
179

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.3

MEASURING COMPLEXITY OF DOMAIN MODELS REPRESENTED
BY FEATURE DIAGRAMS

Vytautas Štuikys, Robertas Damaševičius
Software Engineering Department, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania
e-mail: vytautas.stuikys@ktu.lt,damarobe@soften.ktu.lt

Abstract. Feature models represented by Feature Diagrams (FDs) prevail in the software product line approach.
The product line approach and FDs are used to manage variability and complexity of software families and to ensure
higher quality and productivity of product development through higher-level feature modeling and reuse. In this paper
we, first, analyze the properties of feature models. Then, combining some properties of FDs with ideas of Miller’s,
Metcalfe’s and Keating’s works, we propose three FD complexity measures. The first measure gives boundaries to
estimate cognitive complexity of a generic component to be derived from the feature model. The second measure
describes structural complexity of the model expressed through the number of adequate sub-trees of the given model.
The third measure estimates total cognitive and structural complexity of the model. To validate the introduced
measures, we present a case study with three feature models of a varying complexity.

Keywords: Feature model, feature diagram, complexity measures, cognitive complexity, structural
complexity.

1. Introduction

Complexity is the inherent property of systems to
be designed. The need for managing the complexity
issues is constantly growing because of the fact that
systems per se are becoming more and more complex
mainly due to technological advances, increasing user
requirements and market pressure. Complexity mana-
gement can help to increase quality and understand-
ability of developed products, decrease the number of
design errors [1] and shorten their development time.
Managing complexity means, firstly, knowing how to
measure it. Complexity measures allow reasoning
about system structure, understanding the system be-
haviour, comparing and evaluating systems or fore-
seeing their evolution.

Researchers and practitioners struggle with the
complexity problem for more than three decades. Soft-
ware engineers have long seen complexity as a major
factor affecting design quality and productivity. The
efforts to manage complexity have resulted in the in-
troduction and studies of such general principles as
separation of concerns, information hiding, system de-
composition, and raising abstraction level in a system
design [2]. On the other hand, new design methodo-
logies, which implement those principles combined
with various design techniques (e.g., object-oriented
design, generative programming [3]), have emerged
and are further evolving. The evident example is

Product Line Engineering (PLE) [4], which shifts
from the design of a single system to the design of a
family of related systems. The methodology widely
exploits the model-driven approach, where at the
focus are high-level domain models.

The domain model describes some fundamental
properties of a domain that are to be implemented by
software. These properties are: commonality, vari-
ability, specificity, and various relationships among
these groups of features [2, 4, 5]. These properties are
expressed through the notation, which is commonly
accepted in the context of PLE – Feature Diagrams
(FDs). As currently the model-driven approach pre-
vails in the development of systems (not only in PLE,
but also in a much wider context), it is not enough to
deal with the complexity issues at the stand-alone
program (system) level only. What is needed is to con-
sider the complexity problem at a higher abstraction
level too, i.e., to focus on the complexity of high-level
domain models. We see the definition of such mea-
sures as a meta-modeling activity.

The aim of this paper is to analyze feature models
in order to devise their complexity measures. As the
scope of the problem is wide, we restrict ourselves to
the analysis of feature models that contain a high de-
gree of variability (actually expressing generic aspects
of the model) and represent some part of a super-
domain model. So far only one study [6] has

V. Štuikys, R. Damaševičius

180

considered non-functional properties of product lines
such as complexity, but we were unable to find any
research on the estimation of feature model comple-
xity. Our contribution is three complexity measures
(metrics) to evaluate the complexity of generic prog-
ram models represented using FDs. The measures use
some properties of FDs combined with ideas from the
Miller’s [7], Metcalfe’s [8] and Keating’s [9] works.

The paper is organized as follows. Section 2 ana-
lyses the related works. Section 3 motivates the prob-
lem and provides an example. Section 4 describes
backgrounds for evaluating complexity of models re-
presented by FDs and presents measures for quan-
titative calculation of complexity. Section 5 presents
three examples of complexity calculation. Section 6
presents the overall evaluation of the results. Finally,
Section 7 formulates conclusions and states problems
for further research.

2. Related works

We classify the related works into two categories:
1) works on complexity analysis and measurement of
programs and their high-level models such as UML
models, business process models, etc.; and 2) works
on feature models and feature diagrams as a specific
kind of high-level models.

Complexity measures at a program model level
were at the focus of researchers for a long time.
Though there are many metrics, Cyclomatic comple-
xity is one of the most widely accepted static software
metrics [10]. Proposed by McCabe in 1976 [11], it
directly measures the number of linearly independent
paths through a program's source code from entrance
to each exit. It is intended to be independent of lan-
guage and language format. Other metrics bring out
other facets of complexity, including structural and
computational complexity. For example, Halstead
complexity measures [12] identify algorithmic com-
plexity measured by counting operators and operands;
Henry and Kafura metrics [13] indicate coupling bet-
ween modules (parameters, global variables, calls);
Troy and Zweben [1] metrics evaluate complexity of
program’s structure.

Since the arrival of model-driven development,
complexity measures were introduced at the domain
model level, too. Different measures are proposed to
evaluate structural and cognitive complexity of UML
Use Case diagrams [14] and Class diagrams [15-17],
State-Chart diagrams [18], Entity-Relationship dia-
grams [19], Conceptual Schemas [20], Petri Net speci-
fications [21]. Kim and Boldyreff [22] have defined a
set of 27 metrics to measure various characteristics
including complexity of UML models.

The complexity of business process models (BPM)
is assessed in [23, 24]. BPM models have some
similarity to FDs, because they have similar types of
connectors: AND, OR, and XOR. Cardoso [25] de-
fines Control-Flow Complexity (CFC) of business

processes as the number of mental states (or possible
decisions in a flow) that have to be considered when a
designer develops a process. Other researchers [26-28]
propose using graph complexity metrics, such as
Coefficient of Network Complexity (CNC), Comple-
xity Index (CI), Restrictiveness Estimator (RT), and
the number of trees in a graph, to evaluate business
processes. Mendling et al. [29] describe, analyze and
validate experimentally 28 business process metrics
(such as size, density, structuredness, coefficient of
connectivity, average connector degree, control flow
complexity, etc.).

Product-line engineering (PLE), which has emer-
ged in recent years as a design paradigm aiming to
ensure higher quality and productivity in the develop-
ment of software systems [4, 5], widely employs
feature models. Such models, which represent a set of
domain-related features and their relationships, are
usually described using Feature Diagrams (FDs).
Though they were introduced in the context of FODA
(Feature-Oriented Domain Analysis) yet in 1990 [30],
the evolution of the FD notation still continues [31].
FDs are seen as higher-level models that allow de-
scribing specifications to implement generative ap-
proaches within the PLE concept (e.g., generative
programming [3], aspect-oriented programming [32]
or meta-programming [34, 35]). FD is a specific
model that specifies not a single program, but a family
of the related program instances represented at a high-
level of abstraction. Though a FD and a program
graph has some common properties, the complexity
problem of FDs should be considered separately, first
of all taking into account specific properties of FDs
and, of course, the appropriate program complexity
and other measures, such as proposed in [9].

3. Problem statement and a motivating
example

3.1. Some preliminary remarks

As system designs evolve under pressure and de-
mands for better quality, higher functionality and
shorter time-to-market, the growth of complexity has
direct impact on design methods, approaches and
paradigms. Complexity is the intrinsic attribute of sys-
tems and processes through which systems are
created. One way to manage design complexity is to
enhance reuse in the context of PLE, where require-
ments may evolve. What is happening when we need
to extend the scope of requirements beyond one sys-
tem/component or beyond a family of related sys-
tems/components, if there is some prediction on their
possible usage in a wider context? It is easy to predict
intuitively: the models we need to deal with are be-
coming more and more complex. But to which limits
we can let complexity of models grow in terms of
requirements prediction, implementation difficulties
and how we need to manage this complexity at a
higher abstraction level? The first task is to understand

Measuring Complexity of Domain Models Represented by Feature Diagrams

181

the complexity issues and to learn to measure the
complexity quantitatively. The motivating example we
present below provides more details for better under-
standing of the problem.

3.2. Motivating example of a feature model

Feature diagrams are commonly accepted models
to represent domain artifacts at a higher abstraction
level when a design is based on the product line
methodology. Feature models are created using do-
main analysis methods (e.g., FODA, FORM, etc. [2]).
The syntax of FDs can be easily learned from the
example (see Figure 1 and sub-section 3.2) and se-
mantics can be learned from the properties described
in sub-section 3.3 (for deeper knowledge, see [31]).

As a motivating example, we have selected the
model that describes features and their relationships of
the homogeneous gate domain. The domain is well
defined because it is based on the first-order logic
(FOL), called also Boolean algebra. The term gate
means that it contains not only logical (functional)
features, descriptive features (e.g., behavioral, structu-
ral) and representation features (e.g., HW description
languages, such as VHDL or SystemC [33]) and va-
rious relationships, but also physical features, such as
technology, area, delay and energy consumption.
Figure 1 presents a simplified model that defines the
representational and functional aspects only. From the
methodological view, the model also serves as a
tutorial for understanding and learning syntax and
semantics of FDs.

GATE

Repesentation Functional aspects

Function type
Others

Equation
(FOL)

Interface

Left side =
Input number Output

Right side

 R3

Legend:
Mandatory feature
Obligatory feature
Optional feature
Solitary feature
Grouped features
Variant point VP
Variant Vi
Relationship Ri
Constraint Rj or Cj

 ¬

 1 2 … 16

[1..*]

R1 R2

Explanation:
R1 - Relationship <require>: " ” requires any number from the group
R2 - Relationship <require>: “ " requires any number from the group
R3 - Constraint of type <require> : “¬” requires only 1 input
R4, R5, R6 - Relationships <require>: <right side> requires an
expression w ith “ ”, “ " , and “¬” operations adequately.
Example of R4: x1 x 2 x3
Note: Function type is variant point <VP1> w ith 3 variants and
 Input number is variant point <VP2> w ith 16 variants: one is a
solitary feature variant, the rest are grouped

Level 0

Level 1

Level 2

Level 3

Level 4

<VP1>

<VP2>

[1..*]

R4

R5

R6

Figure 1. Homogeneous GATE feature model based on representational and functional aspects only

We define basic terms related to FDs below. Kang
et al. define feature as “end-user visible characteristic
of a system or a key characteristic of a concept that is
relevant to some stakeholder” [4]. We define feature
as an externally visible characteristic that is relevant to
the given designer’s context (we can allow the context
to be changed [36, 37]), but here we consider that
context is constant). Feature diagram is a connected
graph, where boxes (nodes, leaves) represent features
and edges represent various kinds of relationships
among features. We accept that relationships are of the
type, which are expressed through relations of the
propositional logic. There are three types of features:
mandatory (boxes with the black circle above), optio-
nal and alternative (both are denoted as boxes with the
white circle above).

Mandatory features express commonality of the
concept, whereas optional and alternative features
express variability. Features may appear either as a

solitary feature or in groups. If all mandatory features
in the group are derivates from the same parent in the
parent-child relationship, there is the and–relationship
among those features (e.g., at level 1 or 2, see Figure
1). An optional feature may be included or not if its
parent is included in the model. Alternative features,
when they appear in groups as derivates from the same
parent, may have the following relationships: or, xor
(filled arc in Figure 2), case (arc in Figure 1), etc. For
more advanced types of alternative features as “views
on ontology”, see [38].

There are also three types of structural relation-
ships: parent-child (already has been introduced),
relationships among nodes (e.g., R1, R2 in Figure 1)
and constraints. In each category there may be various
semantic relationships, such as <expression> (R2),
<equivalence> (R1), <algebraic dependency> [37],
etc. in the category of relationships among terminals.
For example, constraints among terminals may have

V. Štuikys, R. Damaševičius

182

the following types: <require> (R3), <implication>,
<mutual exclusive>, etc. (this kind don’t appear in
models Figure 1 and 2).

3.3. Some properties of feature models

We formulate the basic properties of feature mo-
dels, which have influence on measuring complexity.
Since the example (Figure 1) is too simple, we extend
it with new aspects such as a language and function
notation (see Figure 2). The introduction of the new
aspect in one branch (at level 1, see Figure 1 and 2)
may cause the need of introducing additional features,
variant points, variants, and as a result, new relation-
ships are to be taken into account. It is clear – the
complexity of the model is growing too with any

extension of the domain – and we can also see some
restrictions or limitation of the introduced graphical
notation as stated below. If the tree-like structure, i.e.,
feature and parent-child relationships and partial
constraints work well, some difficulties arise with ob-
taining and representing other kinds of relationships.
This happens because of: 1) FDs lack of a mechanism
for representing more complicated relationships
(which usually lead to domain ontology [37, 38]; 2)
graphical representation of a large amount of relation-
ships by connecting leaves diminishes readability and
clarity of the graph; 3) some features may describe
other domains (e.g., syntax of VHDL, see Figure 2),
which are much wider than the domain at hand, and
the process of decomposition should be restricted.

GATE

Repesentation Functional aspects

Function
notationFOL

Behavioral

VHDL

Structural

Syntax

In
SystemC

In
FOLSystemC

Behavioral

Interface

Left
side =

Inputs number OutputRight
side

Language

AND, OR, NOT, XOR,
 NAND, NOR, XNOR

Structural

Mixed model

 1

[1..*]

Syntax

Entity ArchitectureProcess Assignment

In VHDL

 ¬ & | ~ ^

[1..7]
 16

 VP1 VP2 VP3 VP4 VP5 VP6

VP7

a)

b)

Delta delay after stmt

Figure 2. The extended feature model (a) of the domain GATE and possibility for further extension of features ‘process’,
‘structural’ and ‘Mixed model’ by ‘delta delay’ or using ‘after stmt’ (b)

The latter has the following implication: we need
to let not only the explicit representation (the usual
intension of the model) but also the implicit represen-
tation of some features and relationships (e.g., aiming
to simplify the model by information hiding). For
example, such a sub-feature as variable of the feature
right side (see Figure 1) is not defined explicitly be-
cause it is a lower-level feature and its explicit speci-
fication should be postponed till implementation.

I. The feature diagram-based domain model is a
connected graph consisting of two subgraphs:

a) A tree-like subgraph in which the root represents
the domain itself, the intermediate nodes represent a
set of compound features (some of them may be
variant points), the leaves represent feature variants (if
derived from the same variant point) and edges re-
present the parent-child relationships among features,
variant points and their variants;

b) A subgraph (it may be disconnected, see Figure
1), in which nodes are a subset of leaves derived from

different parents, and edges between the subset nodes
represent the overlapping relationships and constraints
induced by the inherent properties of the domain (for
simplicity reasons the subgraph is omitted in Figure
2).

II. Model can be rewritten as n-level structure (see
Figure 1), where n is the longest path from the root to
the node at the level n. If a node at level i-1 (1< i < n)
represents a variant point, then nodes at level i are
terminals or variants.

III. Overlapping relationships may represent func-
tional, structural and other kind of relationships
among the leaves derived from different parents.
Among overlapping relationships there is a specific
type of relationships which represent constraints.
Constrains may have such sub-types as “A requires
B”, “C and D are mutually exclusive”, where A, B, C
and D are feature variants.

IV. A domain model expresses such aspects as
commonality, variability and specificity (if any). The

Measuring Complexity of Domain Models Represented by Feature Diagrams

183

terms are described as follows. These aspects have
quantitative measures. Commonality is the number of
mandatory features in a feature model. Variability is a
compound of the number of variant points, the number
of variants and overlapping relationships including
constrains (see property IX, for more details).

V. Features and relationships are represented in a
FD in two ways: explicitly and/or implicitly. The ex-
plicit representation is more powerful and, as a rule, it
is used for more important features (e.g., variant
points that pre-define variability and relationships).
The implicit representation is less powerful. It can be
used to simplify the representation in the case when
either it is clear from the context that a given fea-
ture/relationship should be taken into account in the
evaluation. Implicit representation is also used for
restricting the scope of the model.

VI. The scope of the feature model is a restrictive
attribute that outlines the boundaries of the domain
under consideration in the given circumstances. The
scope of the model means all aspects which we want
to include in the model. The scope depends on mul-
tiple factors: goal, context (e.g., external factors such
as user requirements), domain itself and, in general,
abilities of the domain analyzer to understand the
domain and to grasp its properties. The scope is more
relevant to the domain; while complexity is more
relevant to evaluation of the domain model.

VII. Feature diagram with variant points and va-
riants represents a family of related component
instances specified at a higher abstraction level as sub-
models in terms of features and relationships. A parti-
cular instance (a sub-model) in the model is repre-
sented as a sub-tree with the following properties: a)
each sub-tree contains all non-leaves and only one leaf
(variant) for each variant point: b) all edges that con-
tain the above mentioned nodes. For example, a FD in
Figure 1 has 31 sub-trees (15 with AND (٨), 15 with
OR (٧) and 1 with NOT (¬)).

VIII. As influential factors (goal, context, etc.)
evolve over time, the scope and the model represen-
tation can be extended adequately. Thus we can speak
about evolving models even for the same domain
objects. It is reasonable to predict that evolution adds
complexity in the model. This property can be easily
learned from the examples (cf. Figure 1 and 2).

IX. Commonality in the model is mandatory
features (that are not variant points) and their parent-
child relationships. For example, node <equation> and
its edges <left side>, <.= > and <right side> , as well
as <interface> consisting of <inputs> and <output> in
Figure 1 are two different kinds of commonality.
Variability in the model is variant points, variants (see
VP1 and VP2 in Figure 1) and explicit relationships
among variants. Constraints as a specific kind of re-
lationships (it can be treated as domain specificity,
e.g., “NOT requires only one input”) diminish vari-
ability in some way.

X. Introducing new features to the model (e.g., as a
result of the extension of domain scope aiming to
build an evolutionary model) may result in appearance
of new variants, the need of clustering some variants
and even introduction of external features and rela-
tionships from a larger domain, which is a super-
domain of the given one. This property can be under-
stood by comparing Figure 1 and 2 and introducing
new features such as area, energy, delay in Figure 2
(these features are not shown and are regarded as
being defined implicitly).

4. Backgrounds for evaluating complexity of
feature models

There are two different views on complexity [23]:
complexity as ”difficulty to test” (i.e., number of test
cases needed to achieve full path coverage), and
complexity as ”difficulty to understand a model”. The
latter is also known as cognitive complexity of a mo-
del. Cardoso et al. [26] also identify different types of
complexity: computational complexity, psychological
(cognitive) complexity, and representational comple-
xity. Cognitive complexity focuses on the analysis of
how complicated a problem is from the perspective of
the person trying to solve it. Cognitive complexity is
related to short-term memory limitations, which vary
depending on the individual and on what kind of
information is being retained [39]. For software desig-
ners, the ability of coping with complexity of a do-
main model is a fundamental issue, which influences
the quality of the final product. High cognitive comp-
lexity of a model leads to a higher risk of making
design errors and may lead to lower than required
quality of a developed product, such as decreased
maintainability. We claim that the properties (such as
structural complexity and size) of a feature model
represented using FD have an impact on its cognitive
complexity.

In this context, it is useful to have a boundary for
cognitive complexity. We rely on Miller’s early work
[7] stating that human beings can hold 7 (+/-2) chunks
of information in their short-term memory at one time.
We also use the rule of Keating, which is based on the
Miller’s work as applied to design domain: “The
number of modules at any level of hierarchy must be 7
+/- 2” [9]. Our empirical rule (Rule 1) for the
boundary of cognitive complexity as applied to the
feature model is as follows:

Rule 1. The cognitive complexity of a FD is
calculated as the number of variant points in a FD.
The number of variant points in a FD must be 7 +/- 2,
if a designer wants to avoid consequences of high
cognitive complexity. If the number of variant points is
fewer than 5, the value of the model may be dimini-
shed due to the decreasing granularity level and too
much information hiding. If the number of variant
points is more than 9, the user needs to decompose the
model into parts or levels in order to remain within
the limits of cognitive complexity.

V. Štuikys, R. Damaševičius

184

Rule 2. The cognitive complexity of a FD is calcu-
lated as the maximal number of levels in a feature
hierarchy or the maximal number of parts (graph
leaves) in each level of a hierarchy.

Rule 3. The structural complexity of a feature
model with variant points is evaluated by the number
of sub-trees with property VII (each variant point has
only one selected variant). Each sub-tree (sub-model)
is derived from the initial feature diagram as a generic
model for a given domain.

Rule 3 describes the structural (representational)
complexity of a feature model, i.e. the ability of a FD
to represent different product instances of a product
line. Rule 3 has some correlation with the cyclomatic
number, the well known measure for evaluating the
complexity of a program [10]. Each path in a program
graph correlates to the adequate sub-tree in the feature
diagram since the realization of the sub-tree can be
seen as a program (path) with the syntax rules for cor-
rect implementation of a particular product instance.

For example, the generic domain model (see Fi-
gure 1) has 31 different sub-trees which, when rea-
lized, gives 31 logical equations of the following type:

y= ¬ x; (1)

y = x1 ٨ x2; y = x1 ٨ x2 ٨ x3; …
y = x1 ٨ x2 ٨ … ٨ x16; (2)

y = x1 ٧ x2; y = x1 ٧ x2 ٧ x3; …
y = x1 ٧ x2٧ … ٧ x16; (3)

Based on the empirical research and practical im-
plementations [40], the cyclomatic complexity has the
following boundaries: from 1 to 10, the program is
simple; from 11 to 20, it is slightly complex; from 21

to 50, it is complex; and above 50 it is over-complex
(untestable).

Rule 4 we describe below (see Eq. (5)) states how
the cognitive complexity and the structural complexity
should be combined. It is based on the Metcalfe’s
empiric law and Keating’s adaptation of the law for
the complexity evaluation of a design partitioning [9].
Metcalfe’s law states that the “power” of a network is
equal to the square of the nodes on it, and the “value”
of the network is equal to the square of the edges on
the network. The Keating’s measure is

C = M 2 + I 2, (4)

where C is design complexity, M is the number of
modules in a design, and I is the number of interfaces
among modules.

As design complexity can be presented as a graph
in which nodes represent modules and edges represent
interfaces (Keating’s model), we can apply this comp-
lexity measure to feature models. What is different in
our case is that our graph (feature diagram) has
different properties: nodes and edges play different
roles (see property IX in sub-section 3.3.2) and should
have different cognitive weights.

We define cognitive weight of a feature as the
degree of difficulty or relative time and effort required
to comprehend it, and total cognitive weight of a
feature model represented as a feature diagram is the
sum of the cognitive weights of its graph elements.
Therefore, following Shao and Wang [41], who define
the weight of sequential structure as 1, the weight of
branching (if-else) as 2, and the weight of case se-
lection as 3, we also introduce some cognitive weights
to Eq. (4) (see Table 1).

Table 1. Cognitive weights of FD elements

Feature Diagram element Structure Cognitive weight

Node
(feature)

<Concept><Context>

1

Mandatory feature relationship
(and-relationship)

1

Optional feature relationship
(or-relationship)

2

Alternative feature relationship
(case-relationship)

3

Groupings of relationships (cardinality) [1..*]
3

Relationships among nodes and
constraint relationships
(<requires>, <excludes>)

K Fxor K Frequires

3

Measuring Complexity of Domain Models Represented by Feature Diagrams

185

Note. In the paper, we consider such FDs, whose
relationships can be expressed using the propositional
logic only.

Rule 4. The compound complexity measure of a
feature diagram (FD) is estimated by equation (5):

Cm = F2 + (Rand2 + 2Ror2 + 3Rcase2
+ 3Rgr2 + 3R2)/9, (5)

where Cm is the compound complexity measure, F is
the number of features (variant points and variants),
Rand is the number of mandatory relationships, Ror is
the number of optional relationships, Rcase is the
number of alternative relationships, Rgr is the number
of relationship groupings, R is the number of relation-
ships among nodes including constrains, and the
division coefficient is the sum of cognitive weights for
equalizing the role of relationships.

The equalization is based on the criticism of Met-
calfe’s law [8, 42] stating that the value of the network
in terms of linking users (i.e., complexity) is not
proportional (equal) to the square of the number of its
edges but less than this value, as it is identified by the
following inequality:

 (Rand2 + 2Ror2 + 3Rcase2 + 3Rgr2 + 3R2)/9
< (Rand + Ror + Rcase + Rgr + R)2. (6)

5. Example of complexity calculation

We present an example how the complexity of
feature models can be calculated. Our aim is to illust-
rate how to use Rules 1 – 4 in practice when we try to
evaluate a static (context-independent) well-defined
domain feature model, and show the difficulties of the
evaluation in the case when the evolutionary growth
of feature diagrams is to be taken into account. We use
feature models from Figure 1, Figure 2 and extended
Figure 2 to estimate their complexity. The extended
model (see Figure 2, a and b) contains three extra va-
riant points added to features Process, Assignment and
Mixed model, each meaning Delay between inputs and
output and each having two variants: 1) delta delay
and 2) explicit delay (described with the statement
after <delay constant> <delay unit> in VHDL). The
results are presented in Table 2.

Table 2. Estimated complexity of analyzed feature models

Feature model Cognitive
complexity

(acc. to Rules
1, 2)

Structural
complexity

(acc. to Rule 3)

Compound
complexity

(acc. to Rule 4)

Estimation of
compound
complexity

Explanation

1 (Fig. 1) 2 (Rule 1)
5 (Rule 2)

31 990 Low F = 31; Rand = 10; Ror = 1;
 Rcase = 4; Rgr = 1; R = 6

2 (Fig. 2, a) 7 (Rule 1)
6 (Rule 2)

487 3484.8 Complex F = 58; Rand = 17; Ror = 3;
Rcase = 16; Rgr = 2; R = 0*

3 (Ext. Fig. 2, a
and b)

10 (Rule 1)
7 (Rule 2)

760 4264.8 Over-complex F = 64; Rand = 17; Ror =3;
Rcase = 20; Rgr = 2; R = 0*

*Note. In models 2 and 3, it is assumed that R= 0
because those relationships are not shown in FDs
(although actually they exist since the models are
derived from the model 1 (see Fig. 1)).

6. Summary, discussion and evaluation of the
results

Quantitative evaluation of the complexity of
models is a very important task due to many reasons:
1) complexity in system design is continuously grow-
ing, and as a result, there is a great need to manage
complexity; 2) designs are moving towards a higher
abstract level, thus the model-driven development is
further strengthening its position; 3) assessment of the
complexity of the developed software systems in the
early stages of the software life-cycle allow to make
cost-effective changes to the developed systems; 4)
though software has many complexity measures (e.g.,
number of code lines, cyclomatic number, psychologi-
cal complexity, etc.), the straightforward use of those
measures is not always relevant at the model level; 5)

how we can reason about the introduction of a new
abstraction level objectively (in order to manage the
complexity and, e.g., to avoid over-generalization in
component design [43]) without having quantitative
measures?

The task to deal with the complexity of models is
hard because of a large variety of model types used to
describe the models. We focus on a specific type of
models described by Feature Diagrams (FDs), which
are very useful in the context of product line engi-
neering and the use of generative technologies for
implementing product lines. Due to the number of
factors that contribute to the complexity of a FD, we
cannot identify a single metric that measures all
aspects of a feature model’s complexity. This situation
is well known from the measurements of program
source code complexity. A common solution is to use
different measures within a metrics suite. Each indivi-
dual measure can evaluate one aspect of the comp-
lexity, and together they can provide a more accurate
estimation of complexity.

In this paper, we have proposed three measures for
evaluating the complexity of FDs. The measures are

V. Štuikys, R. Damaševičius

186

based on some properties of FDs, the empiric laws of
Miller and Metcalfe as well as on rules of Keating [9].
The first measure evaluates the boundaries of cogni-
tive complexity, which are expressed through the
“magic seven” property applied to variant points in the
FD. The second measure evaluates structural comple-
xity expressed through the quantitatively identifiable
number of adequate sub-trees in the FD. The measure
correlates with the cyclomatic number that is used to
evaluate program complexity. The third measure eva-
luates both the cognitive and structural aspects of
complexity.

7. Conclusions and future work

The introduced complexity measures of feature
models described using Feature Diagrams allow rea-
soning about the structure and behaviour of the system
to be modelled at a higher abstraction level, allow
comparing and evaluating system models or the
complexity of their transformation into lower-level re-
presentation (e.g., into generic programs). The
measures also allow to reason about the granularity
level, important reuse characteristics that are difficult
to express quantitatively, and generic programs (com-
ponents) to be derived from the feature model. As
complexity is the inherent system property with mul-
tiple aspects, it is difficult to devise a unified measure
reflecting all aspects of the model. The proposed
complexity measures reflect different views on comp-
lexity, and enable to evaluate the design complexity at
the model level. Though the presented case study
supports theoretical assumptions, more empirical
research is needed in order to better evaluate the mea-
sures and to reason about their value with a larger
degree of certainty.

References
 [1] D.A. Troy, S.H. Zweben. Measuring the Quality of

Structured Designs. Journal of Systems and Software,
Vol. 2, 1981, 113-120.

 [2] J. Coplien, D. Hoffman, D. Weiss. Commonality and
Variability in Software Engineering. IEEE Software,
Vol. 15(6), 1998, 37-45.

 [3] K. Czarnecki, U. Eisenecker. Generative Program-
ming: Methods, Tools and Applications. Addison-
Wesley, 2001.

 [4] K. Kang, J. Lee, P. Donohoe. Feature-oriented pro-
duct line engineering. IEEE Software, Vol. 19(4),
2002, 58-65.

 [5] P. Clements, L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

 [6] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C.
Kästner, G. Saake. Measuring non-functional proper-
ties in software product lines for product derivation.
Proc. of 15th Asia-Pacific Software Engineering
Conference (APSEC 2008), Beijing, China December
3-5, 2008,187-194.

 [7] G. Miller. The Magic Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing

Information. The Psychological Review, Vol. 63(2),
1956, 81-97.

 [8] G. Li. Economic sense of Metcalfe’s Law. Proc. of
17th Int. World Wide Web Conference (WWW 2008),
April 21-25, 2008, Beijing, China.

 [9] M. Keating. Measuring Design Quality by Measuring
Design Complexity. Proc. of the 1st Int. Symp. on
Quality of Electronic Design (ISQED 2000), San Jose,
California, March 20-22, 2000, 103-108.

[10] Software Engineering Institute (SEI). Cyclomatic
Complexity. In Software Technology Roadmap, 2006.
www.sei.cmu.edu/str/descriptions/cyclomatic_body.ht
ml.

[11] T.J. McCabe. A Complexity Measure. IEEE Transac-
tions on Software Engineering, Vol. se-2, No. 4, 1976,
308-320.

[12] M.H. Halstead. Elements of Software Science. New
York: Elsevier, 1977.

[13] S.M. Henry, D.G. Kafura. Software Structure
Metrics Based on Information Flow. IEEE Trans.
Software Eng. 7(5), 1981, 510-518.

[14] M. Marchesi. OOA metrics for the Unified Modeling
Language. Proc. of Second Euromicro Conference on
Software Maintenance and Reengineering (CSMR’98),
Florence, Italy, 1998, 67.

[15] T. Yi, F. Wu, C. Gan. A comparison of metrics for
UML class diagrams. ACM SIGSOFT Software
Engineering Notes, Vol. 29(5), 2004, 1–6.

[16] M. Genero-Bocco, M. Piattini, C. Calero. A Survey
of Metrics for UML Class Diagrams. Journal of
Object Technology 4(9), 2005, 59-92.

[17] A. Zivkovic, M. Hericko, B. Brumen, S. Beloglavec,
I. Rozman. The Impact of Details in the Class Dia-
gram on Software Size Estimation. INFORMATICA,
16(2), 2005, 295-312.

[18] M. Genero, D. Miranda, M. Piattini. Defining Met-
rics for UML Statechart Diagrams in a Methodological
Way. In M.A. Jeusfeld, O. Pastor (Eds.), Proc. of
Conceptual Modeling for Novel Application Domains,
ER 2003 Workshops, Chicago, IL, USA, October 13,
LNCS 2814, Springer, 2003, 118-128.

[19] M. Genero, L. Jiménez, M. Piattini. Measuring the
Quality of Entity Relationship Diagrams. In A.H.F.
Laender, S.W. Liddle, V.C. Storey (Eds.), Proc. of 19th
Int. Conf. on Conceptual Modeling, ER 2000, Salt
Lake City, Utah, USA, October 9-12, 2000. LNCS
1920, Springer, 2000, 513-526.

[20] S.S. Cherfi, J. Akoka, I. Comyn-Wattiau. Perceived
vs. Measured Quality of Conceptual Schemas: An
Experimental Comparison. In J.C. Grundy, S.
Hartmann, A.H. F. Laender, L.A. Maciaszek, J.F.
Roddick (Eds.), Proc. of the 26th Int. Conf. on Con-
ceptual Modeling, ER 2007. Auckland, New Zealand,
November 5-9, 2007, 185-190.

[21] S. Morasca. Measuring Attributes of Concurrent Soft-
ware Specifications in Petri Nets. Proc. of the 6th Int.
Symposium on Software Metrics, Boca Raton, Florida,
November 4-6, 1999, 100–110.

[22] H. Kim, C. Boldyreff. Developing software metrics
applicaple to UML models. In 6th ECOOP Workshop
on Quantitative Approaches in Object-Oriented Soft-
ware Engineering (QAOOSE 2002), Malaga, Spain,
June 2002.

Measuring Complexity of Domain Models Represented by Feature Diagrams

187

[23] R. Laue, V. Gruhn. Complexity metrics for business
process models. In W. Abramowicz and H. C. Mayr
(Eds.), Proc. of 9th Int. Conf. on Business Information
Systems (BIS 2006), LNI 85, 2006, 1-12.

[24] I. Vanderfeesten, J. Cardoso, J. Mendling, H.A.
Reijers, W.M.P. van der Aalst. Quality Metrics for
Business Process Models. In L. Fischer (ed.), BPM
and Workflow Handbook 2007, Future Strategies,
May 2007, 179–190.

[25] J. Cardoso. Process control-flow complexity metric:
An empirical validation. Proc. of IEEE Int. Conf. on
Services Computing (IEEE SCC 06), Chicago, USA,
September 18-22, 2006, 167-173.

[26] J. Cardoso, J. Mendling, G. Neumann, H.A. Rei-
jers. A Discourse on Complexity of Process Models.
In J. Eder, S. Dustdar (Eds.), Proc. of Business
Process Management BPM 2006 Workshops, Vienna,
Austria, September 4-7, 2006. LNCS 4103, Springer,
2006, 117-128.

[27] A.M. Latva-Koivisto. Finding a complexity measure
for business process models. Research Report, Helsin-
ki University of Technology, Systems Analysis Labo-
ratory, 2001.

[28] I. Vanderfeesten, H.A. Reijers, J. Mendling,
W.M.P. van der Aalst, J. Cardoso. On a Quest for
Good Process Models: The Cross-Connectivity Met-
ric. Proc. of 20th Int. Conf. on Advanced Information
Systems Engineering CAiSE 2008, Montpellier,
France, June 16-20, 2008. LNCS 5074, Springer,
2008, 480-494.

[29] J. Mendling, G. Neumann, W.M.P. van der Aalst.
Understanding the Occurrence of Errors in Process
Models based on Metrics. In R. Meersman, Z. Tari
(Eds.): On the Move to Meaningful Internet Systems
2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM
Confederated International Conferences CoopIS,
DOA, ODBASE, GADA, and IS 2007, Vilamoura,
Portugal, November 25-30, 2007, LNCS 4803, 113–
130. Springer, 2007.

[30] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibi-
lity Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon Uni-
versity, 1990.

[31] P.-Y. Schobbens, P. Heymans, J.-Ch. Trigaux, Y.
Bontemps. Feature Diagrams: A Survey and a Formal
Semantics. 14th IEEE International Requirements En-
gineering Conference (RE'06), Minneapolis, Minne-
sota, USA, September 2006, 139–148.

[32] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C.V. Lopes, J.-M. Loingtier, J. Irwin. Aspect-
Oriented Programming. Proc. of 11th European Con-
ference on Object-Oriented Programming (ECOOP
1997), Jyväskylä, Finland, June 9-13, 1997. LNCS
1241, Springer-Verlag, 1997, 220-242.

[33] W. Muller W. Rosenstiel, J. Ruf (eds.). SystemC and
Applications. Kluwer Academic Publications, 2003.

[34] T. Sheard. Accomplishments and Research Challen-
ges in Meta-Programming. In 2nd Int. Workshop on
Semantics, Application, and Implementation of Prog-
ram Generation (SAIG’2001), Florence, Italy. LNCS
2196, Springer, 2001, 2-44.

[35] R. Damaševičius, V. Štuikys. Taxonomy of the fun-
damental concepts of metaprogramming. Information
Technology and Control, Vol. 37(2), 2008, 124-132.

[36] V. Štuikys, R. Damaševičius. Development of Gene-
rative Learning Objects Using Feature Diagrams and
Generative Techniques. Informatics in Education, Vol.
7(2), 2008, 277-288.

[37] V. Štuikys, R. Damaševičius. Design of Ontology-
Based Generative Components Using Enriched Fea-
ture Diagrams and Meta-Programming. Information
Technology and Control, 37(4), 2008, 301-310.

[38] K. Czarnecki, C.H.P. Kim, K.T. Kalleberg. Feature
Models are Views on Ontologies. Proc. of the 10th Int.
Software Product Line Conference, Baltimore, USA,
August 21-24, 2006, 41-51.

[39] W. Kintsch. Comprehension: a paradigm for cogni-
tion. Cambridge University Press, 1998.

[40] M. Frappier, S. Matwin, A. Mili. Software Metrics
for Predicting Maintainability: Software Metrics Stu-
dy: Technical Memorandum 2. Canadian Space Agen-
cy, January 21, 1994.

[41] J. Shao, Y. Wang. A New Measure of Software
Complexity based on Cognitive Weights. Canadian
Journal of Electrical and Computer Engineering,
28(2), 2003, 69-74.

[42] B. Briscoe, A. Odlyzko, B. Tilly. Metcalfe’s Law is
Wrong. IEEE Spectrum, 26-3, July 2006.

[43] J. Sametinger. Software Engineering with Reusable
Components. Springer-Verlag, Berlin, 1997.

Received March 2009.

