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Abstract. The paper describes efficient visualization performed by using ParaView software on BalticGrid. Deve-
lopment efforts, software implementation details and grid deployment issues are presented. The benchmark based on 
visualization of poly-dispersed particle systems validates efficiency of the deployed software. Efficiency tests are 
performed on multi-core architecture. Data reading, glyph generation, CPU and GPU rendering is investigated and 
discussed. 

 
 

1. Introduction 

Visualization is a powerful tool for analysing data 
and presenting results, across a wide range of discip-
lines [6]. Computers are used to create visual images 
from the data while the human mind is used to make 
inferences from this imagery in order to better under-
stand the data. Scientific visualization is becoming 
increasingly important in analyzing and interpreting 
numerical and experimental datasets. However, large 
data sets and the complex visualization process require 
large development efforts and impressive computing 
resources. Distributed visualization allocates different 
parts of the machine processing to different computers 
in order to improve performance. Grid computing [17] 
represents one of the most promising advancements 
for modern computational science and visualization. 

In the dawn of the visualization era, creating visua-
lizations meant programming using a low-level gra-
phics library. A new approach was brought forward by 
the Application Visualization System (AVS) [26]. AVS 
(later called AVS Express) is a modular visualization 
environment (MVE) providing an application deve-
lopment environment for visualization using a visual 
network editor. OpenDX [19] is another MVE based 
on the flexible and universal dataflow model. 

A lot of visualization systems and environments 
are developed by using object-oriented approach of 
Visualization Toolkit (VTK) [22]. VTK is an open 
source, object-oriented software system providing a 
toolkit for 3D computer graphics, image processing 

and visualization. It consists of a C++ class library, 
together with several interface layers including Tcl/Tk, 
Java and Python which can be used to access the 
classes and build applications. More than 850 separate 
classes, including several hundred data processing fil-
ters, are available in the toolkit. VTK is based on the 
dataflow model supporting reference counting, which 
allows data to be shared instead of duplicated. VTK 
supports portable multithreading for shared-memory 
implementation and portable distributed parallel 
processing based on MPI [18].  

An open-source, turnkey application ParaView 
[23], designed for large data visualization using distri-
buted parallel processing, is built on the top of VTK. 
ParaView Meshless was applied to efficient visualiza-
tion of SPH (Smooth Particle Hydrodynamics) data 
[3]. The first ParaView deployment on grid was per-
formed in TeraGrid [24] built by Globus middleware 
[5]. 

Visualization systems have become an essential 
part of the emerging fabric of grid services. However, 
this leads to very complicated environments handling 
complex simulation and visualization on remote hete-
rogeneous architectures [17]. The goal of the ICENI 
[9] project was the provision of high-level abstractions 
for scientific computing which will allow users to con-
struct and define their own applications through a 
graphical composition tool. ICENI was being imple-
mented in Java and JINI. The visualization server 
process the data and provides the output to a renderer 
(current demos are based on VTK [22]), which can 
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then send the graphical output back to the visualiza-
tion client. This can either be done using standard 
OpenGL remote rendering, or using Chromium [8].  

RealityGrid [21] was a project which aims to 
examine how scientists in the condensed matter, mate-
rials and biological sciences communities can make 
more effective use of the distributed computing and 
visualization resources provided by the grid. Reali-
tyGrid is making use of visualization as part of distri-
buted applications in which the simulation in one 
place communicates with the visualization in another 
and a steering client in a third. Because of difficulties 
experienced in integrating existing MVEs into larger 
distributed applications, RealityGrid has selected VTK 
[22] as a lower-level environment, along with enab-
ling technologies such as Chromium [8]. 

Most of grid environments for visualization [1, 16] 
are based on the Globus middleware [5] and its toolkit 
for service development. Visualization software can be 
highly integrated with working environment. Baltic-
Grid [2] is built on gLite middleware [4]. Only part of 
Globus functionality can be accessed in the considered 
grid environment, therefore, most of available visuali-
zation software cannot be applied. 

The paper presents the first ParaView implemen-
tation on grid built by gLite middleware. ParaView 
software has been adapted for the nature of pilot 
BalticGrid applications developing special purpose 
parallel reader for partitioned unstructured datasets 
stored in HDF5 format. GPU rendering on multi-core 
architectures has been employed and investigated in 
real grid environment. The performance analysis 
reveals how efficiently visualization can be performed 
on gLite based grid. 

2. ParaView architecture 

ParaView [23] is an open-source application 
designed to visualize large datasets. ParaView sup-
ports hardware-accelerated parallel rendering and 
achieves interactive rendering performance via level-
of-detail (LOD) techniques. ParaView runs on distri-
buted and shared memory parallel machines as well as 
single processor PC and has been successfully tested 
on Windows, Mac OS X, Linux and various Unix 
workstations, clusters and supercomputers. Under the 
hood, ParaView uses the VTK [22] as the data pro-
cessing and rendering engine and has a user interface 
written using Qt [20]. 

ParaView is designed as layered architecture. The 
foundation is VTK, which provides data representa-
tions, visualization algorithms, and a mechanism to 
connect these representations and algorithms together 
to form a working program. The second layer is the 
parallel extensions to the VTK. This layer extended 
VTK to support data streaming and parallel compu-
ting. These extensions are currently part of the toolkit. 
The third layer is ParaView itself.  

ParaView is designed as a three-tier client-server 
architecture. Data Server is the unit responsible for 
data reading, filtering, and writing. All of the pipeline 
objects seen in the pipeline browser are contained in 
the data server. Render Server is the unit responsible 
for rendering. Client is the unit responsible for establi-
shing visualization. Employing GUI the client controls 
the object creation, execution, and destruction. These 
logical units need not be physically separated. In the 
most common client-server mode, the pvserver prog-
ram is executed on a parallel machine. ParaView client 
application connects to the server. The pvserver prog-
ram has both the data server and render server embed-
ded in it. The client and server are connected via a 
socket, which is assumed to be a relatively slow mode 
of communication, so data transfer over this socket is 
minimized. 

ParaView provides highly configurable GUI based 
on Qt for the interactive exploration of large datasets 
(Figure 1). GUI layout is highly configurable, so that 
it is easy to change the look of the window. The tool-
bars can be moved around and even hidden from view. 
Any VTK or user developed filter can be added to 
ParaView if the user provides a simple XML descrip-
tion for its user interface for its property sheet. Para-
View’s user interface can be modified and extended 
both statically, with XML configuration files and 
dynamically at a run time. One of the most convenient 
ways to automate ParaView is to use the Python scrip-
ting that is built into ParaView. Sometimes it is conve-
nient to automate post-processing and visualization 
with a Python script that completely bypasses the GUI 
and any need for user intervention. ParaView comes 
with a program called pvbatch. It can run in parallel 
without having to establish a slow client/server con-
nection. 

ParaView supports large data visualization via 
techniques that include data streaming, LOD rendering 
and parallel computing. ParaView supports parallelism 
using either shared memory processes via threads or 
distributed memory via MPI. ParaView uses a parallel 
rendering library called IceT. It uses a sort-last algo-
rithm for parallel rendering. This parallel algorithm 
allows each process to independently render its parti-
tion of the geometry and then composes the partial 
images together to form the final image. The wonder-
ful thing about sort-last parallel rendering is that its 
efficiency is completely insensitive to the amount of 
data being rendered. This makes it a very scalable 
algorithm and well suited to large data. 

3. Software implementation in grid 

By default, the ParaView client connects to the 
server, but sometimes security policies require the 
ParaView server to be behind a firewall or some other 
network limiting technology. Configuration like gLite 
Computing Element denies incoming connection re-
quests and adds challenges to configuring the server to 
connect with a client. 
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Figure 1. ParaView GUI containing interactive visualization of the industrial oil filter 6HP26 

ParaView was implemented in gLite grid by using 
special client-server communication mode named re-
verse connection (Figure 2). If the server is behind the 
firewall, you can reverse the connection direction: the 
server will connect back to the client. The server is 
instructed to perform a reverse connection by simply 
adding the -rc flag to its command line: 

> mpirun -np 4 pvserver -rc --client-host=host.lt                
--use-offscreen-rendering 

 

Figure 2. Reverse connection mode of client-server 
communication employed in grid 

Provided command runs ParaView server employ-
ing offscreen CPU rendering on 4 nodes and establi-
shes a reverse socket connection between the first 
node of the server and the client running on host.lt. 
This socket by default is on port 11111. 

Two modes of user interaction have been imple-
mented in BalticGrid: 
• Interactive mode based on GUI, 
• Batch mode employing Python scripting. 

User can start interactive visualization session 
employing full power of GUI and highly interactive 
widgets. Interactive GUI can run on grid by using 
client-server communication mode named reverse 
connection. ParaView program pvserver, containing 
data server and render server, runs on Working Nodes 
and establishes a reverse socket connection between 

the first node of the server (rank=0 MPI process) and 
the client running on a local PC. Alternative batch 
mode is very attractive for experienced grid users that 
generate long animations. GUI is disabled and the 
slow socket communication is replaced by usual grid 
protocols and utilities for file transfer. 

4. ParaView deployment on grid  

ParaView 3.6.1 has been deployed in BalticGrid-II 
[2] in order to provide for numerous users enhanced 
application services aimed for visualization of large 
datasets produced in grid. Deployment has been per-
formed by using BalticGrid-II SGM (Software Grid 
Manager) system. All software packages are installed 
in the predefined location, which is specified by con-
tent of special variable. After successful installation, 
the SGM marks the site in global grid information sys-
tem as capable of running this particular application. 
By use of this flag, called "a tag" the ordinary users 
may indicate which sites they want to use.  

ParaView has been deployed and tested on several 
sites that are marked by ParaView tags: VO-balticgrid-
A-GRAPHICAL-PARAVIEW-3.6.1-OSMESA (CPU 
rendering) and VO-balticgrid-A-GRAPHICAL- 
PARAVIEW-3.6.1-DRI (GPU rendering). Required 
environment can be read from the source file env.sh. 
Installed software as well as the file env.sh resides in 
the predefined directory. ParaView dependencies like 
Mesa and OpenMPI have been installed by using 
separate SGM scripts. 

The most of grid sites are targeted for CPU rende-
ring, because of GPU installation issues and of the 
absence of professional high performance graphics 
hardware. Moreover, it is quite difficult to use GPU 
rendering and to gain satisfactory performance on 
heterogeneous multi-core architectures. gLite JDL abi-
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lities are not enough flexible for running parallel MPI 
jobs on multi-core nodes. In general, GPUs can be 
implicitly shared by pointing multiple processes to the 
same display on the same host. One problem is that 
many GPUs will not render correctly two windows on 
top of each other. The two windows share memory 
space and clobber each others memory. The pvserver 
assumes that each process has equal access to local 
rendering. This means that there is no special mecha-
nism to coordinate the rendering between pairs of pro-
cesses. Thus, GPU rendering can not be directly 
applied on multi-core architectures of grid clusters.  

In order to avoid the described problem, the --use-
offscreen-rendering flag can be employed. This will 
create each rendering context in its own offscreen buf-
fer and guarantees that the memory will not overrun 
that of another rendering context: 

> mpiexec pvserver -rc --client-host=host.lt -display :0.0       
--use-offscreen-rendering  

Provided command executes pvserver on the num-
ber of cores, which is defined in JDL file. One node 
has several cores, but only one GPU is available per 
node. Thus, user launches one process per CPU and 
lets multiple processes send rendering requests to the 
same GPU. This option will maximize the speed of 
filter processing, but will throttle down the rendering 
speed as GPU processors and buses must be shared. 
However, the rendering speed can be throttled quite a 
bit before making a serious impact on visualization 
performance, even when running interactively. 

Special purpose parallel reader is developed for 
unstructured datasets stored in predefined HDF5 [7] 
format. It is adapted for the nature of pilot applications 
that decompose the solution domain into sub-domains, 
each being assigned to a processor, and ensure load 
balancing. Each process writes its own result file, 
which can be read and visualised independently. De-
veloped reader is based on the idea that each process 
independently reads its file, independently performs 
visualization and sends resulting image to the rank=0 
MPI process. Parallel rendering library composites the 
partial images together and forms the final image, 
which is sent to a client. Information on partitioned 
data files is stored in XML file, which is read by main 
process running on the rank=0 MPI node. Each 
process receives the name of data file and other 
parameters from the main process. Then it works 
independently until partial image is sent to the main 
process. Efficiency of performed visualization is 
completely insensitive to the amount of data being 
rendered. This makes it a very scalable algorithm well 
suited to large data. 

5. Description of benchmark problem 

ParaView is very useful for BalticGrid users per-
forming large distributed computations of actual in-
dustrial problems like oil filters, sediment transport, 
dam break, rail guns, nano-powders, compacting, mi-

xing and hopper discharge [10, 11, 13-15, 25]. For 
example, porous media flow has been investigated in 
oil filters. Up to 9 millions finite volumes have been 
employed for modelling of the real industrial filter 
6HP26 (Figure 1). Particle systems have been chosen 
as a pilot application for visualization, because of 
large number of particles that are employed modelling 
and visualizing actual industrial applications [14-15]. 
Particle systems have no permanent connections or 
usual grid that can be applied for visualization pur-
poses. Discrete element computations are based on 
particle positions, forces acting between particles and 
Newton’s laws.  

 
Figure 3. 100037 poly-dispersed particles visualized on 4 

processors 

Visualization of the tri-axial compaction problem 
[15] of poly-dispersed particle systems (Figure 3) is 
considered for performance analysis of ParaView. The 
three-dimensional computational domain imitates a re-
presentative macroscopic volume element containing 
particles and presents a box in the form of rectangular 
parallelepiped. Numerical solution of tri-axial com-
paction helps to evaluate unknown material properties. 
This problem is very actual and widely solved in the 
area of material sciences. 

The considered benchmark is based on the glyph 
generation, because particles and computed forces are 
often represented by glyphs that can be coloured by 
investigated scalar values or oriented by the examined 
vectors. The examined poly-dispersed system contains 
100037 heterogeneous particles. Meaningful data are 
composed from the positions of particles and their 
radius, therefore, the real size of the visualized dataset 
is quite small (3.13 MB). Numerical results include a 
lot of values of primary and derived variables that are 
written in HDF5 [7] files supplemented by XML 
metadata. Moreover, results of ten iterations have been 
written to result files. Thus, the size of complete 
HDF5 file is equal to 235.16 MB. The total size of 
partitioned result files is up to 236.59MB, which is 
close to the size of the single file. Particles are 
represented by generated spherical glyphs (Figure 3). 
The size of the object, which encapsulates data of 
generated glyphs, is equal to 326 MB. Rendered 
polygon mesh consists of 9603552 cells and 5001850 
vertices.  

The most importand thing is that the size of rende-
red polygon mesh (glyphs) is significantly larger than 
the initial data size (Figure 4). Usually, the second 
order difference is observed, for example 3.13 MB 
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and 326 MB. It makes the described benchmark very 
specific and inconvenient for some visualization tools. 
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Figure 4. Size of considered dataset 

6. Performance tests and discussions 

Designing visualization software to run on special 
purpose hardware always results in high cost super-
computers [6]. These high-end resources are expen-
sive and often based in secure location with limited 
access privileges. Average consumers, with their ac-
tual spending power, are driving developed software 
and required technology. Visualization must find ways 
to leverage these requirements, otherwise it will be left 
aside of the community life. Therefore, heterogeneous 
grid architecture based on ordinary PC clusters and 
comodity hardware should be the main target of the 
research. Efficient visualization performed by using 
ordinary personal computers reveals challenge, but is 
highly appreciated in academic communities. The 
desktop delivered visualisation and grid computing 
should become solutions to provide sufficient perfor-
mance visualizing a relatively large dataset using 
relatively cheap PC clusters connected by a usual 
network.  

The benchmark was performed on BalticGrid test-
bed ce2.grid.vgtu.lt collected from ordinary personal 
computers and equipped by high performance GPUs. 
This cluster was considered for benchmark, because it 
supported direct GPU rendering and was targeted for 
visualization purposes. The cluster based on the multi-
core architecture consists of 14 HP Compaq dc7900 
personal computers (nodes) including Pentium(R) 
Dual-Core CPU E5300 (128KB L1 cache and bus 
frequency equal to 2.60GHz), 4GB DDR2 RAM 800 
MHz, Seagate 500GB HDD (timing buffered disk 
reads 129.59 MB/sec). Each node is equipped by high 
performance GPU (Nvidia GeForce 9600GT 512MB 
256bit). Nodes are connected to 1Gbps Ethernet LAN 
by 3Com Baseline Switch 2928-SFP Plus (24 auto 
sensing 10/100/1000Mbps Base-TX ports). 

Performance of ParaView software was evaluated 
by the measurements of parallel speed-up Sp: 

p
p t

t
S 1=   

where t1 is the program execution time for a single 
processor; tp is the wall clock time for a given job to 

execute on p processors. The benchmark tests were 
repeated up to ten times and the averaged values were 
provided in Table 1. Only tests performed in the usual 
gLite grid conditions, when two processes run on one 
dual-core node and employ the same GPU, are pre-
sented in Table 1. Other cases were also examined in 
order to perform quantitative comparison.  

Table 1. The benchmark results obtained on the grid testbed 

 1 2 4 6 8 

Reader, s 0.01939 0.01182 0.00744 0.00586 0.00505 
Sphere, s 0.00044 0.00047 0.00047 0.00046 0.00046 
Glyphs, s 12.90 5.71 2.92 1.85 1.48 
Geometry, s 2.20 1.12 0.57 0.38 0.28 
MPI(Client), s 0.00025 0.00026 0.00021 0.00025 0.00021 
MPI(Server), s 0.00013 0.00014 0.00015 0.00016 0.00016 
GPU render, s 5.72 4.69 2.40 1.63 1.24 
CPU render, s 20.07 11.46 5.84 3.96 3.03 

The main attention was focused on the perfor-
mance of the developed HDF5 reader, rendering of the 
resulting polygon mesh and speed-up attained. The 
first row shows the number of processes. The second 
row shows the time consumed by the developed HDF5 
file reader. The third row presents the run time of 
vtkSphereSource module, which generates spherical 
particles. This time is negligible comparing to time 
consumed by other visualization filters. The fourth 
row provides the performance results of the 
vtkPVGlyphFilter. The fifth row presents the time 
spent on generating outlines by the vtkPVGeo-
metryFilter. The next rows provide data on communi-
cation performed by MPI. The sixth row presents time 
spent by vtkMPIMoveData module on the client, while 
the seventh row presents time consumed by 
vtkMPIMoveData on the rank=0 MPI node of the 
server. The zero process gathers all results from other 
processes and sends resulting image to the client. 
Communication times of other processes are signifi-
cantly shorter. In general, parallel communication was 
fast enough and consumed negligible amount of time. 
The eight row and the ninth row show GPU and CPU 
rendering time, respectively. Work performed by 
vtkPolyDataMapper, 
vtkOrderedCompositeDistributor, 
vtkPVUpdateSuppressor is not investigated, because it 
takes about 10-4s or even 10-5s. 

The data transfer between the remote parts of the 
distributed visualization environment was also consi-
dered. HDF5 files were transferred from the Storage 
Element to Working Nodes by using LFC means. This 
process lasted from 8.6 s to 17.08s. The consumed 
time linearly depended on the number of partitioned 
files and their total size, which varied from 235.16MB 
to 236.59MB. In average, job submission to the grid 
testbed took about 15.7s. It is worth to note that job 
submission and data transfer in grid environment takes 
quite significant amount of time. The performance 
analysis of gLite Resource Broker and LFC does not 
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fall to the scope of current research, therefore, inves-
tigation was not performed. 
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Figure 5. Execution time of the developed parallel reader 

for partitioned HDF5 files 

Figure 5 shows the execution time of parallel 
HDF5 reader for different number of processors. 
Shared home systems are considered as well as 
distributed home clusters. Before averaging, tests were 
repeated more than one hundred times. The curves D-
PN2 and S-PN2 represent data reading on distributed 
home and shared home, respectively. In both cases, 
two processes run on one double-core node and use 
the same hard disk drive. The curve D-PN1 represents 
data reading from distributed home by one process per 
node. The best performance was measured in this 
case, that was expected. However, the difference 
measured is not significant. It can be explained by 
rather small data size and complex inherited structure 
of all ParaView readers. In general, the developed 
reader demonstrated good parallel performance in real 
grid environments based on distributed or shared 
home systems (curves D-PN2 and S-PN2). 

Figure 6 illustrates rendering performance employ-
ing CPU as well as GPU. Figure 6a shows rendering 
time, while Figure 6b illustrates speed-up Sp 
measured. The curves GPU-1 and GPU-2 represent 
GPU rendering performed by one process per node 
and two processes per node, respectively. The curve 
CPU-2 represents CPU rendering performed by two 
processes running on one dual-core node. The special 
curve Ideal shows ideal speed-up. Rendering time of 
two processes sharing one GPU (the curve GPU-2) is 
not significantly different from that of two processes 
employing separate GPUs (the curve GPU-1). How-
ever, measured speed-up Sp of GPU-2 is significantly 
lower, which leads to bad scaling on larger number of 
processors. In general, GPU rendering significantly 
outperforms the CPU rendering for relatively small 
number of processors. However, speed-up Sp of CPU 
rendering is higher, which gives advantage employing 
large number of processors.  
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Figure 6. Rendering performance: (a) rendering time; 
 (b) parallel speed-up 
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Figure 7. Parallel speed-up of vtkPVGlyphFilter 

Figure 7 demonstrates the parallel speed-up of 
glyph generation. vtkPVGlyphFilter requires long exe-
cution time (Table 1), but it does not need any inter-
processor communication. Thus, even super-linear 
speed-up caused by advantageous cashing can be 
obtained (Figure 7). However, it was observed that 
other filter vtkPVGeometryFilter runs efficiently for 
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problems without complex topologies. In other cases, 
any significant speed-up can not be achieved 
increasing the number of processors [12]. 
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Figure 8. Total performance of visualization:  
(a) execution time; (b) parallel speed-up 

Figure 8 illustrates the parallel performance of the 
whole visualization process employing GPU rendering 
or CPU rendering. Figure 8a shows execution time, 
while Figure 8b provides speed-up measured. The 
total execution time of visualization employing GPU 
is shorter than that of using CPU rendering. However, 
parallel speed-up of visualization employing GPU ren-
dering is lower, therefore, the total time of visuali-
zation becomes significantly closer when 8 processes 
are used. It can be concluded that Figure 8b proves 
high speed-up of visualization performed on grid 
testbed based on multi-core architecture. 

6. Conclusions  

In this paper, deployment and performance of 
visualization software ParaView on BalticGrid infra-
structure was investigated and described. Reverse con-
nection enabled implementation of fully interactive 
user communication mode in grid built by gLite 
midleware. ParaView software was sucsesfully dep-
loyed on BalticGrid testbed collected from ordinary 
dual-core computers equiped by GPUs. The bench-

mark based on visualization of poly-dispersed particle 
systems illustrated high efficiency of the deployed 
software. The developed reader for partitioned un-
structured HDF5 files demonstrated good parallel 
performance in real grid environment. GPU rendering 
on multi-core architectures significantly reduced vi-
sualization time. However, measured speed-up of 
GPU rendering was not high enough, which limited 
employing large number of processors. Performed 
speed-up analysis revealed that deployed ParaView 
software is well designed for distributed visualization 
of considered datasets. 
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