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Abstract. Feature models represented by Feature Diagrams (FDs) prevail in the software product line approach. 
The product line approach and FDs are used to manage variability and complexity of software families and to ensure 
higher quality and productivity of product development through higher-level feature modeling and reuse. In this paper 
we, first, analyze the properties of feature models. Then, combining some properties of FDs with ideas of Miller’s, 
Metcalfe’s and Keating’s works, we propose three FD complexity measures. The first measure gives boundaries to 
estimate cognitive complexity of a generic component to be derived from the feature model. The second measure 
describes structural complexity of the model expressed through the number of adequate sub-trees of the given model. 
The third measure estimates total cognitive and structural complexity of the model. To validate the introduced 
measures, we present a case study with three feature models of a varying complexity. 
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1. Introduction 

Complexity is the inherent property of systems to 
be designed. The need for managing the complexity 
issues is constantly growing because of the fact that 
systems per se are becoming more and more complex 
mainly due to technological advances, increasing user 
requirements and market pressure. Complexity mana-
gement can help to increase quality and understand-
ability of developed products, decrease the number of 
design errors [1] and shorten their development time. 
Managing complexity means, firstly, knowing how to 
measure it. Complexity measures allow reasoning 
about system structure, understanding the system be-
haviour, comparing and evaluating systems or fore-
seeing their evolution.  

Researchers and practitioners struggle with the 
complexity problem for more than three decades. Soft-
ware engineers have long seen complexity as a major 
factor affecting design quality and productivity. The 
efforts to manage complexity have resulted in the in-
troduction and studies of such general principles as 
separation of concerns, information hiding, system de-
composition, and raising abstraction level in a system 
design [2]. On the other hand, new design methodo-
logies, which implement those principles combined 
with various design techniques (e.g., object-oriented 
design, generative programming [3]), have emerged 
and are further evolving. The evident example is 

Product Line Engineering (PLE) [4], which shifts 
from the design of a single system to the design of a 
family of related systems. The methodology widely 
exploits the model-driven approach, where at the 
focus are high-level domain models.  

The domain model describes some fundamental 
properties of a domain that are to be implemented by 
software. These properties are: commonality, vari-
ability, specificity, and various relationships among 
these groups of features [2, 4, 5]. These properties are 
expressed through the notation, which is commonly 
accepted in the context of PLE – Feature Diagrams 
(FDs). As currently the model-driven approach pre-
vails in the development of systems (not only in PLE, 
but also in a much wider context), it is not enough to 
deal with the complexity issues at the stand-alone 
program (system) level only. What is needed is to con-
sider the complexity problem at a higher abstraction 
level too, i.e., to focus on the complexity of high-level 
domain models. We see the definition of such mea-
sures as a meta-modeling activity. 

The aim of this paper is to analyze feature models 
in order to devise their complexity measures. As the 
scope of the problem is wide, we restrict ourselves to 
the analysis of feature models that contain a high de-
gree of variability (actually expressing generic aspects 
of the model) and represent some part of a super-
domain model. So far only one study [6] has 
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considered non-functional properties of product lines 
such as complexity, but we were unable to find any 
research on the estimation of feature model comple-
xity. Our contribution is three complexity measures 
(metrics) to evaluate the complexity of generic prog-
ram models represented using FDs. The measures use 
some properties of FDs combined with ideas from the 
Miller’s [7], Metcalfe’s [8] and Keating’s [9] works. 

The paper is organized as follows. Section 2 ana-
lyses the related works. Section 3 motivates the prob-
lem and provides an example. Section 4 describes 
backgrounds for evaluating complexity of models re-
presented by FDs and presents measures for quan-
titative calculation of complexity. Section 5 presents 
three examples of complexity calculation. Section 6 
presents the overall evaluation of the results. Finally, 
Section 7 formulates conclusions and states problems 
for further research.  

2. Related works 

We classify the related works into two categories: 
1) works on complexity analysis and measurement of 
programs and their high-level models such as UML 
models, business process models, etc.; and 2) works 
on feature models and feature diagrams as a specific 
kind of high-level models. 

Complexity measures at a program model level 
were at the focus of researchers for a long time. 
Though there are many metrics, Cyclomatic comple-
xity is one of the most widely accepted static software 
metrics [10]. Proposed by McCabe in 1976 [11], it 
directly measures the number of linearly independent 
paths through a program's source code from entrance 
to each exit. It is intended to be independent of lan-
guage and language format. Other metrics bring out 
other facets of complexity, including structural and 
computational complexity. For example, Halstead 
complexity measures [12] identify algorithmic com-
plexity measured by counting operators and operands; 
Henry and Kafura metrics [13] indicate coupling bet-
ween modules (parameters, global variables, calls); 
Troy and Zweben [1] metrics evaluate complexity of 
program’s structure.  

Since the arrival of model-driven development, 
complexity measures were introduced at the domain 
model level, too. Different measures are proposed to 
evaluate structural and cognitive complexity of UML 
Use Case diagrams [14] and Class diagrams [15-17], 
State-Chart diagrams [18], Entity-Relationship dia-
grams [19], Conceptual Schemas [20], Petri Net speci-
fications [21]. Kim and Boldyreff [22] have defined a 
set of 27 metrics to measure various characteristics 
including complexity of UML models.  

The complexity of business process models (BPM) 
is assessed in [23, 24]. BPM models have some 
similarity to FDs, because they have similar types of 
connectors: AND, OR, and XOR. Cardoso [25] de-
fines Control-Flow Complexity (CFC) of business 

processes as the number of mental states (or possible 
decisions in a flow) that have to be considered when a 
designer develops a process. Other researchers [26-28] 
propose using graph complexity metrics, such as 
Coefficient of Network Complexity (CNC), Comple-
xity Index (CI), Restrictiveness Estimator (RT), and 
the number of trees in a graph, to evaluate business 
processes. Mendling et al. [29] describe, analyze and 
validate experimentally 28 business process metrics 
(such as size, density, structuredness, coefficient of 
connectivity, average connector degree, control flow 
complexity, etc.).  

Product-line engineering (PLE), which has emer-
ged in recent years as a design paradigm aiming to 
ensure higher quality and productivity in the develop-
ment of software systems [4, 5], widely employs 
feature models. Such models, which represent a set of 
domain-related features and their relationships, are 
usually described using Feature Diagrams (FDs). 
Though they were introduced in the context of FODA 
(Feature-Oriented Domain Analysis) yet in 1990 [30], 
the evolution of the FD notation still continues [31]. 
FDs are seen as higher-level models that allow de-
scribing specifications to implement generative ap-
proaches within the PLE concept (e.g., generative 
programming [3], aspect-oriented programming [32] 
or meta-programming [34, 35]). FD is a specific 
model that specifies not a single program, but a family 
of the related program instances represented at a high-
level of abstraction. Though a FD and a program 
graph has some common properties, the complexity 
problem of FDs should be considered separately, first 
of all taking into account specific properties of FDs 
and, of course, the appropriate program complexity 
and other measures, such as proposed in [9].  

3. Problem statement and a motivating 
example  

3.1. Some preliminary remarks 

As system designs evolve under pressure and de-
mands for better quality, higher functionality and 
shorter time-to-market, the growth of complexity has 
direct impact on design methods, approaches and 
paradigms. Complexity is the intrinsic attribute of sys-
tems and processes through which systems are 
created. One way to manage design complexity is to 
enhance reuse in the context of PLE, where require-
ments may evolve. What is happening when we need 
to extend the scope of requirements beyond one sys-
tem/component or beyond a family of related sys-
tems/components, if there is some prediction on their 
possible usage in a wider context? It is easy to predict 
intuitively: the models we need to deal with are be-
coming more and more complex. But to which limits 
we can let complexity of models grow in terms of 
requirements prediction, implementation difficulties 
and how we need to manage this complexity at a 
higher abstraction level? The first task is to understand 
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the complexity issues and to learn to measure the 
complexity quantitatively. The motivating example we 
present below provides more details for better under-
standing of the problem.  

3.2. Motivating example of a feature model 

Feature diagrams are commonly accepted models 
to represent domain artifacts at a higher abstraction 
level when a design is based on the product line 
methodology. Feature models are created using do-
main analysis methods (e.g., FODA, FORM, etc. [2]). 
The syntax of FDs can be easily learned from the 
example (see Figure 1 and sub-section 3.2) and se-
mantics can be learned from the properties described 
in sub-section 3.3 (for deeper knowledge, see [31]). 

As a motivating example, we have selected the 
model that describes features and their relationships of 
the homogeneous gate domain. The domain is well 
defined because it is based on the first-order logic 
(FOL), called also Boolean algebra. The term gate 
means that it contains not only logical (functional) 
features, descriptive features (e.g., behavioral, structu-
ral) and representation features (e.g., HW description 
languages, such as VHDL or SystemC [33]) and va-
rious relationships, but also physical features, such as 
technology, area, delay and energy consumption. 
Figure 1 presents a simplified model that defines the 
representational and functional aspects only. From the 
methodological view, the model also serves as a 
tutorial for understanding and learning syntax and 
semantics of FDs. 

GATE

Repesentation Functional aspects

Function type
Others

Equation 
(FOL)

Interface

Left side =
Input number  Output

Right side

 R3

Legend:
Mandatory feature 
Obligatory feature
Optional feature
Solitary feature 
Grouped features
Variant point       VP
Variant             Vi
Relationship Ri
Constraint Rj or Cj

            ¬      

 1              2  … 16

[1..*]     

R1                                R2

Explanation:
R1 - Relationship  <require>: " ” requires  any number from the group            
R2 - Relationship <require>: “ " requires  any number from the group
R3 - Constraint of type <require> : “¬” requires  only 1 input
R4, R5, R6 - Relationships  <require>: <right side> requires  an 
expression w ith “ ”, “ " , and “¬” operations adequately.
Example of R4:  x1  x 2  x3
Note: Function type is variant point <VP1> w ith 3 variants and 
          Input   number  is variant point <VP2> w ith 16 variants: one is a 
solitary feature variant, the rest are grouped

Level 0

Level 1

Level 2

Level 3

Level 4

<VP1> 

<VP2>

[1..*]     

R4

R5

R6

 
Figure 1. Homogeneous GATE feature model based on representational and functional aspects only 

We define basic terms related to FDs below. Kang 
et al. define feature as “end-user visible characteristic 
of a system or a key characteristic of a concept that is 
relevant to some stakeholder” [4]. We define feature 
as an externally visible characteristic that is relevant to 
the given designer’s context (we can allow the context 
to be changed [36, 37]), but here we consider that 
context is constant). Feature diagram is a connected 
graph, where boxes (nodes, leaves) represent features 
and edges represent various kinds of relationships 
among features. We accept that relationships are of the 
type, which are expressed through relations of the 
propositional logic. There are three types of features: 
mandatory (boxes with the black circle above), optio-
nal and alternative (both are denoted as boxes with the 
white circle above).  

Mandatory features express commonality of the 
concept, whereas optional and alternative features 
express variability. Features may appear either as a 

solitary feature or in groups. If all mandatory features 
in the group are derivates from the same parent in the 
parent-child relationship, there is the and–relationship 
among those features (e.g., at level 1 or 2, see Figure 
1). An optional feature may be included or not if its 
parent is included in the model. Alternative features, 
when they appear in groups as derivates from the same 
parent, may have the following relationships: or, xor 
(filled arc in Figure 2), case (arc in Figure 1), etc. For 
more advanced types of alternative features as “views 
on ontology”, see [38].  

There are also three types of structural relation-
ships: parent-child (already has been introduced), 
relationships among nodes (e.g., R1, R2 in Figure 1) 
and constraints. In each category there may be various 
semantic relationships, such as <expression> (R2), 
<equivalence> (R1), <algebraic dependency> [37], 
etc. in the category of relationships among terminals. 
For example, constraints among terminals may have 
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the following types: <require> (R3), <implication>, 
<mutual exclusive>, etc. (this kind don’t appear in 
models Figure 1 and 2).  

3.3. Some properties of feature models 

We formulate the basic properties of feature mo-
dels, which have influence on measuring complexity. 
Since the example (Figure 1) is too simple, we extend 
it with new aspects such as a language and function 
notation (see Figure 2). The introduction of the new 
aspect in one branch (at level 1, see Figure 1 and 2) 
may cause the need of introducing additional features, 
variant points, variants, and as a result, new relation-
ships are to be taken into account. It is clear – the 
complexity of the model is growing too with any 

extension of the domain – and we can also see some 
restrictions or limitation of the introduced graphical 
notation as stated below. If the tree-like structure, i.e., 
feature and parent-child relationships and partial 
constraints work well, some difficulties arise with ob-
taining and representing other kinds of relationships. 
This happens because of: 1) FDs lack of a mechanism 
for representing more complicated relationships 
(which usually lead to domain ontology [37, 38]; 2) 
graphical representation of a large amount of relation-
ships by connecting leaves diminishes readability and 
clarity of the graph; 3) some features may describe 
other domains (e.g., syntax of VHDL, see Figure 2), 
which are much wider than the domain at hand, and 
the process of decomposition should be restricted. 

GATE

Repesentation Functional aspects

Function 
notationFOL

Behavioral

VHDL

Structural

Syntax

In 
SystemC

In 
FOLSystemC

Behavioral

Interface

Left 
side =

Inputs number  OutputRight 
side

Language

AND, OR, NOT, XOR,
 NAND, NOR, XNOR

Structural

Mixed model

   1                         

[1..*]     

Syntax

Entity       ArchitectureProcess  Assignment

In VHDL

  ¬    &  |   ~   ^

[1..7]     
   16                    

                VP1             VP2         VP3         VP4 VP5 VP6

VP7 

a)

b)

Delta delay       after stmt
 

Figure 2. The extended feature model (a) of the domain GATE and possibility for further extension of features ‘process’, 
‘structural’ and ‘Mixed model’ by ‘delta delay’ or using ‘after stmt’ (b) 

The latter has the following implication: we need 
to let not only the explicit representation (the usual 
intension of the model) but also the implicit represen-
tation of some features and relationships (e.g., aiming 
to simplify the model by information hiding). For 
example, such a sub-feature as variable of the feature 
right side (see Figure 1) is not defined explicitly be-
cause it is a lower-level feature and its explicit speci-
fication should be postponed till implementation. 

I. The feature diagram-based domain model is a 
connected graph consisting of two subgraphs:  

a) A tree-like subgraph in which the root represents 
the domain itself, the intermediate nodes represent a 
set of compound features (some of them may be 
variant points), the leaves represent feature variants (if 
derived from the same variant point) and edges re-
present the parent-child relationships among features, 
variant points and their variants; 

b) A subgraph (it may be disconnected, see Figure 
1), in which nodes are a subset of leaves derived from 

different parents, and edges between the subset nodes 
represent the overlapping relationships and constraints 
induced by the inherent properties of the domain (for 
simplicity reasons the subgraph is omitted in Figure 
2). 

II. Model can be rewritten as n-level structure (see 
Figure 1), where n is the longest path from the root to 
the node at the level n. If a node at level i-1 (1< i < n) 
represents a variant point, then nodes at level i are 
terminals or variants. 

III. Overlapping relationships may represent func-
tional, structural and other kind of relationships 
among the leaves derived from different parents. 
Among overlapping relationships there is a specific 
type of relationships which represent constraints. 
Constrains may have such sub-types as “A requires 
B”, “C and D are mutually exclusive”, where A, B, C 
and D are feature variants. 

IV. A domain model expresses such aspects as 
commonality, variability and specificity (if any). The 
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terms are described as follows. These aspects have 
quantitative measures. Commonality is the number of 
mandatory features in a feature model. Variability is a 
compound of the number of variant points, the number 
of variants and overlapping relationships including 
constrains (see property IX, for more details). 

V. Features and relationships are represented in a 
FD in two ways: explicitly and/or implicitly. The ex-
plicit representation is more powerful and, as a rule, it 
is used for more important features (e.g., variant 
points that pre-define variability and relationships). 
The implicit representation is less powerful. It can be 
used to simplify the representation in the case when 
either it is clear from the context that a given fea-
ture/relationship should be taken into account in the 
evaluation. Implicit representation is also used for 
restricting the scope of the model.  

VI. The scope of the feature model is a restrictive 
attribute that outlines the boundaries of the domain 
under consideration in the given circumstances. The 
scope of the model means all aspects which we want 
to include in the model. The scope depends on mul-
tiple factors: goal, context (e.g., external factors such 
as user requirements), domain itself and, in general, 
abilities of the domain analyzer to understand the 
domain and to grasp its properties. The scope is more 
relevant to the domain; while complexity is more 
relevant to evaluation of the domain model.  

VII. Feature diagram with variant points and va-
riants represents a family of related component 
instances specified at a higher abstraction level as sub-
models in terms of features and relationships. A parti-
cular instance (a sub-model) in the model is repre-
sented as a sub-tree with the following properties: a) 
each sub-tree contains all non-leaves and only one leaf 
(variant) for each variant point: b) all edges that con-
tain the above mentioned nodes. For example, a FD in 
Figure 1 has 31 sub-trees (15 with AND (٨), 15 with 
OR (٧) and 1 with NOT (¬)). 

VIII. As influential factors (goal, context, etc.) 
evolve over time, the scope and the model represen-
tation can be extended adequately. Thus we can speak 
about evolving models even for the same domain 
objects. It is reasonable to predict that evolution adds 
complexity in the model. This property can be easily 
learned from the examples (cf. Figure 1 and 2).  

IX. Commonality in the model is mandatory 
features (that are not variant points) and their parent-
child relationships. For example, node <equation> and 
its edges <left side>, <.= > and <right side> , as well 
as <interface> consisting of <inputs> and <output> in 
Figure 1 are two different kinds of commonality. 
Variability in the model is variant points, variants (see 
VP1 and VP2 in Figure 1) and explicit relationships 
among variants. Constraints as a specific kind of re-
lationships (it can be treated as domain specificity, 
e.g., “NOT requires only one input”) diminish vari-
ability in some way.  

X. Introducing new features to the model (e.g., as a 
result of the extension of domain scope aiming to 
build an evolutionary model) may result in appearance 
of new variants, the need of clustering some variants 
and even introduction of external features and rela-
tionships from a larger domain, which is a super-
domain of the given one. This property can be under-
stood by comparing Figure 1 and 2 and introducing 
new features such as area, energy, delay in Figure 2 
(these features are not shown and are regarded as 
being defined implicitly). 

4.  Backgrounds for evaluating complexity of 
feature models 

There are two different views on complexity [23]: 
complexity as ”difficulty to test” (i.e., number of test 
cases needed to achieve full path coverage), and 
complexity as ”difficulty to understand a model”. The 
latter is also known as cognitive complexity of a mo-
del. Cardoso et al. [26] also identify different types of 
complexity: computational complexity, psychological 
(cognitive) complexity, and representational comple-
xity. Cognitive complexity focuses on the analysis of 
how complicated a problem is from the perspective of 
the person trying to solve it. Cognitive complexity is 
related to short-term memory limitations, which vary 
depending on the individual and on what kind of 
information is being retained [39]. For software desig-
ners, the ability of coping with complexity of a do-
main model is a fundamental issue, which influences 
the quality of the final product. High cognitive comp-
lexity of a model leads to a higher risk of making 
design errors and may lead to lower than required 
quality of a developed product, such as decreased 
maintainability. We claim that the properties (such as 
structural complexity and size) of a feature model 
represented using FD have an impact on its cognitive 
complexity. 

In this context, it is useful to have a boundary for 
cognitive complexity. We rely on Miller’s early work 
[7] stating that human beings can hold 7 (+/-2) chunks 
of information in their short-term memory at one time. 
We also use the rule of Keating, which is based on the 
Miller’s work as applied to design domain: “The 
number of modules at any level of hierarchy must be 7 
+/- 2” [9]. Our empirical rule (Rule 1) for the 
boundary of cognitive complexity as applied to the 
feature model is as follows: 

Rule 1. The cognitive complexity of a FD is 
calculated as the number of variant points in a FD. 
The number of variant points in a FD must be 7 +/- 2, 
if a designer wants to avoid consequences of high 
cognitive complexity. If the number of variant points is 
fewer than 5, the value of the model may be dimini-
shed due to the decreasing granularity level and too 
much information hiding. If the number of variant 
points is more than 9, the user needs to decompose the 
model into parts or levels in order to remain within 
the limits of cognitive complexity. 
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Rule 2. The cognitive complexity of a FD is calcu-
lated as the maximal number of levels in a feature 
hierarchy or the maximal number of parts (graph 
leaves) in each level of a hierarchy. 

Rule 3. The structural complexity of a feature 
model with variant points is evaluated by the number 
of sub-trees with property VII (each variant point has 
only one selected variant). Each sub-tree (sub-model) 
is derived from the initial feature diagram as a generic 
model for a given domain.  

Rule 3 describes the structural (representational) 
complexity of a feature model, i.e. the ability of a FD 
to represent different product instances of a product 
line. Rule 3 has some correlation with the cyclomatic 
number, the well known measure for evaluating the 
complexity of a program [10]. Each path in a program 
graph correlates to the adequate sub-tree in the feature 
diagram since the realization of the sub-tree can be 
seen as a program (path) with the syntax rules for cor-
rect implementation of a particular product instance. 

For example, the generic domain model (see Fi-
gure 1) has 31 different sub-trees which, when rea-
lized, gives 31 logical equations of the following type: 

y= ¬ x; (1) 

y = x1 ٨ x2; y = x1 ٨ x2 ٨ x3; …  
y = x1 ٨ x2 ٨ … ٨ x16; (2) 

y = x1 ٧ x2; y = x1 ٧ x2 ٧ x3; …  
y = x1 ٧ x2٧ … ٧ x16; (3) 

Based on the empirical research and practical im-
plementations [40], the cyclomatic complexity has the 
following boundaries: from 1 to 10, the program is 
simple; from 11 to 20, it is slightly complex; from 21 

to 50, it is complex; and above 50 it is over-complex 
(untestable). 

Rule 4 we describe below (see Eq. (5)) states how 
the cognitive complexity and the structural complexity 
should be combined. It is based on the Metcalfe’s 
empiric law and Keating’s adaptation of the law for 
the complexity evaluation of a design partitioning [9]. 
Metcalfe’s law states that the “power” of a network is 
equal to the square of the nodes on it, and the “value” 
of the network is equal to the square of the edges on 
the network. The Keating’s measure is  

C = M 2 + I 2,  (4) 

where C is design complexity, M is the number of 
modules in a design, and I is the number of interfaces 
among modules. 

As design complexity can be presented as a graph 
in which nodes represent modules and edges represent 
interfaces (Keating’s model), we can apply this comp-
lexity measure to feature models. What is different in 
our case is that our graph (feature diagram) has 
different properties: nodes and edges play different 
roles (see property IX in sub-section 3.3.2) and should 
have different cognitive weights.  

We define cognitive weight of a feature as the 
degree of difficulty or relative time and effort required 
to comprehend it, and total cognitive weight of a 
feature model represented as a feature diagram is the 
sum of the cognitive weights of its graph elements. 
Therefore, following Shao and Wang [41], who define 
the weight of sequential structure as 1, the weight of 
branching (if-else) as 2, and the weight of case se-
lection as 3, we also introduce some cognitive weights 
to Eq. (4) (see Table 1). 

Table 1. Cognitive weights of FD elements 

Feature Diagram element Structure Cognitive weight 

Node  
(feature) 

<Concept><Context>

 

1 

Mandatory feature relationship 
(and-relationship) 

 

1 

Optional feature relationship 
(or-relationship) 

 

2 

Alternative feature relationship  
(case-relationship) 

 

3 

Groupings of relationships (cardinality)  [1..*]  
3 

Relationships among nodes and 
constraint relationships 
(<requires>, <excludes>) 

 
K Fxor K Frequires

 
3 
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Note. In the paper, we consider such FDs, whose 
relationships can be expressed using the propositional 
logic only. 

Rule 4. The compound complexity measure of a 
feature diagram (FD) is estimated by equation (5): 

Cm = F2 + (Rand2 + 2Ror2 + 3Rcase2  
+ 3Rgr2 + 3R2)/9, (5) 

where Cm is the compound complexity measure, F is 
the number of features (variant points and variants), 
Rand is the number of mandatory relationships, Ror is 
the number of optional relationships, Rcase is the 
number of alternative relationships, Rgr is the number 
of relationship groupings, R is the number of relation-
ships among nodes including constrains, and the 
division coefficient is the sum of cognitive weights for 
equalizing the role of relationships.  

The equalization is based on the criticism of Met-
calfe’s law [8, 42] stating that the value of the network 
in terms of linking users (i.e., complexity) is not 
proportional (equal) to the square of the number of its 
edges but less than this value, as it is identified by the 
following inequality: 

 (Rand2 + 2Ror2 + 3Rcase2 + 3Rgr2 + 3R2)/9  
< (Rand + Ror + Rcase + Rgr + R)2.  (6) 

5. Example of complexity calculation 

We present an example how the complexity of 
feature models can be calculated. Our aim is to illust-
rate how to use Rules 1 – 4 in practice when we try to 
evaluate a static (context-independent) well-defined 
domain feature model, and show the difficulties of the 
evaluation in the case when the evolutionary growth 
of feature diagrams is to be taken into account. We use 
feature models from Figure 1, Figure 2 and extended 
Figure 2 to estimate their complexity. The extended 
model (see Figure 2, a and b) contains three extra va-
riant points added to features Process, Assignment and 
Mixed model, each meaning Delay between inputs and 
output and each having two variants: 1) delta delay 
and 2) explicit delay (described with the statement 
after <delay constant> <delay unit> in VHDL). The 
results are presented in Table 2. 

Table 2. Estimated complexity of analyzed feature models 

Feature model Cognitive 
complexity 

(acc. to Rules 
1, 2) 

Structural 
complexity 

(acc. to Rule 3)

Compound 
complexity 

(acc. to Rule 4)

Estimation of 
compound 
complexity 

Explanation 

1 (Fig. 1) 2 (Rule 1) 
5 (Rule 2) 

31 990 Low  F = 31; Rand = 10; Ror = 1; 
 Rcase = 4; Rgr = 1; R = 6 

2 (Fig. 2, a) 7 (Rule 1) 
6 (Rule 2) 

487 3484.8 Complex  F = 58; Rand = 17; Ror = 3; 
Rcase = 16; Rgr = 2; R = 0* 

3 (Ext. Fig. 2, a 
and b) 

10 (Rule 1) 
7 (Rule 2) 

760 4264.8 Over-complex F = 64; Rand = 17; Ror =3;  
Rcase = 20; Rgr = 2; R = 0* 

 

*Note. In models 2 and 3, it is assumed that R= 0 
because those relationships are not shown in FDs 
(although actually they exist since the models are 
derived from the model 1 (see Fig. 1)). 

6. Summary, discussion and evaluation of the 
results 

Quantitative evaluation of the complexity of 
models is a very important task due to many reasons: 
1) complexity in system design is continuously grow-
ing, and as a result, there is a great need to manage 
complexity; 2) designs are moving towards a higher 
abstract level, thus the model-driven development is 
further strengthening its position; 3) assessment of the 
complexity of the developed software systems in the 
early stages of the software life-cycle allow to make 
cost-effective changes to the developed systems; 4) 
though software has many complexity measures (e.g., 
number of code lines, cyclomatic number, psychologi-
cal complexity, etc.), the straightforward use of those 
measures is not always relevant at the model level; 5) 

how we can reason about the introduction of a new 
abstraction level objectively (in order to manage the 
complexity and, e.g., to avoid over-generalization in 
component design [43]) without having quantitative 
measures?  

The task to deal with the complexity of models is 
hard because of a large variety of model types used to 
describe the models. We focus on a specific type of 
models described by Feature Diagrams (FDs), which 
are very useful in the context of product line engi-
neering and the use of generative technologies for 
implementing product lines. Due to the number of 
factors that contribute to the complexity of a FD, we 
cannot identify a single metric that measures all 
aspects of a feature model’s complexity. This situation 
is well known from the measurements of program 
source code complexity. A common solution is to use 
different measures within a metrics suite. Each indivi-
dual measure can evaluate one aspect of the comp-
lexity, and together they can provide a more accurate 
estimation of complexity. 

In this paper, we have proposed three measures for 
evaluating the complexity of FDs. The measures are 
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based on some properties of FDs, the empiric laws of 
Miller and Metcalfe as well as on rules of Keating [9]. 
The first measure evaluates the boundaries of cogni-
tive complexity, which are expressed through the 
“magic seven” property applied to variant points in the 
FD. The second measure evaluates structural comple-
xity expressed through the quantitatively identifiable 
number of adequate sub-trees in the FD. The measure 
correlates with the cyclomatic number that is used to 
evaluate program complexity. The third measure eva-
luates both the cognitive and structural aspects of 
complexity.  

7. Conclusions and future work 

The introduced complexity measures of feature 
models described using Feature Diagrams allow rea-
soning about the structure and behaviour of the system 
to be modelled at a higher abstraction level, allow 
comparing and evaluating system models or the 
complexity of their transformation into lower-level re-
presentation (e.g., into generic programs). The 
measures also allow to reason about the granularity 
level, important reuse characteristics that are difficult 
to express quantitatively, and generic programs (com-
ponents) to be derived from the feature model. As 
complexity is the inherent system property with mul-
tiple aspects, it is difficult to devise a unified measure 
reflecting all aspects of the model. The proposed 
complexity measures reflect different views on comp-
lexity, and enable to evaluate the design complexity at 
the model level. Though the presented case study 
supports theoretical assumptions, more empirical 
research is needed in order to better evaluate the mea-
sures and to reason about their value with a larger 
degree of certainty.  
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