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Abstract. This paper presents a new automatic 3D mesh-based centerline extraction (3D-MCE) algorithm, which 

allows an accurate extraction of 3D centerline from a tubular geometry form, without manned intervention. The 3D-

MCE does not require any input parameters and works on polygon mesh vertices producing a thin, connected and 

centered centerline, without needing pre or post-processing stages. In order to extract the centerlines by 3D-MCE 

algorithm, several regular and irregular 3D surface meshes of medical anatomy models, generated either from real CT 

colonoscopy datasets or numerically, have been processed. The validation of the 3D-MCE has been done on models of 

generic helical tubular geometry forms, where several parameters have been varied: curvature, thickness of tubes and 

density of surface nodes. Results show that 3D-MCE algorithm statistically extracts accurately and efficiently the 

centerline of the tubular geometry structures, independently from the density of surface nodes, curvature and thickness. 

The precision of 3D-MCE algorithm is confirmed by a comparison with the well-known Voronoi diagram centerline 

extraction method. 
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1. Introduction 

Nowadays, the visualization and analysis of 3D 

models are becoming more widespread. 3D technolo-

gy is rapidly emerging as time progresses. As a result, 

the need to develop new processing algorithms is 

increasing. Due to the large amount of data contained 

in 3D objects, their processing becomes difficult and 

the need to work with smaller sets with the same total 

amount of data becomes crucial. Centerline extraction 

algorithms deliver solutions that can handle this 

challenge. The centerline, also known as medial axis 

transform, is defined by Blum [1] as the center of 

maximal disks in 2D or balls in 3D contained in the 

shape. It provides along with compact description, 

significant geometrical and topological information of 

the 3D objects. The centerline is used in a large 

number of applications such as path planning for 3D 

navigation [2, 3], mesh generation [4, 5], animation 

[6, 7], data compression [8, 9], pattern recognition 

[10, 11], and images segmentation [12, 13], among 

others. 

Several algorithms have been proposed to compute 

the centerline; most of them can be classified into four 

categories: topological thinning, distance transform, 

shortest path, and Voronoi diagrams. 

The topological thinning is defined as iteratively 

boundary peeling (layer by layer). This procedure ide-

ntifies and removes the simple points [14] that satisfy 

specific constraints, sequentially [15, 16] or in parallel 

[17-19], and then converts them into background 

points. A thinning procedure does not stop until no 

further simple point can be found. The result of thinn-

ing is a centerline that preserves the topology of the 

object, but it is not necessarily centered because of the 

sensitivity of the method to boundary complexity. In 

addition, such a method is computation time greedy. 

The distance transform is applied to the whole 

geometry volume to assess distance maps [20-23]. The 
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centerline is extracted from the local maxima of the 

distance map. However, this method needs further 

post-processing to produce the centerline because it 

doesn’t generate a thin centerline directly and doesn’t 

preserve the topology of the shape.  

The shortest path is based on tracing back the 

centerline from the minimal path between the start and 

end points which are  initially defined by the user [24, 

25]. While the advantage of this procedure is its low 

time complexity, its drawback related to its inaccuracy 

as short paths are sought essentially. 

The Voronoi diagrams imply that the internal edges 

and faces are extracted and then pruned according to 

some angles and length criteria [26-30]. Nevertheless, 

the objects with irregular boundaries are likely to have 

dense Voronoi diagrams, and hence, significant prun-

ing of the medial surface is needed to produce a thin 

centerline. Added it is hard to implement. 

All of the techniques described above need input 

parameters to extract the centerline, and don’t usually 

produce a one voxel thick, connected and smooth 

centerline directly. Most of them suffer from thick-

ness, centrality of centerline points and sensitivity to 

boundary complexity problems. Consequently, they 

further need post-processing stages to refine the cen-

terline. In this paper, a new automatic 3D mesh-based 

centerline extraction (3D-MCE) algorithm for 3D non-

branching tubular geometry forms is presented. This 

novel method is simple to implement and applies 

directly on the mesh domain. Centerline coordinates 

are measured from mesh connectivity analysis without 

any pre- or post-processing extra stages and this gives 

directly a one voxel thick centerline. This algorithm is 

not sensitive to boundary noise and does not require 

prior knowledge of the object shape. It is fully 

automatic. In order to evaluate the 3D-MCE algo-

rithm, a comparison with the well-known and widely 

used Voronoi diagram algorithm is performed. 

The proposed algorithm is explained in details in 

Section 2 and its results are analyzed in Section 3. 

Concluding remarks are given in Section 4. 

2. Methodology 

To extract the centerline, the 3D-MCE algorithm 

exploits triangle mesh connectivity [31]. In 3D 

modeling, polygon mesh is a group of vertices, edges 

and faces that defines the object [32, 33]. The most 

common representation of 3D surfaces is triangle 

mesh, which comprises a type of polygon mesh where 

faces are triangles connected by their common edges 

or vertices (refer to Figure 1). 

The vertices are coordinates in a three dimensional 

Euclidean space of real numbers  𝑅3 . Edges are 

connections between vertices, every edge connects 

two vertices. Triangular face is a closed set of three 

edges. A group of 𝑛  vertices 𝑉  with theirs corres-

ponding 𝑘  edges 𝐸  characterize a 3D mesh model 

𝑀 = {𝑉, 𝐸}: 

 

Figure 1. (a) Triangle face, (b) Triangle mesh, (c) Triangle 

mesh of 3D tubular model 

 

𝑉 = {(𝑣𝑖
𝑥 , 𝑣𝑖

𝑦
, 𝑣𝑖

𝑧) ∈ 𝑅3, 1 ≤ 𝑖 ≤ 𝑛} (1) 

𝐸 = {𝑒𝑖𝑗
𝑞
 ,1 ≤ 𝑞 ≤ 𝑘} (2) 

where 𝑒𝑖𝑗
𝑞

 denotes the 𝑞𝑡ℎ edge that join the 𝑖𝑡ℎ vertex 

with the 𝑗𝑡ℎ one. 

Using the triangle mesh 𝑀 , 3D-MCE algorithm 

involves several steps to compute the centerline. The 

process operations are represented in the flowchart 

illustrated by Figure 2. 

2.1. External Vertices Extraction 

The extraction of the external vertices is an 

essential step in 3D-MCE algorithm. It allows the 

location of the external vertices from the input mesh 

𝑀 by the exploration of edges connectivity.  

Let 𝑀 be a triangle mesh 𝑀 = {𝑉, 𝐸}, where 𝑉 is 

the set of all mesh vertices and 𝐸 is the list of all mesh 

edges. The edge 𝑒𝑖𝑗 ∈ 𝐸, that connects the vertex 𝑣𝑖 

with the vertex 𝑣𝑗 , can be classified into two 

categories according to its location: 

 Edges that bound two triangles are called internal 

edges. e.g. the triangles ∆(𝑣1,𝑣2,𝑣3) and ∆(𝑣1,𝑣3,𝑣4) of 

the triangle mesh represented in Figure 3 share the 

internal edge 𝑒13 ; the triangles ∆(𝑣1,𝑣5,𝑣6)  and 

∆(𝑣1,𝑣6,𝑣7) share the internal edge 𝑒16. 

 Edges that bound exactly one triangle are called 

external edges. e.g. the external edge 𝑒82   of the 

triangle mesh represented in Figure 3 belongs only 
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to the triangle ∆(𝑣1,𝑣8,𝑣2) , and the external edge 

𝑒56 belongs only to the triangle ∆(𝑣1,𝑣5,𝑣6). 

Using the two definitions given above, the set of 

all mesh 𝑀 edges 𝐸 can be divided into two subsets: 

the internal edges subset 𝐸𝑖𝑛𝑡  and the external edges 

subset 𝐸𝑒𝑥𝑡: 

𝐸 = {𝐸𝑖𝑛𝑡 ∪ 𝐸𝑒𝑥𝑡}. (3) 

The external edge 𝑒𝑖𝑗 ∈ 𝐸𝑒𝑥𝑡  of the mesh 𝑀 

connects the external vertex 𝑣𝑖  with the external 

vertex 𝑣𝑗. Every external edge connects two external 

vertices. The external vertices extraction steps of  

3D-MCE algorithm consist of looking for the external 

vertices 𝑉𝑒𝑥𝑡  of the mesh 𝑀, that connect all external 

edges 𝐸𝑒𝑥𝑡  (refer to Figure 4). 

 

Figure 2. 3D-MCE flowchart 

 

 

Figure 3. Triangle mesh (green color) and its external edges 

(red color) 

2.2. Reference and Moving Section Selection 

The aim of this step is to divide the external 

vertices 𝑉𝑒𝑥𝑡  extracted in the previous step, into two 

subsections. The purpose is to make a distinction 

between the inlet and the outlet of the 3D tubular 

geometry form. To do so, the external vertices 𝑉𝑒𝑥𝑡  are 

partitioned into two exclusive clusters using the 

Agglomerative Hierarchical clustering method  

[34-38]. The agglomerative hierarchical clustering 

method starts with each external vertex in its own 

cluster and proceeds progressively by joining the 

closest clusters until two different clusters are formed. 

The first cluster represents the reference section 

vertices  𝑉𝑟𝑒𝑓 , and the second one represents the 

moving section vertices  𝑉𝑚𝑜𝑣 (refer to Figure 5): 

𝑉𝑒𝑥𝑡 = {𝑉𝑚𝑜𝑣 ∪ 𝑉𝑟𝑒𝑓}. (4) 

 

Figure 4. External vertices (magenta color) of a 3D tubular 

geometry form (green color) 

 

 

Figure 5. Reference and moving sections 
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2.3. Moving Section Progression 

Once the first moving section is detected, it must 

travel along the tubular geometry form; until it reaches 

the reference section (refer to Figure 6). This progress 

is performed by looking at the adjacent vertices of  

the actual moving section, in order to find the  

nearest section. This task can be done by calculating 

the distance between the moving section vertices 𝑉𝑚𝑜𝑣  

and all mesh 𝑀 vertices, in order to select the vertices 

that minimize the distance. However, such a method is 

time consuming, that’s why another approach is used 

in this paper to find the nearest section. 

Assuming that the difference between two sets of 

vertices 𝐴 ∈ 𝑅3 and 𝐵 ∈ 𝑅3 is denoted ||, and 𝑎 ∈ 𝑅3 

is a set of vertices that belong to 𝐴 and don’t belong  

to 𝐵: 

𝐴||𝐵 = {𝑎 ∈ 𝑅3, 𝑎 ∈ 𝐴, 𝑎 ∉ 𝐵}. (5) 

The moving and reference sections, 𝑉𝑚𝑜𝑣 and 𝑉𝑟𝑒𝑓 , 

are used to extract the new moving sections 𝑉𝑚𝑜𝑣
𝑛𝑒𝑤 

through the following steps: 

1. Mark all the moving section vertices 𝑉𝑚𝑜𝑣 as 

visited vertices 𝑉𝑚𝑜𝑣
↺ . 

2. Ignore the visited vertices 𝑉𝑚𝑜𝑣
↺  in the mesh  

𝑀  vertices. Accordingly, a new mesh is 

obtained using equation (5): 𝑀𝑛𝑒𝑤 =
𝑀||𝑉𝑚𝑜𝑣

↺ . 

3. Extract the new external edges 𝐸𝑒𝑥𝑡
𝑛𝑒𝑤 and 

vertices 𝑉𝑒𝑥𝑡
𝑛𝑒𝑤 from the new mesh 𝑀𝑛𝑒𝑤. 

4. The new moving section is obtained using 

equation (5): 𝑉𝑚𝑜𝑣
𝑛𝑒𝑤 = 𝑉𝑒𝑥𝑡

𝑛𝑒𝑤||𝑉𝑟𝑒𝑓 .   

5. Repeat Steps 1, 2, 3, and 4 until 𝑀𝑛𝑒𝑤 =
𝑉𝑒𝑥𝑡
𝑛𝑒𝑤. 

 

Figure 6.  Moving section progression (red color) 

2.4. Centerline Extraction 

After the identification of the moving sections 

along the tubular geometry form, the centerline is 

defined as the union of all the centroids 𝐶  of the 𝜑 

existent moving sections 𝑉𝑚𝑜𝑣1,…,𝜑 , from the first 

moving section to the reference section: 

𝑉𝑚𝑜𝑣𝑘 = {(𝑣𝑖
𝑥,𝑘 , 𝑣𝑖

𝑦,𝑘
, 𝑣𝑖

𝑧,𝑘) ∈ 𝑅3, 1 ≤ 𝑖 ≤ 𝑚} (6) 

𝐶𝑘 =

{
 
 

 
 𝑐𝑥,𝑘 = 𝑣

𝑥,𝑘 =
1

𝑚
∑ 𝑣𝑥,𝑘𝑚
𝑖=1

𝑐𝑦,𝑘 = 𝑣𝑦,𝑘̅̅ ̅̅ ̅ =
1

𝑚
∑ 𝑣𝑦,𝑘𝑚
𝑖=1

𝑐𝑧,𝑘 = 𝑣𝑧,𝑘̅̅ ̅̅ ̅ =
1

𝑚
∑ 𝑣𝑧,𝑘𝑚
𝑖=1

 (7)  

3𝐷 −𝑀𝐶𝐸 𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 = 𝐶3𝐷−𝑀𝐶𝐸 = {⋃ 𝐶𝑘}
𝜑
𝑘=1 . (8) 

3. Experiments and Results 

The 3D-MCE algorithm was tested on 3D generic 

models, the obtained centerlines can be seen in 

Figure 7 and, on a 3D colon model constructed  

from computed tomography CT colonoscopy  

dataset downloaded from the cancer imaging  

archive [39], the obtained centerline is shown in 

Figure 8. 
 

 

 

Figure 7. 3D-MCE centerline (blue color) of 3D generic 

models (green color) 
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In order to compare the 3D-MCE centerline with 

the widely used Voronoi diagram centerline [29, 30] 

integrated within the Vascular Modeling Toolkit open-

source software package (VMTK)  [40], ten 3D helical 

tubular models with irregular radius were generated by 

creating irregular circular helix curves of radius 𝑎 and 

pitch 2𝜋𝑏  using the known parametric equation (9) 

(refer to Figure 9.a).  

𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = {

𝑥(𝑡) = 𝑎𝑐𝑜𝑠 (𝑡)

𝑦(𝑡) = 𝑎𝑠𝑖𝑛 (𝑡)

𝑧(𝑡) = 𝑏𝑡

 (9) 

As shown in Tables 1 and 2, the 3D helical tubular 

models have different radius 𝑎, slope 𝑏 and dissimilar 

number of mesh triangles. 

To evaluate the centerlines produced by 3D-MCE 

and Voronoi diagram algorithms on the ten created 3D 

models, two fits in two dimensional subspaces were 

done:  

1. Iterative nonlinear least squares circular fit  

[41, 42] to estimate the radius �̂� on the two 

dimensional subspaces {𝑋, 𝑌}  of the 3D 

centerline (refer to Figure 9.b). 

2. On the {𝑌, 𝑍} plane of the 3D centerline, the 

distance between two points that make a 

complete revolution is used to find the slope 

 �̂� (refer to Figure 9.c). 

The results of estimated radius �̂�  and slope �̂� from 

the 3D-MCE and Voronoi diagram centerlines of the 

ten created 3D models are depicted in Tables 1 and 2. 

The main contribution of 3D-MCE algorithm is its 

autonomy and accuracy; the 3D centerline is generated 

automatically without needing any input parameters, 

and it produces a centered, connected and thin 

centerline even if the 3D models are noisy (refer to 

Figures 7, 8 and 9.a), because it calculates, for each 

section of the 3D tubular form, a center of gravity, in 

an iterative manner, which gives directly a one voxel 

thick centerline with no need to any prune stages. 

 

Figure 8. 3D-MCE centreline (blue color) of a 3D  

colon model (green color) 

Compared to the 3D-MCE algorithm, the Voronoi 

diagram centerline extraction procedure is not fully 

automatic; in the Voronoi method, the user has to 

define two points: a seed point where the desired 

centerline starts, and a target point where the desired 

centerline ends. A small change in the position of 

those points can produce a strong effect on the 

generated centerline. Although the level of accuracy is 

close to the Voronoi diagram, the proposed method is 

fully automatic and it does not involve complicated 

mathematical tool. 

 

 

Figure 9. (a) 3D helical tubular model with irregular radius 

(green color) and its 3D-MCE centerline (blue color),  

(b) Nonlinear least squares circular fit (red color) of  

3D-MCE centerline points (blue color), (c) Sinusoidal  

fit (red color) of 3D-MCE centerline points  

(blue color) 



Automatic 3D Mesh-Based Centerline Extraction from a Tubular Geometry Form 

161 

Table 1. Radius based comparison between 3D-MCE and Voronoi diagram methods 

 
Estimation of the Radius of the Models 

 
3D-MCE method Voronoi method 

 

Model 

 

𝒂 

 

𝒃 

Number 

of 

triangles 

 

�̂� 

 

𝝈 

�̂�𝒎𝒂𝒙 

𝒂𝒕 

95% 

�̂�𝒎𝒊𝒏 

𝒂𝒕 

95% 

 

�̂� 

 

𝝈 

�̂�𝒎𝒂𝒙 

𝒂𝒕 

𝟗𝟓% 

�̂�𝒎𝒊𝒏 

𝒂𝒕 

𝟗𝟓% 

M1 20 9 20040 19,9779 0,0138 20,0049 19,9509 20,1038 0,1284 20,3556 19,8521 

M2 10 6 13320 9,9863 0,0379 10,0606 9,9121 10,1695 0,1359 10,4358 9,9033 

M3 43 7 9960 42,81 0,0154 42,8402 42,7798 42,902 0,036 42,9726 42,8314 

M4 30 15 22280 29,9737 0,0136 30,0003 29,9471 30,0466 0,0923 30,2274 29,8657 

M5 20 35 25080 19,9907 0,0371 20,0634 19,918 20,014 0,0443 20,1008 19,9271 

M6 9 15 18200 8,9896 0,0384 9,0649 8,9143 9,0832 0,0868 9,2532 8,9131 

M7 60 70 28680 59,9678 0,0134 59,9942 59,9415 59,9119 0,0205 59,9521 59,8717 

M8 27 11 33400 26,9891 0,0134 27,0154 26,9628 27,0633 0,1047 27,2686 26,858 

M9 100 11 40120 99,9729 0,0138 100 99,9459 99,8626 0,0309 99,9232 99,8019 

M10 55 19 50200 54,9994 0,0402 55,0781 54,9207 55,0264 0,1157 55,2532 54,7995 

 

Table 2. Slope based comparison between 3D-MCE and Voronoi diagram methods 

 
Estimation of the Slope of the models 

 
3D-MCE method Voronoi method 

 

Model 

 

𝒂 

 

𝒃 

Number 

of 

triangles 

 

�̂� 

 

𝝈 

�̂�𝒎𝒂𝒙 

𝒂𝒕 

𝟗𝟓% 

�̂�𝒎𝒊𝒏 

𝒂𝒕 

𝟗𝟓% 

 

�̂� 

 

𝝈 

�̂�𝒎𝒂𝒙 

𝒂𝒕 

𝟗𝟓% 

�̂�𝒎𝒊𝒏 

𝒂𝒕 

𝟗𝟓% 

M1 20 9 20040 8,9934 0,0542 9,0997 8,8871 9,0163 0,25 9,5062 8,5263 

M2 10 6 13320 5,9953 0,034 6,0619 5,9288 6,0357 0,1878 6,4038 5,6677 

M3 43 7 9960 6,9917 0,0656 7,1203 6,8631 6,9916 0,0353 7,0608 6,9224 

M4 30 15 22280 15,0157 0,0432 15,1003 14,9311 14,9858 0,094 15,17 14,8016 

M5 20 35 25080 34,9873 0,0158 35,0183 34,9564 34,9715 0,5022 35,9558 33,9871 

M6 9 15 18200 15,0093 0,0705 15,1475 14,8711 14,9133 0,7154 16,3155 13,5111 

M7 60 70 28680 69,9275 0,2579 70,4329 69,422 69,9724 0,0896 70,1479 69,7969 

M8 27 11 33400 10,9947 0,0344 11,0621 10,9273 10,9807 0,1292 11,2339 10,7275 

M9 100 11 40120 11,0592 0,029 11,0592 10,9455 10,9743 0,0073 10,9886 10,9599 

M10 55 19 50200 18,9933 0,0012 18,9933 18,9887 19,2071 0,3941 19,9796 18,4347 

 

As shown in Tables 1 and 2, the 3D-MCE algo-

rithm gives a smaller 95% confidence interval com-

pared to the Voronoi diagram, which means that the 

region around the true value is smaller for the  

3D-MCE, compared with the Voronoi diagram 

method. Results show that for the both estimated 

parameters (radius and slope), the proposed 3D-MCE 

approach provides narrower 95 % confidence intervals 

compared to Voronoi diagram method. 

In order to evaluate the sensitivity of 3D-MCE 

method to the density of triangles of the 3D models, 

fourteen helical models were generated using the 

equation (9), with constant radius 𝑎 = 25 and slope 

𝑏 = 12  and with different number of triangles 

contained in the mesh. The 3D-MCE algorithm was 

performed on the generated models and, on each 

obtained centerline, two fits in two dimensional 

subspaces were done: iterative nonlinear least squares 

circular fit on {𝑋, 𝑌} subspace to estimate the radius  

�̂� and, sinusoidal fit on {𝑌, 𝑍} subspace to estimate the 

slope �̂�  (refer to Figures 9b and 9c). The obtained 

slopes and radii of the 3D models are represented  

in Figure 10. The results show that the accuracy of 

3D-MCE is less sensitive to the density of triangles of 

the 3D model, and it is close to the true value, when 

the number of triangles contained in the mesh is 

dense. 

4. Conclusion 

In this paper, a new, automatic and parameters-free 

3D-MCE extraction algorithm for tubular geometry 

form is presented. 3D-MCE algorithm provides many 

advantages compared to the existing methods, such as: 

 It does not involve complicated mathematical 

tools. 

 It is invariant with regard to model rotation, 

translation and geometric transformations. 

 It gives directly a one voxel thick centerline 

without any further post-processing stages. 
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The 3D-MCE algorithm uses only the triangular 

mesh of the 3D tubular geometry form to calculate  

the centerline. Our experiments show that the 

centerline is centered, connected and thin even if  

the 3D models are noisy. Results show also that  

the 3D-MCE performs correctly for the tubular 

geometry forms, independently from mesh density. 

The 3D-MCE algorithm offers a high level of 

accuracy, besides, it is fully automatic and, easy to 

implement. 

Our future work will address the extension of  

3D-MCE algorithm to branched tubular geometry 

form. 
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