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Abstract. In this paper, we propose a simple and computationally efficient method for computation of the transfer 
function and other characteristics of the multivariate systems. Multivariate systems are described by autoregressive 
moving-average (ARMA) equations. The fast Fourier transform algorithm is applied. The method is highly suitable for 
computer realization. An example of the multivariate system with two inputs and two outputs is provided to demonst-
rate the efficiency of the proposed method. The method may be extended to multidimensional systems described by the 
ARMA equations. 
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1. Introduction 

Multivariate systems with multiple inputs and mul-
tiple outputs play an important role in control theory 
[1], communication problems [2], as well as in infor-
mation theory [3]. By using the methods of multichan-
nel processing of noisy signals, it is possible to obtain 
better results than those that are achieved with single 
channel methods [4]. Technological progress in re-
cording and processing multichannel data has been 
especially applied in the area of biomedicine [5]. To-
day data are registered not through one or two chan-
nels, but through several dozen channels. Greater 
amount of information about a particular object may 
be obtained from an analysis of multichannel data. Be-
sides experimental difficulties in data recording, there 
is also a problem of efficient and simple computation 
of the characteristics of multivariate systems. 

In computation of the main characteristic of multi-
variate system, i.e, the transfer function, we must 
solve the problem of inversion of polynomial matrices 
[6, 7]. By applying Cramer’s rule, it is possible to 
determine the inverse by calculating determinants [8]. 
Another approach is a direct computation of the asso-
ciated matrices [9]. However, polynomial operations 
involve numerous computational difficulties, hence 
some methods have been proposed that use the opera-
tions with constant matrices [10,11]. 

In the present paper, a simple and computationally 
efficient method for determining the transfer function 
and other characteristics of multivariate system 

described by autoregressive moving average equations 
is proposed. The method relies on the results of the 
previous article [12]. In Section 2, a statement of the 
problem is presented. In Section 3, the method for 
computation of characteristics of multivariate system 
is given. In Section 4, the algorithm’s computational 
complexity is analyzed. Section 5 presents an 
example. Section 6 contains conclusions. 

2. Problem statement 

We address the problem of computation of the 
characteristics of the linear time-invariant multivariate 
systems. We assume that the multivariate system has p 
inputs and r outputs, and that 1N  point data records 
of p input sequences { ( )}, 1,2,..., ,mv n m p=  

n = 0, 1, 2, …, N1, as well as r output sequences 
{ ( )}, 1, 2,...,ky n k r= , are available. We assume also 
that the data are related according to the multivariate 
autoregressive-moving average (MARMA) model of 
the multivariate system 

  1 1

0 1

( ) ( ) ( )

( ) ( ), 1, 2,..., ,

M r

k kj j
i j

pN

km m
l m

y n i y n i

l v n l k r N M

α

β

= =

= =

= − +

+ − = ≤

∑∑

∑∑
,(1) 

where ( )kj iα  and ( )km lβ  are the parameters of MAR-
MA system, M is the number of delays of the 
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autoregressive part and N is the number of delays of 
the moving average part of the MARMA system. 

Equation (1) can be rewritten in the matrix-vector 
form: 

1 0

( ) ( ) ( ) ( ) ( ),
M N

i l

n i n i l n l
= =

= − + −∑ ∑y A y B v  (2) 

where A(i) = { ( )}kj iα  is the r × r matrix, B(l) = 
{ ( )}km lβ  is the r x p matrix, 

1( ) [ ( ),..., ( ),..., ( )] ,T
k rn y n y n y n=y  

1( ) [ ( ),..., ( ),..., ( )]T
m pn v n v n v n=v , T is the sign of 

matrix transposition. 
Performing z transform of (2), we obtain 

Y(z) = A(z)Y(z) + B(z)V(z), (3) 

where  

A(z) = { )(zakj } (4) 

is the r × r matrix with entries 
1

( ) ( ) ,
M

i
kj kj

i

a z i zα −

=

= ∑  

B(z) = { ( )kmb z }, (5) 

is the r x p matrix with entries 
0

( ) ( ) ,
N

l
km km

l

b z l zβ −

=

= ∑  

Y(z) = T
rk zyzyzy )](),...,(),...,([ 1  (6) 

is the r × 1 matrix with entries 
0

( ) ( ) ,n
k k

n

y z y n z
∞

−

=

= ∑    

V(z ) = ,)](),...,(),...,([ 1
T

pm zvzvzv  (7) 

is the p × 1 matrix with entries 
0

( ) ( ) n
m m

n

v z v n z
∞

−

=

= ∑ . 

From (3), we obtain the transfer function [14] of 
the MARMA system 

1( )( ) ( ) ( )
( )
zz z z
z

−= =
YH G B
V

,  (8) 

where 

G(z) = I − A(z) = { ( )}kjg z  , k, j = 1, 2 , …, r  (9) 

is the r × r polynomial matrix with entries 
( ) ( ),kj kjg z a z= − if k≠j (10) 

),(1)( zazg kjkj −= if k = j, 

I  is the r × r identity matrix. 
From (8) it follows that the transfer function of the 

MARMA system (1) is equal to the inverse polyno-
mial matrix 1( )z−G multiplied by polynomial matrix 
B(z). It is known [13] that the inverse polynomial 
matrix exists if and only if the determinant det G(z) is 
a nonzero number. If det G(z) is a polynomial, then 
although the inverse matrix 1( )z−G  exists, it will not 

be a polynomial matrix, since its elements are not 
polynomials, but the ratios of polynomials. 

3.  Method for computation of the MARMA 
system characteristics 

Define the (k,j)-th minor of the polynomial matrix 
G(z), denoted ( )kjM z as the determinant of the (r−1) 
x (r−1) matrix, that results from deleting row k and 
column j of G(z). Define the (k, j)-th cofactor of G(z) 
as ( ) ( 1) ( ),k j

kj kjC z M z+= −  k,  j = 1 , 2, …, r. Then, the 

adjugate matrix ˆ ( )zG of the polynomial matrix G(z) is 
the r × r matrix whose (k, j)-th entry is the (j, k)-th co-
factor of G(z), i.e., ˆ ( ) { ( )}jkz C z=G ,   j, k = 1, 2, …, r. 

To determine the inverse of the polynomial matrix 
G(z), we calculate the r × r matrix [6, 13] 

1
ˆ ( )( ) ,
( )
zz

g z
− =

GG  (11) 

where  

0

( ) det ( )
Q

m
m

m

g z z g z−

=

= = ∑G  (12) 

is the determinant of the polynomial matrix G(z), 
where mg  are scalars. Q is the maximal order of the 
determinant det G(z), i.e., 

Q =
1

r

j
j

q
=
∑ , (13) 

where jq  is the maximal order of the j-th column of 
the polynomial matrix G(z). In case jq M= for all j = 
1, 2, …, r, the maximal order of the determinant is 
equal to rM. 

It is follows from (11) that the adjugate matrix 
ˆ ( ) { ( )} { ( )}kj

kjz G z adj g z= =G  k, j = 1 ,2, …, r, (14) 

has entries  

m
Q

m

kj
m

kj zGzG −

=
∑=

1

0

)( , (15) 

where 1 ( 1)Q r M= − . 
If the maximal order of the polynomials of the 

polynomial matrix ˆ ( )zG  is M, then matrices mG , m = 
0, 1, …, M may be compiled from coefficients of 
identical degrees 1z−  of the matrix ˆ ( )zG  [13]. Then, 

the adjugate matrix ˆ ( )zG may be written as a 
polynomial with matrix coefficients mG , i.e.,  

0

ˆ ( ) ,
M

m
m

m

z z−

=

= ∑G G  (16) 

where { }kj
m mG=G  are the r × r matrices with entries 

kj
mG . 



K. Kazlauskas 

118 

To determine 1( ),z−G it is necessary to calculate 
scalars mg  using (12) and kj

mG  using (15).  
The following solution approach may be used. 

First, multiply the corresponding polynomials and 
then calculate the determinant and all cofactors of the 
polynomial matrix G(z). However, this is a rather 
complicated solution technique. 

To calculate 1( )z−G according to (11), we will 
apply the method used to compute the determinant of 
a polynomial matrix, which is proposed in [12]. We 
calculate the values of the determinant of the 
polynomial matrix G(z) at Q+1 points lz  equally 
spaced on the unit circle: 

0
det ( ) ,

Q
m

l l m l
m

d z g z−

=

= = ∑G  l = 0, 1,… , Q, (17) 

where 
2exp( ),

1l
lz i

Q
π

=
+

 (18) 

 in which i  is a sign of the complex variable. 
We find from (17) and (18) that 

0

2exp( ),
1

Q

l m
m

lmd g i
Q
π

=

= −
+∑  l = 0, 1, …, Q. (19) 

From (19) it follows that ld  and mg  are related accor-
ding to the discrete Fourier transform, hence the 
coefficients mg  may be calculated from the inverse 
discrete Fourier transform 

0

1 2exp( )
1 1

Q

m l
l

lmg d i
Q Q

π
=

=
+ +∑ , m = 0, 1, …, Q . (20) 

Similarly, we calculate the entries of the matrices 
{ },kj

m mG=G  m = 0,  1, …, 1Q , k, j = 1, 2, …, r. We 
find the values of all adjugates of the polynomial 
matrix ( ) { ( )}kjz g z=G  at 1Q +1 points lz  equally 
spaced on the unit circle: 

( ),kj
l kj lD adj g z=  l = 0, 1, …, 1Q ,  
      k, j = 1, 2, …, r, (21) 

where kj
lD  is the (k, j)-th  entry of the adjugate matrix 

ˆ ( )zG  at  points ,lz  l = 0,1,…, 1Q . 

Substituting the value kj
lD  from (21) and 

1

2exp( )
1l

lz i
Q
π

=
+

 into (15), we obtain  

1

0 1

2exp( ).
1

Q
kj kj
l m

m

lmD G i
Q
π

=

= −
+∑  (22) 

Consequently, kj
lD  and kj

mG  are related by the dis-
crete Fourier transform relation (22), hence the coeffi-
cients kj

mG  may be calculated from the inverse discrete 
Fourier transform 

1

01 1

1 2exp( ),
1 1

Q
kj kj
m l

l

lmG D i
Q Q

π
=

=
+ +∑  m = 0, 1, …, 1Q ;  

     k, j = 1, 2, …, r. (23)  
From (8) and (11), we obtain the z transform of the 

output of the MARMA system 
ˆ ( )( ) ( ) ( ) ( ) ( ),
( )
zz z z z z

g z
= =

GY H V B V  (24) 

where  H(z) is the transfer function of the MARMA 
system. 

From (24), we obtain  
ˆ( ) ( ) ( ) ( ) ( ).z g z z z z=Y G B V  (25) 

Define ˆ( ) ( ) ( ) { ( )},kmz z z F z= =F G B  k = 1, 2, …, 
r,  m = 1, 2, …, p, 

where 
1

( ) ( ) ( ).
r

km kj
jm

j
F z G z b z

=

= ∑  

Then from (25) we find the z transform ( )ky z of 
the k-th output signal ( )ky n  

1

( ) ( )
( ) ,

( )

p
km

m
m

k

F z v z
y z

g z
==
∑

 k = 1, 2, …, r. (26) 

Using the convolution property of the z transform 
[14], from (26) we obtain a difference equation that 
describes the relationship between the k-th output 
signal and all input signals of the MARMA system 

1 1 0

( ) ( ) ( ),
kmRQ p

km
k i k l m

i m l

y n g y n i F v n l
= = =

= − − + −∑ ∑∑  

       k = 1, 2, …, r; (27) 

where kmR  is the order of the polynomial ( )kmF z . 

We can see that the multivariate system may be 
considered as a system consisting of r mutually inde-
pendent subsystems each of which has an output 

( )ky n  and p inputs ( )mv n , m = 1, 2, …, p.  
From (26) it follows that the transfer function 

between the k-th output and the m-th input of the 
MARMA system is given by 

( ) ( )( ) ,
( ) ( )

km
km k

m

y z F zH z
v z g z

= =  k = 1, 2, …, r ;  

             m = 1,2,…, p (28) 
and impulse response between the k-th output and m-
th input is given as 

1 0

( ) ( ) ( ),
kmRQ

km km km
i l m

i l

h n g h n i F n lδ
= =

= − − + −∑ ∑  (29) 

where  ( ) 1,m nδ = if n = 0 and ( ) 0,m nδ = if  n≠0, 
provided that all input signals except the m-th signal 
are equal to zero.  

Substituting iwz e=  into (28), we obtain the fre-
quency response between the k-th output and m-th 
input of the MARMA system: 
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( )( )
( )

km iw
km iw

iw

F eH e
g e

= , k = 1, 2, …, r ,   

            m = 1, 2, …,p, (30) 
where i  is the sign of the complex variable and w is 
the frequency. 

The amplitude-frequency response between the k-
th output and the m-th input is an absolute value of the 
frequency response | ( )km iwH e |, while the phase-fre-
quency response is the argument of the frequency re-
sponse arg ( ( ))km iwH e , k = 1, 2, …, r , m = 1, 2, …, p. 

A multivariate system will be stable if and only if 
all roots of the denominator g(z) of the transfer system 
H(z) are inside the unit circle. Thus, it follows from 
(30) that the stability between the k-th output and m-th 
input depends on the roots of the polynomial g(z).  

Algorithm for computation of the inverse 
polynomial matrix of the multivariate system: 

Input: r – dimension of the polynomial matrix G(z); 
M – maximal order of the polynomials  of the 
polynomial matrix G(z);  kjα  – entries of G(z). 

Output: kj
mG  – entries of  the adjugate matrix ˆ ( )zG ; 

mg  – coefficients of the determinant g(z). 

1:  Compute  Q = rM and 1Q  = (r – 1) M 

2 :  Compute  2exp( )
1

W i
Q
π

=
+

 

3:  for l = 0 until Q do 
      3.1: Compute    l

lz W=  
      3.2. Compute numerical values of all entries of 

( ) { ( )}l kj lz g z=G at point lz  

      3.3. Compute   det ( )l ld z= G  
      end 
4:   for m = 0 until Q do 

      Compute 
0

1
1

Q
lm

m l
l

g d W
Q =

=
+ ∑  

end 
5:   for k = 1 until r do 

     for j = 1 until r   do 
           for l = 0 until 1Q  do 

                 Compute  ( )kj
l kj lD adj g z=  

           end 
          for m = 0 until 1Q do 

               Compute  
1

01

1
1

Q
kj kj lm
m l

l

G D W
Q =

=
+ ∑  

                end 
         end 
   end 

4. Computational Complexity 

The complexity of the proposed algorithm for 
determination of the MARMA transfer function is 
defined as the number of multiplication operations: 

3
3 2

2

3
2

3
2

( 1) ( 1) log ( 1)
3

( 1)[(( 1) 1) ( 1)
3

log ( 1)] ,

rn Q r M Q Q Q

rr r M Q

Q r pMN

= + + + + + + +

−
− + + + ⋅

⋅ + +

(31) 

where Q = rM  – number of multiplications for 
computation of , 0,1,...,lz l Q= ; 

3 2r M  – number of multiplications for numerical 
evaluation of the 2r  polynomial entries of 

( ) { ( )}kj lz g z=G at points lz  ; 
3

( 1)
3
rQ +  – number of multiplications for compu-

tation of the determinant det ( )l ld z= G  at points lz ; 
3( 1)(( 1) 1)

3
rr M −

− +  –  number of multiplications for 

computation of one adjugate ( )kj ladj g z  at points lz ; 

2( 1) log ( 1)Q Q+ +  –  number of multiplications of the 
inverse fast Fourier transform; 

3r pMN – number of multiplications for computa-

tion of ˆ( ) ( ) ( )z z z=F G B . In case of multivariate auto-
regressive system (MAR), this component is equal to 
zero. 

Table 1. Number of multiplication operations. r – number of 
outputs; p – number of inputs; M – number of delays of 
autoregressive part; N – number of delays of moving-
average part of MARMA system  

r M p N 
Proposed 
Algorithm 

Algorithm 
[15] 

2 3 2 2 266 3012 
3 4 3 3 2082 37836 
4 4 3 3 6397 67840 
5 4 3 3 18124 106900 
5 3 10 10 47393 55725 
5 5 10 10 80136 453125 
7 4 3 3 114260 213052 
7 6 3 3 174450 2304666 
10 5 10 10 1680100 2062500 
10 10 10 10 3392100 101000000 
15 10 10 10 33072000 228375000 
15 15 10 10 49777000 2568000000 
20 10 10 10 184440000 408000000 

An investigation on existing methods proposed to 
calculate the coefficients of the determinant of poly-
nomial matrix shows [12] that the method [15] is one 
of the best methods. The total operation count required 
by this method is 2 6n r M= . Then, the multiplication 
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complexity of computation of the transfer function of 
MARMA system is obtained: 

2 6 3 .Ln r M r pMN= +  (32) 

From Table 1, we can see that the computational 
complexity of the proposed algorithm as compared 
with algorithm [15] is small and decreases, especially 
for large  M  values. 

5. Example  

In the following example, we choose the MARMA 
system with two inputs and two outputs: 

2 3

1 1

2 1

1 0

( ) ( ) ( )

( ) ( ), 1,2,

k kj j
j i

km m
m l

y n i y n i

l v n l k

α

β

= =

= =

= − +

+ − =

∑∑

∑∑
 (33) 

where 

11 11 11

12 12 12

21 21 21

22 22 22

(1) 0.314; (2) 0.537; (3) 0.12
(1) 0.576; (2) 0.364; (3) 0.245
(1) 0.46; (2) 0.865; (3) 0.364
(1) 0.76; (2) 0.67; (3) 0.465;

α α α
α α α
α α α
α α α

= = =
= − = =
= − = =
= = − =

 

11 11

12 12

21 21

22 22

(0) 0.5; (1) 0.25
(0) 0; (1) 0
(0) 0; (1) 0
(0) 0.3; (1) 0.28.

β β
β β
β β
β β

= = −
= =
= =
= = −

 

Performing z transform of (33) and writing the 
result in matrix form, we obtain 

Y(z) = A(z)Y(z)+B(z)V(z), (34) 
where  ( ) { ( )}kjz a z=A  is the 2 × 2 matrix with entries 

1 2 3
11

1 2 3
12

1 2 3
21

1 2 3
22

( ) 0.314 0.537 0.12

( ) 0.576 0.364 0.245

( ) 0.46 0.865 0.324

( ) 0.76 0.67 0.465 ,

a z z z z

a z z z z

a z z z z

a z z z z

− − −

− − −

− − −

− − −

= + +

= − + +

= − + +

= − +

 

( ) { ( )}kmz b z=B  is the 2 × 2 matrix with entries 
1

11 12
1

21 22

( ) 0.5 0.25 ; ( ) 0;

( ) 0; ( ) 0.3 0.28 ,

b z z b z

b z b z z

−

−

= − =

= = −
 

( ) ( ) { ( )}kjz z g z= − =G I A is the 2 × 2 matrix with 
entries 

1 2 3
11

1 2 3
12

1 2 3
21

1 2 3
22

( ) 1 0.314 0.537 0.12

( ) 0.576 0.364 0.245

( ) 0.46 0.865 0.324

( ) 1 0.76 0.67 0.465 ,

g z z z z

g z z z z

g z z z z

g z z z z

− − −

− − −

− − −

− − −

= − − −

= − −

= − −

= − + −

   

1 2 1 2( ) [ ( ) ( )] , ( ) [ ( ) ( )] .T Tz y z y z z v z v z= =Y V  

The maximal order Q of the determinant det G(z) 
is equal to 4. From (17), (20), and using the proposed 
algorithm, we have 

{ mg } = {1, −1.074, 0.1067, 0.5184, −0.3205, 
0.0002, −0.1352}. 

From (21), (23), and using the proposed algorithm, 
we obtain 

11{ } {1, 0.76, 0.67, 0.465}mG = − −  
12{ } {0, 0.576, 0.364, 0.245}mG = −  
21{ } {0, 0.46, 0.865, 0.324}mG = −  
22{ } {0, 0.314, 0.537, 0.12}mG = − − . 

From (25), we have 
11{ } {0.5, 0.63, 0.525, 0.4, 0.1163}lF = − −  
12{ } {0, 0.1728, 0.2705, 0.0284, 0.0686}lF = − − −  
21{ } {0, 0.23, 0.5475, 0.0542, 0.081}lF = − − −  
22{ } {0.3, 0.3742, 0.0732, 0.184, 0.0336}lF = − − − . 

The transfer function of the two-channel MARMA 
system (33) can be written as 

{ ( )}( ) , , 1, 2,
( )

kmF zH z k m
g z

= =  (35) 

where 
1 2 3

4 5 6

( ) 1 1.074 0.1067 0.5184
0.3205 0.0002 0.1352 ;

g z z z z
z z z

− − −

− − −

= − + + −

− + −
 

11 1 2 3 4( ) 0.5 0.63 0.525 0.4 0.1163F z z z z z− − − −= − + − +
12 1 2 3

4

( ) 0.1728 0.2705 0.0284
0.0686

F z z z z
z

− − −

−

= − + − −

−
21 1 2 3 4( ) 0.23 0.5475 0.0542 0.081F z z z z z− − − −= − + − −
22 1 2 3

4

( ) 0.3 0.3742 0.0732 0.184
0.0336

F z z z z
z

− − −

−

= − − + −

−
 

The transfer function between, for example, the 1-
st output channel and the 2-nd input channel is given 
by 

12
12 ( )( )

( )
F zH z
g z

=  (36) 

and frequency response 
12

12 ( )( ) .
( )

iw
iw

iw

F eH e
g e

−

−=  (37) 

The relationship between the 1-st output channel 
and 2-nd input channel (see Eq. (27)) is described by 
the difference equation: 

1 1 1

1 1

1 1

2 2

2 2

( ) 1.074 ( 1) 0.1067 ( 2)
0.5184 ( 3) 0.3205 ( 4)
0.0002 ( 5) 0.1352 ( 6)
0.1728 ( 1) 0.2705 ( 2)
0.0284 ( 3) 0.0686 ( 4).

y n y n y n
y n y n
y n y n
v n v n
v n v n

= − − − −
− − + − −
− − + − −
− − + − −
− − − −
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The absolute values of the roots of the polynomial 
g(z) are 0.9419, 0.9000, 0.9000, 0.7807, 0.4764, 
0.4764 , i.e., the absolute values of the roots are less 
than 1, consequently, the two channel system satisfies 
the stability condition.  

In the Figure 1 we show the impulse response h11 
between the 1-st output and the 1-st input, impulse 
response h12 between the 1-st output and the 2-nd 
input, impulse response h21 between the 2-nd output 

and the 1-st input, and impulse response h22 between 
the 2-nd output and the 2-nd input of the system (33). 
In the Figure 2 we show the amplitude frequency 
response h11 of the system (33) between the 1-st 
output and the 1-st input, amplitude frequency 
response h12 between the 1-st output and the 2-nd 
input and so on. Figure 3 shows the positions of the 
poles and zeros in z plane of the system (33). All poles 
are inside unit circle, so system (33) is stable. 
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Figure 1. Impulse responses of MARMA system (33) 
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Figure 2. Amplitude-frequency responses of MARMA system (33) 
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MARMA system (33) 

6. Conclusions 

In this paper, a simple and computationally effi-
cient method for calculation the characteristics of the 
multivariate autoregressive moving-average system is 
presented. It has been shown that a fast Fourier trans-
form algorithm may be applied to determine the cha-
racteristics of multivariate system and that the calcula-
tion process may be speeded up. The proposed method 
uses well-known and efficient algorithms for calcu-
lating determinants of scalar matrices and discrete fast 
Fourier transform algorithm to determine the inverse 
polynomial matrix. It was showed that a multivariate 
system may be considered as a system consisting of r 
mutually independent parallel subsystems each of 
which has one output and the same p inputs. An 
example is used to illustrate practical computation of 
the coefficients of the transfer functions, difference 
equations, impulse and amplitude frequency responses 
of the channels of multivariate system with two inputs 
and two outputs. The stability condition is determined. 
The algorithm’s computational complexity is analy-
zed. It was established that the proposed method is 
more efficient as compared with the algorithm given 
in [15]. The method may be extended for the evalua-
tion of the multidimensional system characteristics. 
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