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Abstract. Progressive digital signal encoding and subsequent transmission refer to signal compression techniques 
that allow both the original signal reconstruction without loss of any detail and the construction of signal approxi-
mations (estimates) with the accuracy level depending on the amount of data available. Locally progressive encoding 
and transmission can be achieved by first transmitting a “rough” estimate of the original signal, then sending further 
details related to one or another selected block (region of interest - ROI) of the signal. In this paper, we propose a new 
wavelet-based approach to implementing of a locally progressive digital signal coding idea. The proposed approach 
explores both the newly developed fast procedures for evaluation of the discrete wavelet (Haar, LeGall) transform for 
particular selected ROI in the digital signal and the zero-tree-based encoders with an improved zero-tree analysis 
scheme. 
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1. Introduction 

Historically, the discrete wavelet transform (DWT) 
has gained widespread acceptance in fields of signal 
processing and image compression [1-4]. In the wave-
let transform, dilations (scaling) and translations 
(shifts) of a mother wavelet are used to perform a spa-
tial, as well as a frequency, analysis of the input digital 
image (signal). Due to the multi-resolution nature of 
DWT, it has been successively adopted by the new 
image compression standard JPEG2000 [5]. 

Wavelet transform is a new technique that is intro-
duced in many signal processing applications. In re-
cent years, wavelet-based compression techniques and 
tools have received significant attention, especially for 
different biomedical signal-processing applications [6-
9]. It is notorious that wavelet-based coding is more 
robust under transmission of images (signals) and fa-
cilitates their progressive reconstruction [7, 10, 11]. 

Many kernels can be used for DWT, like those of 
Daubechies, Morlet, Meyer or the discrete Haar trans-
form (HT) [12]. The latter one is the simplest form of 
the Wavelet Transform family. Since its popularity in 
wavelet analysis, there are some definitions and va-
rious algorithms for calculating HT [12, 13]. Despite 
the obvious fact that Haar wavelets always have been 
chosen for educational purpose, many ideas and algo-
rithms developed and implemented with the use of HT 
later on were successively generalized to include 
wavelets of higher orders (Le Gall, Daubechies, etc.). 

Due to the fully localized nature of the discrete 
Haar wavelet transform it is possible to specify any 
block (region of interest – ROI) of the signal to be 
compressed. This property of the Haar wavelet 
transform can also be used in the progressive digital 
signal transmission schemes, by which only the infor-
mation corresponding to the localized ROI in the sig-
nal will be sent progressively. 

It should be observed that more complex wavelet 
transforms (Le Gall, Daubechies, etc.), due to their 
partially localized nature, cannot serve the purpose 
directly. These transforms should undergo preliminary 
task-oriented modifications, ensuring partial separa-
tion of signal blocks in the DWT spectrum of the 
signal under processing. One such modification, con-
cerning the discrete Le Gall transform (DLGT), is 
proposed in Section 2.2. 

The locally progressive image (signal) coding idea 
is not a new one. The possibility of defining regions of 
interest (blocks) in digital images is a significant 
feature of the latest image compression standard JPEG 
2000 [5]. A priori selected image blocks are coded 
with better quality than the rest of the image. This is 
done by scaling the wavelet coefficients so that the 
bits associated with the selected image blocks are 
placed in higher bit planes and, clearly, transmitted 
first. 

In this paper, the locally progressive digital signal 
coding idea is cultivated and implemented in a slightly 
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different way – the regions of interest (ROI) in the 
input digital signal are selected at the request of the 
user. The user makes his choice just after he receives a 
“rough” (recognizable!) estimate of the signal. The 
proposed digital signal coding idea explores both the 
zero-tree-based signal encoders with an improved zero-tree 
analysis scheme and the newly developed exceptionally 
fast procedures for the determination of discrete 
wavelet (Haar, Le Gall) spectra for the selected ROI. 
The latter procedures lean upon the assumption that 
the discrete wavelet spectrum of the original input sig-
nal is known and plays a significant role in ensuring 
reasonably high overall performance of the approach. 

2. Computing the discrete wavelet transform 
for digital signals 

The discrete wavelet transform (DWT) itself repre-
sents an iterative procedure. Each iteration (step) of 
the DWT applies the scaling function to the data input 
(digital signal). If the original signal X  has N  
( 2 , NnN n= ∈ ) values, the scaling function will be 
applied in the wavelet transform iteration to calculate 

2N  averaged (smoothed) values. In the ordered 
wavelet transform the smoothed values are stored in 
the upper half of the N  element input vector. 

The wavelet function (in each step of the wavelet 
transform) is also applied to the input data. If the 
original signal has N  values, the scaling function will 
be applied to calculate 2N  differences (reflecting 
change in the data). In the ordered wavelet transform, 
the wavelet (differenced) values are stored in the 
lower half of the N  element input vector. 

On the subsequent iteration, both mentioned func-
tions (scaling and wavelet) are applied repeatedly to 
the ordered set of smoothed values calculated during 
the preceding iteration. 

After a finite number of iterations ( n steps) the 
DWT spectrum Y  of the digital signal X  is found. 
The vector Y  comprises the only smoothed value (ob-
tained in the n -th iteration) and the ordered set of 
differenced values (obtained in the 1n −  preceding 
iterations). 

Below, we present some newly developed fast 
procedures for evaluation of the discrete wavelet 
(Haar, Le Gall) spectra for selected (under the user’s 
request) regions of interest (ROI) in the digital signal. 
The proposed procedures refer to the assumption that 
the DWT spectrum of the original input signal is 
known. 

2.1. Fast evaluation of the discrete Haar spectra 
for the requested ROI 

The discrete Haar transform (HT) has two scaling 
and wavelet function coefficients. The scaling func-
tion coefficients are – 0 1h =  and 1 1h = , while the 

wavelet function coefficient values are – 0 1 1g h= =  
and 1 0 1g h= − = − . 

The scaling and wavelet functions are calculated 
by taking the scalar product of the coefficients and 
two data values. Let 0 1 2 2 1( )T

N NX x x x x x− −= …  be 
an original digital signal ( 2 , NnN n= ∈ ). The dis-
crete Haar spectrum Y  of X  is obtained in n  ite-
rations. Let 

( ) ( ) ( ) ( ) ( )
0 1 2 2 1

( )n i
i i i i i TS s s s s − −
= …  

and 
( ) ( ) ( ) ( ) ( )

0 1 2 2 1
( )n i

i i i i i TD d d d d − −
= …  

be the result of application of the Haar scaling and 
wavelet functions to the data vector ( 1)iS −  
( {1, 2, , }i n∈ … ; besides, (0)S X= , i.e. (0)

k ks x= , for 
0,1, , 1k N= −… ), respectively. Now, the above scalar 

product can be put down as follows: 
( ) ( 1) ( 1) ( 1) ( 1)

0 2 1 2 1 2 2 1
i i i i i

k k k k ks h s h s s s− − − −
+ += ⋅ + ⋅ = + , 

( ) ( 1) ( 1) ( 1) ( 1)
0 2 1 2 1 2 2 1

i i i i i
k k k k kd g s g s s s− − − −

+ += ⋅ + ⋅ = − , 

for all 0,1, , 2 1n ik −= −… . Thus, the discrete Haar 
spectrum Y  of the digital signal X  takes the form: 

( ) ( ) ( 1) ( 1) ( 2) ( 2) ( 2) ( 2)
0 0 0 1 0 1 2 3

(1) (1) (1)
0 1 2 1

(

                                             ) .

n n n n n n n n

T
N

Y s d d d d d d d

d d d

− − − − − −

−

= …

… …
 

The inverse HT is defined by the following equalities: 

( )( 1) ( ) ( )
2

1
2

i i i
k k ks s d− = + , ( )( 1) ( ) ( )

2 1
1
2

i i i
k k ks s d−
+ = − , 

where 0,1, , 2 1n ik −= −…  and {1, 2, , }i n∈ … . It will be 
observed that the energy normalization factors across 
the different scales (in the above expressions) are 
missing. 

Each spectral coefficient ( )i
jd  ( 1, 2, ,i n= … ; 

0,1, , 2 1n ij −= −… ) possesses a very interesting and 
valuable property – it is associated with a unique 
signal block ( )

2 2 1 2 ( 1) 1
( )i i i

i T
j j j j

X x x x
⋅ ⋅ + + −

= … , i.e. nume-

rical value of the coefficient ( )i
jd  is defined exceptio-

nally by ( )i
jX  (Haar wavelets are very well localized 

in space!). 
A simple analysis of algebraic operations used in 

the definition of the HT spectrum (above expressions) 
made it possible to develop and implement a new 
exceptionally fast procedure for the determination of 
numerical values of Haar spectral coefficients for the 
selected ROI in the digital signal. 

Let us denote the discrete HT spectrum of the 
region of interest (block) ( )i

jX  ( {1, 2, , }i n∈ … , 

{0,1, , 2 1}n ij −∈ −… ) by ( )i
jY . Obviously, ( )

0
nY Y=  

and ( )
0

nX X= . Then: 
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(1) The very first spectral coefficient (smoothed 
value ( )i

js ) in ( )i
jY  is specified by: 

1( ) ( ) ( )
0

1

1 ( 1) 2
2

r

r

n i
ji n n i r i r

j jn i
r

s s d−

−
− − +

−
=

⎛ ⎞= + − ⋅ ⋅⎜ ⎟
⎝ ⎠

∑ , 

where: 0j j= , 1 2r rj j −= ⎢ ⎥⎣ ⎦ , for all 1,2, ,r n i= −… , 
and x⎢ ⎥⎣ ⎦  stands for the integral part of the real number 
x ; 

(2) The rest spectral coefficients (differenced 
values) in ( )i

jY  are extracted from the discrete HT 
spectrum Y  of X , i.e. they are identified with the 
ordered set of differenced (wavelet) coefficients 

1 1 1

( ) ( 1) ( 1) ( 2) ( 2) ( 2) ( 2)
2 2 1 4 4 1 4 2 4 3

( 3) ( 3) (1) (1) (1)
8 8 7 2 2 1 2 ( 1) 1

{ , , , , , , ,

       , , , , , , , };i i i

i i i i i i i
j j j j j j j

i i
j j j j j

d d d d d d d

d d d d d− − −

− − − − − −
+ + + +

− −
+ ⋅ ⋅ + + −

… … …
 

the latter set is often called a tree with the root ( )i
jd . 

Thus, the discrete Haar spectrum ( )i
jY  of the ROI 

( )i
jX  is given by: 

1 1 1

( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) ( 2) ( 2)
2 2 1 4 4 1 4 2 4 3

( 3) (1) (1) (1)
8 2 2 1 2 ( 1) 1

(

                      ) .i i i

i i i i i i i i i
j j j j j j j j j

i T
j j j j

Y s d d d d d d d

d d d d− − −

− − − − − −
+ + + +

−
⋅ ⋅ + + −

=

… …
 

Consistent patterns of the above relationships, as 
well as knowledge of the detailed scheme for the 
direct evaluation of HT spectra for digital signals (Fast 
Haar Transform, [13]), made it possible to compare 
both approaches (direct evaluation, proposed 
procedure) and estimate time expenditures associated 
with them (Table 1). Comparative analysis was done 
for the ROI of size 2i  ( 6 1i n≤ ≤ − ; 2 4096nN = =  
being the size of the input signal X ). 

Table 1. Comparison of two approaches to finding HT 
spectra for ROI of size 2i  

i  
N  

6 7 8 9 10 11 

1024 2.28 5.43 5.25 5.56 - - 

2048 2.00 3.41 4.81 4.94 5.76 - 

4096 1.94 2.74 3.33 5.22 5.67 5.50

The achievable speed gain is expressed in terms of 
 (  )d prρ ρ τ τ= , where dτ  specifies the time needed 

for direct evaluation of HT spectra for indicated ROI 
and prτ  – that needed by the proposed procedure. 

2.2.  Fast evaluation of the discrete Le Gall spectra 
for the requested ROI 

The discrete Le Gall transform (DLGT) has five 
scaling and three wavelet function coefficients. The 
scaling function coefficients are – 0 1 8h = − , 

1 1 4h = , 2 3 4h = , 4 1 4h =  and 5 1 8h = − , whereas 

the wavelet function coefficient values are – 
0 1 2g = − , 1 1g =  and 2 1 2g = − . The scaling and 

wavelet functions are calculated by taking the scalar 
product of the coefficients and five or three data 
values. In practice, to compute the DLGT spectrum Y  
of the digital input signal X  of size 2nN =  ( Nn∈ ), 
an efficient procedure (Lifting Scheme, [3, 4]) is 
applied, namely (the same notations, as in Section 2.1, 
are used): 

( )( ) ( 1) ( 1) ( 1)
2 1 2 2 2

1
2

i i i i
k k k kd s s s− − −

+ += − + , 

( )( ) ( 1) ( ) ( )
2 1

1
4

i i i i
k k k ks s d d−

−= + + , 

for all 0,1, , 2 1n ik −= −… ; here 1 1
( 1) ( 1)
2 2 1

:n i n i
i is o− + − +
− −

−
= , 

( ) ( )
1 0:i id d− =  and {1, 2, , }i n∈ … . 

The inverse DLGT is specified by: 

( )( 1) ( ) ( ) ( )
2 1

1
4

i i i i
k k k ks s d d−

−= − + , 

( )( 1) ( ) ( 1) ( 1)
2 1 2 2 2

1
2

i i i i
k k k ks d s s− − −
+ += + + , 

for all 0,1, , 2 1n ik −= −…  and {1, 2, , }i n∈ … . 
The “edge” problem which takes place at both 

ends of the data vector (on each iteration) and which  
determines the partially localized nature of the discrete 
Le Gall transform, here (Lifting Scheme) is solved  by 
treating the data vector as if it was mirrored at the 
ends. 

If we transfer the said “edge” problem to non-
overlapping ROI of size 2m  ( {1, 2, , 1}m n∈ −… ), 
comprising the input signal X , we would be able to 
“decorrelate” (in the DLGT spectrum of X ) ROI of 
size not less than 2m , i.e. we would be able to 
associate those regions of interest with particular 
wavelet coefficients in Y . 

Following this perception, we have developed a 
slightly modified lifting scheme, namely: 

( )

( 1) ( 1)
2 1 2

( )

( 1) ( 1) ( 1)
2 1 2 2 2

, { 1, 2 1, , 1},

1 , otherwise ,
2

i i
k k i i i i

i
k i i i

k k k

s s k l l q l
d

s s s

− −
+

− − −
+ +

⎡ − ∈ − − −
⎢= ⎢

− +⎢⎣

…
 

( )

( 1) ( )
2

( )

( 1) ( ) ( )
2 1

1 , {0, , 2 , , ( 1) },
2
1 , otherwise ,
4

i i
k k i i i i

i
k

i i i
k k k

s d k l l q l
s

s d d

−

−
−

⎡ + ∈ −⎢
= ⎢
⎢ + +⎢⎣

…
 

for all 0,1, , 2 1n ik −= −…  and {1, 2, , }i n∈ … ; here: 
2m i

il
−= , 2n m

iq −= , for 1, 2, ,i m= … , and 1il = , 
2n i

iq −= ,  for 1, 2, ,i m m n= + + … . Evidently, i il q  
equals the size of ( )iS , 1, 2, ,i n= … .  

The modified lifting scheme for the inverse DLGT 
has also been developed, and is presented below: 
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( )

( ) ( )

( 1)
2

( ) ( ) ( )
1

1 , {0, , 2 , , ( 1) },
2
1 , otherwise ,
4

i i
k k i i i i

i
k

i i i
k k k

s d k l l q l
s

s d d

−

−

⎡ − ∈ −⎢
= ⎢
⎢ − +⎢⎣

…
 

( )

( ) ( 1)
2

( 1)
2 1 ( ) ( 1) ( 1)

2 2 2

, { 1, 2 1, , 1},
1 , otherwise ,
2

i i
k k i i i i

i
k i i i

k k k

d s k l l q l
s

d s s

−

−
+ − −

+

⎡ + ∈ − − −
⎢= ⎢ + +
⎢⎣

…
 

for all 0,1, , 2 1n ik −= −…  and {1, 2, , }i n∈ … . 
To map integers to integers (lossless encoding), the 

above expressions should undergo minor changes 
similar to those presented in the original version of the 
lifting scheme [3, 4].   

Now, as in the case of the discrete Haar transform 
(Section 2.1), any Le Gall spectral coefficient ( )i

jd  
( { , 1, , }i m m n∈ + … , {0,1, , 2 1}n ij −∈ −… ) is put into 
one-to-one correspondence with the signal block (re-
gion of interest) ( )

2 2 1 2 ( 1) 1
( )i i i

i T
j j j j

X x x x
⋅ ⋅ + + −

= … , i.e. 

numerical value of ( )i
jd  is defined exceptionally by 

( )i
jX  (Le Gall wavelets become very well localized in 

space!). 
To find the DLGT spectrum ( )i

jY  of ( )i
jX , where 

{ , 1, , }i m m n∈ + …  and {0,1, , 2 1}n ij −∈ −… , the 
following newly developed fast procedure should be 
applied: 

(1) The very first spectral coefficient (smoothed 
value ( )i

js ) in ( )i
jY  is specified by: 

1( ) ( ) ( )
0

1

1 ( 1)
2

r

r

n i
ji n i r

j j
r

s s d−

−
+

=

= − − ⋅∑ ; 

here: 0j j= , 1 2r rj j −= ⎢ ⎥⎣ ⎦ , for all 1,2, ,r n i= −… ; 

(2) The rest spectral coefficients (differenced 
values) in ( )i

jY  are extracted from the discrete DLGT 
spectrum Y  of X , i.e. they are identified (as in the 
case of HT; Section 2.1) with the ordered set of 
wavelet coefficients 

1 1 1

( ) ( 1) ( 1) ( 2) ( 2) ( 2) ( 2)
2 2 1 4 4 1 4 2 4 3

( 3) ( 3) (1) (1) (1)
8 8 7 2 2 1 2 ( 1) 1

{ , , , , , , ,

       , , , , , , , }.i i i

i i i i i i i
j j j j j j j

i i
j j j j j

d d d d d d d

d d d d d− − −

− − − − − −
+ + + +

− −
+ ⋅ ⋅ + + −

… … …
 

Thus, the discrete Le Gall spectrum ( )i
jY  for the 

signal block (region of interest) ( )i
jX  of size not less 

than 2m  ( {1, 2, , 1}m n∈ −… ) is given by: 

1 1 1

( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) ( 2) ( 2)
2 2 1 4 4 1 4 2 4 3

( 3) (1) (1) (1)
8 2 2 1 2 ( 1) 1

(

                      ) .i i i

i i i i i i i i i
j j j j j j j j j

i T
j j j j

Y s d d d d d d d

d d d d− − −

− − − − − −
+ + + +

−
⋅ ⋅ + + −

=

… …
 

In Table 2, some experimental analysis results on 
the efficiency of the proposed procedure, in compa-
rison with the direct evaluation (Lifting Scheme, [4]) 
of DLGT for the selected ROI in the signal, are 

presented. The achievable speed gain (as before; Sec-
tion 2.1) is expressed in terms of  (  )d prρ ρ τ τ= . 

Table 2. Comparison of two approaches to finding DLGT 
spectra for ROI of size 2i  

i  
N  6 7 8 9 10 11 

1024 25.8 51.7 87.1 122 - - 

2048 22.1 55.5 76.3 127 160 - 

4096 25.8 44.3 76.3 122 172 238 

3. A new approach to locally progressive 
encoding of digital signals 

The proposed locally progressive digital signal 
coding and transmitting idea explores both fast eva-
luation of the discrete wavelet (Haar, Le Gall) trans-
form for the requested ROI in the digital signal 
(Section 2) and wavelet-based digital signal encoders 
(EZW, SPIHT, etc.) with an improved zero-tree 
analysis scheme (Section 3.1). The embedded zero-
tree wavelet (EZW) algorithm, as well as the set parti-
tioning in hierarchical trees (SPIHT) procedure, is one 
of the most efficient coding schemes, which are 
developed for wavelets [10, 11]. 

The EZW algorithm transmits the large (signifi-
cant) wavelet coefficients before transmitting the 
smaller coefficients. This is done by realizing multiple 
passes over the discrete wavelet spectrum of the 
image, lowering the threshold T  by a factor of two 
each time [10]. 

Namely these multiple passes over the wavelet 
coefficients, in search of zero-trees, make the EZW 
encoder heavily time dependent. 

Below, we present a novel improved zero-tree 
analysis scheme, which stops short at a single scan-
ning of the DWT spectrum of the signal under proces-
sing and improves the overall performance of the 
EZW encoder. 

3.1. An improved zero-tree analysis scheme in the 
EZW algorithm 

Let 0 1 2 3 4 5 2 1( )T
N NX x x x x x x x x− −= …  be a given 

digital signal of size 2nN =  ( Nn∈ ) and 

1
( ) ( ) ( 1) ( 1) ( 2) (1)
0 0 0 1 0 2 1

( )n
n n n n n TY s d d d d d −

− − −
−

= …  

be its DWT spectrum. Let { }( )
max 2,

max log | | .i
ji j

r d⎢ ⎥= ⎣ ⎦  

Consider the wavelet coefficient ( )i
jd  

( {1, 2, , }i n∈ … , {0,1, , 2 1}n ij −∈ −… ) which is the 
root (parent) of the tree 

1
( ) ( 1) ( 1) ( 2) ( 2) (1)

2 2 1 4 4 1 2 ( 1) 1
{ , , , , , , }i

i i i i i
j j j j j j

d d d d d d −
− − − −

+ + + −
…  
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Let us associate ( )i
jd  with two binary codes (one 

for the offspring of ( )i
jd , another for the descendants 

of ( )i
jd , except offspring), namely: 

max 1 0( , ) ( , ) ( , ) ( , )rCodeOff i j u i j u i j u i j= 〈 〉… , 

max 1 0( , ) ( , ) ( , ) ( , )rCodeDes i j v i j v i j v i j= 〈 〉… . 

The above codes are generated by a single scan-
ning of the DWT spectrum Y , namely: 

(1) ( , ) 1tu i j = , if ( 1)
2| |i

jd −  and/or ( 1)
2 1| |i

jd −
+  fall into 

the half-open interval 1[2 ,2 )t t+ , max{0,1, , }t r∈ … , and 
( , ) 0tu i j = , otherwise; 

(2) ( , ) ( 1,2 ) ( 1, 2 1)t t tv i j u i j u i j= − ∨ − + , for 
3i = , and 

( , ) ( 1,2 ) ( 1, 2 1)
                     ( 1,2 ) ( 1,2 1) ,

t t t

t t

v i j u i j u i j
v i j v i j

= − ∨ − + ∨

∨ − ∨ − +
 

for 4,5, ,i n= … . 
It should be emphasized that generation of binary 

codes ( , )CodeOff i j , for all possible values of i  and 
j , requires ( 2N − ) verifications of falling into one or 

another half-open interval, while that for 
( , )CodeDes i j  requires ( 3 4 4N − ) logical additions 

on binary codes of length max 1r + . 
Thus, to state that a particular wavelet coefficient 

( )i
jd  ( {1, 2, , }i n∈ … , {0,1, , 2 1}n ij −∈ −… ) is the root 

of a particular zero-tree with respect to the threshold 
2r

rT T= = , max{0,1, , }r r∈ … , it suffices to ascertain 
that ( , ) 0ru i j =  and ( , ) 0rv i j = . 

Preliminary experimental results show that imple-
mentation of the improved zero-tree analysis scheme 
increases the overall performance of the EZW encoder 
nearly (10-15) %. 

The described zero-tree analysis scheme can be 
successively applied also to the SPIHT algorithm, in 
processing lists of insignificant pixels and those of 
insignificant sets [11]. 

3.2. Experimental results and their analysis 

To motivate the proposed locally progressive di-
gital signal coding idea, an illustrative experiment has 
been carried out – the developed procedure has been 
applied to processing of the electrocardiogram (ECG) 
data. Computer simulation was performed on a PC 
with CPU PENTIUM4 2.8 GHz, RAM 2 GB, OS 
Windows XP; Programming language Java. 

To simplify a description of the obtained results, 
we here introduce the following notations: the CPU 
time required to perform the discrete Le Gall 
transform (DLGT) of the digital signal (or that of 
ROI) is denoted by 1τ , to perform wavelet-based 
(EZW) encoding of the signal (or that of ROI) – by 

2τ , to transmit data across a low communications 
channel – by 3τ . 

Three cases were analyzed and compared: first of 
all, a non-compressed signal (ECG) was sent across 
the low communications channel to the user (Fig. 1, 
a); secondly, lossless encoding (EZW) in the Le Gall 
spectral domain was applied to the ECG, and com-
pressed signal was sent to the user (Fig. 1, b); thirdly, 
the ECG signal was processed (lossy encoding by the 
EZW algorithm), a “rough” estimate of ECG was sent 
to the user, the selected (at the user’s request) region 
of interest in the signal was processed by applying 
both the DLGT and the EZW encoder, and then a high 
quality estimate of the selected ROI was sent again to 
the user (Figure 1, c). 

We have also assumed that the bandwidth of the 
communications channel equaled 19.2 Kbps. 

Obviously, transmitting of non-processed data X  
(ECG; Figure 2, a) across the channel (Figure 1, a) 
requires 3 1.67τ τ= = s. 

Computing the DLGT spectrum of the ECG signal 
X , wavelet-based processing (EZW, lossless enco-

ding) and sending across the channel (Figure 1, b) 
requires (in total) 1 2 3 0.021 0.036τ τ τ τ= + + = + +  

0.287 0.344+ = s. Worth emphasizing, lossless en-
coding of the ECG reduces the data amount from 4096 
B to 658 B, i.e. the signal compression effect 
( 6.22β = ) is achieved. 

The developed approach (Figure 1, c), when ap-
plied to the ECG signal, requires: as before, 

1 0.021τ = s, for computing the DLGT spectrum of the 
original signal (ECG) X ; '

2 0.02τ = s, for EZW en-
coding of  X  ( 3 8T T= = ; 93 B of compressed data 
Z );  '

3 0.055τ = s, for transmitting of Z  to the user 

and restoring the “rough” estimate X��  of the original 
signal X  (Figure 2, b); '

1 0.001τ = s, for computing 
the DLGT of the selected ROI (9)

2X ; ''
2 0.002τ = s, for 

EZW encoding of (9)
2X  ( 1 1T T= = ; 81 B of 

compressed data (9)
2Z ); ''

3 0.035τ = s, for transmitting 

and restoring of the high quality estimate (9)
2X�  of the 

selected signal block (Figure 2, c). So, the total time 
expenditure equals ' ' ' '' ''

1 2 3 1 2 3τ τ τ τ τ τ τ= + + + + + =  
0.134= s. The speed gain is noticeable, in comparison 

with cases 1 and 2. 
In Figure 2 (d), some additional ROI of the ECG 

signal X , namely, (10)
0X  and (11)

1X  are processed and 
analyzed. Compression details of the selected ROI, as 
well as peak signal-to-noise ratio values are also in-
dicated.   

Since in each case the user has the necessary ROI 
(Figure 2, a, c, d) available, we come to the conclusion 
that the proposed locally progressive digital signal 
coding idea may lead (especially, when applied to 
multi-dimensional signals, characterized by large 
amounts of data) to auspicious and fast-track results. 
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Figure 1. The electrocardiogram (ECG) data processing and transmission: (a) the ECG signal is sent 
across the low communications channel to the user; (b) lossless encoding (EZW) is applied to the 

signal, whereupon compressed signal is sent to the user; (c) the proposed locally progressive 
digital signal encoding and transmitting approach 

4. Conclusion 

In the paper, original fast procedures for the deter-
mination of the discrete wavelet (Haar, Le Gall) 
spectra for the selected regions of interest (ROI) in the 
digital signal are presented. The procedures explore 
specific properties of discrete wavelet transforms 
(DWT) and refer to the assumption that DWT spect-
rum of the original digital signal is known. It is shown 
that the developed procedures can be successfully ap-
plied to implementing of a locally progressive digital 
signal coding idea (approach). The essence of the ap-
proach – additional bit streams are used to add new 
details not to the whole signal under processing but to 
the selected (at the request of the user) ROI in the 
signal. The overall performance of the approach is im-
proved by implementing efficient wavelet-based sig-
nal encoders (EZW, SPIHT, etc.) with a novel 
enhanced zero-tree analysis scheme. 

Comparison of the developed locally progressive 
digital signal coding technique with other approaches 
is complicated because the latter approaches analyze 
and process (mostly) a priori chosen ROI. 

We unreservedly believe that the developed ap-
proach will find various applications in implementing 
efficient and up-to-date digital data processing techno-
logies. In particular, the proposed idea can be explored 
when large amounts of requested graphical data are 
being sent across a slow communications channel 
(say, the Internet). 

In the nearest future, a similar analysis, concerning 
higher order wavelet transforms (Daubechies D4, 
Daubechies 9/7, etc.), is supposed. In parallels, a 
generalization of the locally progressive coding idea, 
to include two-dimensional digital signals (images), is 
planned too. 
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Figure 2. The ECG data processing: (a) the original signal X  ( 122 4096N = = ); (b) the “rough” estimate X�  of X  
( 3 8T T= = , 44.03β = , PSNR 34.81= ); (c) the selected region of interest (9)

2X  ( 0 1T T= = , 6.32β = ); (d) high quality  

estimates of (10)
0X  ( 1 2T T= = , 14.84β = , PSNR 40.78= ) and (11)

1X�  ( 1 2T T= = , 14.84β = , PSNR 44.35= ) 
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