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Abstract. The main aim of the paper is to develop simplified tools and methods for design and analysis of linear 
parameter-varying (LPV) finite impulse response filters (FIR). FIR filters with constant coefficients have comprehen-
sive theoretical foundations and design methods with the main advantages: good linearity of phase diagram, guaranteed 
stability, simple practical implementation. Although filters with constant coefficients guarantee particular properties in 
frequency domain, i.e. noise damping, they also increase rise time for rapid signal changes. In order to avoid such blur-
ring effects a simplified design method for low-pass LPV FIR filters is developed. To synthesize the filter, two cut-off 
frequencies are needed accompanied with given filter order, shape tuning function and threshold detection condition 
for sequential operation. Quantitatively assess the filter quality and properties of the tuning functions are analyzed 
using both time and frequency dependent criteria. In the first case, difference Euclidean norm is used, while the 
frequency approach for filter analysis takes advantage of SVD-DFT transformation of linear time-varying discrete-time 
system, as previously defined by the author, employing singular value decomposition, discrete Fourier transformation 
and power spectral density properties. 

Keywords: digital filters, finite impulse response filters, linear parameter varying systems, discrete-time systems, 
time-varying systems, non-stationary systems. 

 
 

1. Introduction 

Digital filters are one of fundamental tools for sig-
nal processing. The design and analysis methodology 
for linear time-invariant filters or filters with constant 
coefficients is currently well known [1] and can be 
easily applied by using a wide spectrum of software 
applications (e.g. Matlab Signal Processing Toolbox). 
In the simplest case, the design of a low pass filter can 
be simplified to finding only two parameters: the cut-
off frequency and the filter order. However, classical 
time-invariant filters are an efficient tool for stationary 
processes or in the case when spectra of signal and 
noise are disjointed, as shown in Figure 1. 

In many applications the signal and noise spectra 
are jointed and the cut-off frequency is reached as 
some compromise between the accepted level of noise 
and the accepted level of information loss in the 
signal. When the signal is non-stationary, e.g. the 
spectrum of the signal varies in time, the increase rise 
time for signal steps changes in classical stationary 
filters. It may be unexpected in some applications 
such as filtering signal from sensors, image processing 
etc. Such effects are caused by neglecting that the 
frequency spectra of the signal may vary with time. 

Figure 2 shows signal spectra components, where 
STI denotes constant band of the signal, STV denotes 

the time-varying band of the signal, which appear only 
in selected time moments, whereas N denotes the 
noise band. In the simplest case, such a signal should 
be characterized by at least two limit frequencies: ωd 
for the constant band and ωm for the time-varying 
band. 

Rise time for rapid signal changes may be im-
proved by dynamically widening the filter band when 
the step change is detected. In such a case, the noise 
component is less important. In order to improve noise 
damping for small signal changes, the pass-band of 
the filter should be contracted. 

This approach gives better results than a classical 
constant coefficient filter because specificity of the 
input signal is acknowledged and additionally group 
delay can correct what is equivalent to linearity of the 
phase diagram of the filter [2]. Most often the linear 
time-varying (LTV) filter (equivalently called linear 
parameter varying (LPV) filter) operates sequentially 
[2].  

The main aim of the paper is to propose a simpli-
fied methodology for analysis and design of LPV 
finite impulse response (FIR) low-pass filters. In this 
paper, we propose two design methods for tuning 
parameters of the filter for two given cut-off frequen-
cies and filter orders. Quantitatively assess the filter 
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quality and properties of the tuning functions are ana-
lyzed using both time and frequency dependent cri-
teria. In the first case, difference Euclidean norm is 
used, while the frequency approach for filter analysis 
takes advantage of SVD-DFT transformation of linear 

time-varying discrete-time system, as defined pre-
viously by the author [12], by employing singular 
value decomposition, discrete Fourier transformation 
and power spectral density properties. 
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Figure 1. Frequency spectra of stationary signal with noise; S - signal, N – noise 
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Figure 2. Frequency spectra of non-stationary signal with noise; STI – signal, stationary part, STV – signal,  
non-stationary part, N – noise 

2. Filter Description 

Usually, the parameter varying the FIR filter can 
be described by the following time-varying difference 
equation: 

( ) ( ) ( ) ( ) ( )
( ) ( )

0 1 1

n

y k b k v k b k v k

b k v k n

= + − +

+ −…
. (1) 

Alternatively, the description can be converted into 
a more general equation following operator 
description [13, 14]: 

ˆˆ ˆ=y Tv , (2) 

where ( ) ( )ˆ 0 1
T

v v N= −⎡ ⎤⎣ ⎦v " ,  
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y y N= −⎡ ⎤⎣ ⎦y "  are column vectors with 
filter input and output signals, respectively. Under as-
sumption that the system is analyzed on a finite hori-
zon N, the input-output operator T̂  is a compact, 
Hilbert-Schmidt operator from l2 into l2 and actually 
maps bounded signals [ ]2( ) 0,v k l N∈ =V  into signals 

( )y k ∈Y . 

The input-output operator T̂  of the system may be 
defined using a set of impulse responses of a time-
varying system taken at different times in the 
following form:  
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where ( )1 0,h k k  is the response of the system to the 

Kronecker delta ( )0k kδ −  at time k1 (after k1-k0 
samples).  

3. LPV FIR filter analysis and design 

Although design of classical FIR filters can be 
simplified to the choice of two parameters (cut-off 
frequency, order), the design of LPV FIR filters re-
quires at least a choice of three parameters (two cut-
off frequencies and order). Sequentially operated LPV 
filters are each time-initiated by a particular event, e.g. 
by detection of step input signal. The threshold must 
be determined individually from the input signal 
analysis. LPV FIR filters can be designed using the 
following 3-stage process: 
1. Select filter order R and cut-off frequencies: ωm 

and ωd, where ωd is selected for steady-state (small 
signal changes) and ωm is selected for signal 
switching (large signal changes). 

2. Select a proper tuning function of the cut-off 
frequency of the filter.  

3. Select the event detection threshold for 
sequentially operating filter. 
Stages 1 and 3 are inseparably connected with the 

form of input signal. Selection of appropriate parame-
ters can be made in a similar way as for classical 
filters. The most common topic in some case indepen-
dent on the input signal is Stage 2 – selection of the 
tuning function. Thus, we focus further on Stage 2, 
including also time domain evaluation using a shape 
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deformation coefficient and frequency analysis 
described in details e.g. in [12]. 

The cut-off frequency of the filter can be tuned in 
many ways. In this paper, we propose two tuning 
functions, defined either on the basis of function sinn 
(SINN) or fundamental filter finite impulse response 
(FFIR).  

3.1. Tuning function SINN 

Function SINN define tuning process of the cut-off 
frequency gω  of the time-varying filter on the basis of 
function sinn in the following way:  

( ) ( ) 0
0 0sin

otherwise

c
d m d

g

d

k k k k R k
k R

ω ω ω π
ω

ω

⎧ −⎛ ⎞+ − ≤ ≤ +⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪
⎩

, (4) 

where dω  is lower cut-off low-pass filter frequency 
(dominant noise), mω  is upper cut-off low-pass filter 
frequency (widen pass-band in order to fasten rise-
time), R is filter order, k0 is the beginning time of the 
coefficient tuning corresponding to an event in the 
input signal, k is the discrete time and c is the tune 
shape coefficient. The above relationship allows the 
tune shape to be formed due to parameter c. It may 
also be the main disadvantage of the function for some 
application, as an appropriate c must be selected 
separately for each filter, especially for different R, 

dω  and gω .  

3.2. Tuning function FFIR 

Selecting an additional parameter c can be avoided 
by introducing tuning function based on fundamental 
impulse response, i.e. impulse response of filter with 
cut-off frequency dω . The shape of the central non-
negative part of the response is similar to the SINN 
function with adequate c. Mathematically the FFIR 
function can be described by the following: 

( ) ( ) 0

0

0

0
max

k k
g d m d

k
k n

b
k

b
ω ω ω ω −

≤ ≤

= + − , (5) 

where bk are positive central coefficients of FIR filter 
with frequency dω . Central coefficients are defined as 
the following: 

{ }
1

1 0.50 : 0.5 , 0

0 otherwise

k
k

k nk
k

b k n k k b
b ±ΔΔ ≤

⎧ − ≤ ∀ >⎪= ⎨
⎪⎩

. (6) 

The above relationship can be used both for even 
order filters { }00.5 , , , kn k k Δ ∈N  and for odd order 

filters { }0,0.5 , 0.5kk k∈ ± Δ ∈ + ∈N N N . Graphical 
interpretation of central coefficients with respect to 
impulse response of filters with frequency dω  is 
depicted in Figure 3. The main advantage of the FFIR 
function is the fact that there is no longer needed any 

additional parameter. Thus, the design procedure can 
be simplified to the selection of only 3 parameters: 
filter order R, cut-off frequencies ,d gω ω  and additio-
nally for sequentially operated filters event detection. 
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Figure 3. Central coefficients (dashed line) for FFIR tuning 
function originated from filter impulse response (solid line), 

R=50, gω =0.1 

3.3. Obtaining Time-Varying filter coefficients 

Coefficients ( ) ( ) ( ) ( )0 1, , , nk b k b k b k= ⎡ ⎤⎣ ⎦b …  of 
filters (4), (5) are computed using standard and avail-
able procedures (e.g. Matlab function b = fir1(n, Wn)). 
The procedure is directly adopted from classical time-
invariant filters synthesis using Hamming window for 
impulse response of ideal filter [1]. Coefficients are 
computed from the following equation:  

( ) ( ) ( )    1i kb k w i h i i R= ≤ ≤ , (7) 

where w(i) denotes Hamming window and hk(i) im-
pulse response of ideal filter obtained by inverse 
Fourier transform of ideal low-pass filter frequency 
diagram with cut-off frequency gω (k). 

3.4. Shape deformation coefficient 

To quantitatively assess the properties of the filter 
and quality of the filtered signal, we introduce shape 
deformation coefficient (SDC). SDC is defined as a 
Euclidean vector norm of difference between filter 
output and reference filter output. Mathematically it 
can be written as follows: 

( ) ( )( )
1 2

0

N

r
k

SDC y k y k
−

=

= −∑ , (8) 

where y(k) is output response in time domain of 
analyzed filter for given input signal, e.g. step signal, 
and yr(k) is output response of reference filter for the 
same signal. We assume two reference filters: filters 
with a cut-off frequency ωm or all-pass filters both 
with the same order as the analyzed filter. There are 
also two possibilities to choose input signal of 
analyzed filter: signal y(k) may be either a response of 
input signal with or without noise. In the second case, 
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it is possible to evaluate the impact of the input noise 
to the output of the filter.  

4. Numerical examples 

In this section, we design and analyze LPV filters 
using proposed methodology for given R=50, dω =0.1, 

mω =0.6. We compare performance between FFIR and 
SINN functions with different values of parameter c, 
different noise levels and additional time shift. 

4.1. Time and frequency analysis of LPV filters 
tuned with SINN function 

Additional parameters assumed for the example 
are as follows: time shift k0 = 1, standard deviation of 
Gaussian noise σ = 0.1, simulation horizon N = 100 
steps, SINN function coefficients: c = 30 and c = 10. 

Computations are carried out for the following four 
filters:  
1  – time-invariant filter with cut-off frequency 

g dω ω= ,  

2  – parameter-varying filter tuned with SINN 
function with c = 30,  

3  – parameter-varying filter tuned with SINN 
function with c = 10,  

4 – time-invariant filter with cut-off frequen-
cy g mω ω= . 

Step responses for all filters are depicted in Figure 
4, whereas tuning functions are shown in Figure 5. 
Input step signal contains additive input white noise 
with standard deviation σ = 0.1 and zero mean value. 
Time response is delayed by R/2 due to general 
properties of FIR filters.  
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Figure 4. Step responses for time-invariant filters (1 – gω = 0.1, 4 – gω = 0.6) and for parameter-varying filters  
(2 – SINN c = 30,3 – SINN c = 10),  R = 50, N = 100, k0=1 
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Figure 5. Cut-off frequency vs. discrete time (1 – gω =0.1, 2 – SINN c=30,3 – SINN c=10, 4 – gω =0.6), R=50, N=100, k0=1 

Approximated Bode diagrams depicted in Figure 6 
are computed using system operator based on the set 
of time-shifted impulse responses of the system de-

scribed in Section 2. The diagrams were introduced in 
[12]. The key steps needed to obtain approximated 
Bode diagrams are given in Table 1, while detailed 
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algorithm can be found in [12]. The method requires 
the pre-processing of a system operator using singular 
value decomposition (SVD). Such decomposition pre-
sents a generalization of the classic SVD of matrices 
[16] (operators defined for discrete-time systems over 
a finite time horizon are finite dimensional). The 
magnitude diagram may be interpreted as the worst-
case amplification (the maximal value), while the 
phase diagram represents only an approximated value 
(averaged or expected phase shift for given fre-
quency). Selected examples of approximate Bode dia-
grams for first order systems can be found in [15]. 

Table 1. Key steps in SVD-DFT Bode diagrams 
approximation 

 Approximated Bode diagrams 
Input Input-output system operator T̂  

lower triangular 
Pre-processing Singular Value Decomposition 

ˆ T=T USV  
Transformation Column DFT of matrices U and V 
Post 
processing 

Square average using weights from S 
matrix 

Result Two 2D real diagrams: magnitude 
and phase vs. frequency. For LTI 
systems equivalent to classical Bode 
diagrams. 

As it is shown in Figure 6, the cut-off frequencies 
(-3dB) of filters 1–3 are almost the same, nevertheless 
parameter-varying filters 2, 3 have weaker damping 
for high frequencies. The weaker damping follows 
from temporally raised cut-off frequency. The dam-
ping for parameter-varying filter should be approxi-
mately between diagrams 1 and 4. The longer or more 
often tuned, the weaker damping of the filter for high 
frequencies.  

Phase diagrams are dependent on the starting time 
of the analysis. For example, for time shift k0=25, 
linear range of the phase for filters 2, 3 ends at 
ω ≈ 0.64 but is still 3-times longer compared to filter 
1. Similar conclusions can be made by comparing to 
phase diagrams from Figure 9 with the next example 
where phase diagram is also dependent on time shift 
(k0 = 30). In practice it is sufficient for the phase to be 
linear for rapid signal changes, otherwise phase is less 
important. 

4.2.  Comparative analysis of filters tuned with 
FFIR and SINN functions 

Additional parameters assumed for the example 
are the following: time shift k0 = 30, standard devia-
tion of Gaussian noise σ = 0.2, simulation horizon N 
= 110 steps. Tuning functions are FFIR and SINN 
with c = 50. 

Computations are carried out for the following 
four filters:  
1 – time-invariant filter with cut-off frequency 

g dω ω= ,  

2  – parameter-varying filter tuned with FFIR,  
3  – parameter-varying filter tuned with SINN 

function with c = 50,  
4 – time-invariant filter with cut-off frequency 

g mω ω= . 

Step responses for all four filters are depicted in 
Figure 7. Tuning functions for filter cut-off frequen-
cies are plotted in Figure 8. Step input signal contains 
additive input white noise with standard deviation 
σ =0.2 and zero mean value. 
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Figure 6. Approximate Bode diagrams for time-invariant filters (1 – gω = 0.1, 4 – gω = 0.6) and for parameter-varying filters  

(2 – SINN c =3 0,3 – SINN c = 10), R = 50, N = 100, k0 = 1 
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Figure 7. Step responses for time-invariant filters (1 – gω = 0.1, 4 – gω = 0.6) and for parameter-varying filters  

(2 – FFIR,3 – SINN c = 50), R = 50, N = 110, k0 = 30 

0 20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

Samples

1
2
3
4

 
Figure 8. Cut-off frequency vs. discrete time (1 – gω = 0.1, 2 – FFIR, 3 – SINN c = 50, 4 – gω = 0.6), R = 50, N = 110, k0 = 30 

As was mentioned earlier, the quality of the distur-
bance filtration is a certain compromise between the 
distortions due to filtration of useful signal without 
noise and the disturbances level after filtration due to 
noise in the input signal. Comparative time domain 
evaluation of filtration can be done due to the shape 
deformation coefficient defined in Section 3.4. Results 
of the analysis are shown in Table 2. Coefficients 
SDC1 and SDC3 are evaluated for reference filters 
equal to filter 4 while SDC2 and SDC4 are referenced 
by all-pass filter. Coefficients SDC1, SDC2 are 
evaluated for input signal without noise whereas 
SDC3, SDC4 are computed in presence of additive 
input noise with σ =0.2. 

Results collected in Table 2 show that: 
a) for similar width of tuning functions FFIR and 

SINN c=10 values of corresponding coefficients are 
similar; 

b) for higher c = 50, 100 (narrower SINN func-
tion), all coefficients increase with simultaneous 
higher average damping of the filter – larger distor-
tions, larger noise damping; 

c) for lower c = 1 (wider SINN function) noised 
coefficients increase, while coefficients without noise 
(SDC1, SDC2) decrease – smaller distortions, smaller 
noise damping. 

Approximated Bode diagrams represent properties 
of the system for all simulation horizons. Interpreta-
tion of the results is an easy task and can be made by 
analogy to classical time-invariant systems. Additio-
nally noised system operators can be also filtered 
thanks to the noise-robustness properties of singular 
value decomposition. 
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Table 2. Shape deformation coefficients for different tuning 
functions of the filter 

Filter SDC1 SDC2 SDC3 SDC4 

LTI ωd 0.88 0.95 0.97 1.03 
FFIR 0.21 0.37 0.65 0.70 
SINN c = 1 0.07 0.33 1.11 1.17 
SINN c = 10 0.17 0.35 0.65 0.71 
SINN c = 50 0.28 0.39 0.70 0.73 
SINN c = 100 0.33 0.42 0.83 0.88 
LTI ωm 0 0.33 1.07 1.11 

5. Conclusion 

The main difficulty for parameter varying filter de-
sign is to choose an appropriate tuning function. We 
analyzed two different tuning functions SINN and 
FFIR. Although, for similar widths, both SINN and 
FFIR functions have similar properties, it is shown 
that FFIR function has the best time response (lower 
value of shape deformation coefficient) for noised 

signal (Table 2 – SDC3, SDC4 values in bold face) re-
ferenced by all-pass filter. SINN function with a well-
chosen parameter c has comparable values of noised 
SDC (see e.g. Table 2 – SDC3, SDC4 : FFIR and SINN 
c = 10). Higher values of c lead to larger deformation 
of step response but simultaneously improve the dam-
ping factor for higher frequencies. Lower values of c 
are generally undesirable because they decrease dam-
ping factor for high frequency noise. The proposed 
methodology can be applied to simplified design of 
LPV filter in a similar way as for classical time-inva-
riant systems. Described previously method for appro-
ximated Bode diagrams applied to digital LPV filters 
allows to plot simplified frequency spectra for time-
varying systems.  
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Figure 9. Approximate Bode diagrams for time-invariant filters (1 – gω = 0.1, 4 – gω = 0.6) and for parameter-varying filters  

(2 – FFIR, 3 – SINN c = 50), R = 50, N = 110, k0 = 30 

References 
 [1] T.W. Parks, C.S. Burrus. Digital filter design. Wiley-

Interscience, New York, 1987. 
 [2] J. Piskorowski. Phase-Compensated Time-Varying 

Butterworth Filters. Analog Integrated Circuits and 
Signal Processing 47, 2006, 233–241. 

 [3] R. Kaszynski, J. Piskorowski. Selected Structures of 
Filters With Time-Varying Parameters. IEEE Trans-
actions on Instrumentation and Measurement, Vol.56 
(6), 2007, 2338–2345. 

 [4] J. Piskorowski, T. Barcinski. Dynamic compensation 
of load cell response: A time-varying approach. Me-
chanical Systems and Signal Processing, Vol.22, 2008, 
1694–1704. 

  [5] J. Piskorowski. A new concept of phase-compensated 
continuous-time Chebyshev filters. Signal Processing, 
Vol.88, 2008, 437–447. 

  [6] J. Piskorowski. Some aspects of dynamic reduction of 
transient duration in delay-equalized Chebyshev filters  
IEEE Transactions on Instrumentation and Measure-
ment, Vol.57, No.8, 2008, 1718–1724 . 

ϕ(
ω

) (
de

g)
 

|G
(ω

)| 
(d

B
) 



Simplified Design of Low-Pass, Linear Parameter-Varying, Finite Impulse Response Filters 

137 

 [7] J. Piskorowski, M.A. Gutiérrez de Anda. A New 
Class of Continuous-Time Delay-Compensated Para-
meter-Varying Low-Pass Elliptic Filters With Im-
proved Dynamic Behavior. IEEE Trans. Circuits and 
Systems – I: Regular Papers, Vol.56(1), 2009, 179–
189. 

 [8] M.A. Gutiérrez de Anda, et al. The Reduction of the 
Duration of the Transient Response in a Class of Con-
tinuous-Time LTV Filters. IEEE Trans. Circuits and 
Systems – II: Express Briefs, Vol.56 (2), 2009, 102–
106. 

 [9] C. Zhang, Y. Liao. A sequentially operated periodic 
FIR filter for perfect reconstruction. Circuits, Systems, 
and Signal Processing, Vol.16, 1997, 475–486. 

[10] C. Herley. Boundary filters for finite-length signals 
and time-varying filter banks. IEEE Transactions on 
Circuits and Systems II: Analog and Digital Signal 
Processing, Vol. 42, 1995, 102–114. 

[11] M. Jafaripanah, B.M. Al-Hashimi, N.M. White. 
Application of Analog Adaptive Filters for Dynamic 
Sensor Compensation. IEEE Transactions on Instru-
mentation and Measurement, Vol.54, No.1, February 
2005, 245–251. 

[12] P. Orłowski. Selected problems of frequency analysis 
for time-varying discrete-time systems using singular 
value decomposition and discrete Fourier transform. 
Journal of Sound and Vibration, Vol. 278, 2004, 903-
921 

[13] P. Dewilde, A.J. van der Veen. Time-Varying 
Systems and Computations. Kluwer, Boston, 1998. 

[14] P. Orłowski. Applications of Discrete Evolution Ope-
rators in Time-Varying Systems. Proceedings of the 
European Control Conference, Porto, 2001, 3259–
3264. 

[15] P. Orłowski. Properties of the frequency SVD-DFT 
method for discrete LTV systems based on first order 
examples. 4th International Scientific – Technical 
Conference Process Control, Kouty nad Desnou, pro-
ceedings on CD-ROM, 2006. 

[16] G.H. Golub, C.F.Van Loan. Matrix Computations. 
Johns Hopkins University Press, Baltimore, Maryland, 
1983. 

Received August 2009. 


