.

[30] V. Štuikys, R. Damaševičius, G. Ziberkas. Open
PROMOL: An Experimental Language for Target
Program Modification. In A. Mignotte, E. Villar, L.
Horobin (Eds.), System on Chip Design Languages.
Kluwer Academic Publishers, 2002, 235-246.

Received December 2009.

