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Abstract. Due to high complexity of chemical processes and their control systems, adaptive controllers are fre-
quently applied in practice. The present paper describes the design and implementation of adaptive fuzzy controllers 
for the control of a coupled level and pressure process. Expert knowledge is applied to form an adaptation mechanism 
which tunes the fuzzy controller based on process data. The results of the experiments on the physical plant prove the 
practical relevance of the design strategy of an adaptive fuzzy controller. 
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1. Introduction 

With the increase of the computation power the 
more complex control algorithms can now be applied 
to today’s highly nonlinear, sometimes even not well 
explored systems that are affected by unexpected 
internal or external disturbances, to systems whose 
dynamics is changing in time. At the design stage of 
controller, for such systems in most cases only general 
information about the plant is available so the problem 
becomes to analyze and learn information about the 
plant during the control process. This paper analyses 
the control of level and pressure in a closed tank. 

A model derived from physical principles, even if 
available, can show significant differences from the 
working physical system, which can lead to errors in 
the control design [1]. The approach when model 
based control is applied is not always practical as the 
identification of an adequate model of a level-pressure 
system is a challenging task and the lack of precision 
of the model in that case results in a decrease of 
control effectiveness [2]. Besides as research show, 
due to the coupling and non-minimum-phase behavior, 
plus the nonlinearities from valves, the specifications 
that can be obtained in practice are very poor, further 
worsened by the high amount of noise present in 
sensor readings (caused by the bubbles and turbu-
lence). Noise in level-pressure systems forbids deriva-
tive action, and non-minimum-phase limits band-
width. A common choice for the control of level-
pressure system is a low gain feedback PI controller. 
Any improvement would need a substantial modeling 
effort, non-linearity cancelation, etc. and will also 
meet with the noise and non-minimum-phase funda-
mental limitation so the model-based approach will 

not, in many cases, significantly improve the results 
(comparing to PI control) [3]. 

As an alternative solution of a problem, a fuzzy 
control approach that strives to design an input-output 
dynamic feedback controller and tune it using expert 
knowledge and system input-output data is consi-
dered. As the incorporation of expert knowledge in the 
control systems is quite efficient using fuzzy logic 
principles, fuzzy controllers are selected.   

2. The plant 

A plant analyzed in this paper is an important part 
of the albumen processing technological process in a 
confectionery manufacture. The plant’s structure is 
shown in Figure 1. It contains a close tank, 0.5 meters 
in height, with the adjustable liquid level and the air 
pressure. The variables of the process “pressure” and 
“level” are varied using the inlet liquid flow, Fi_in and 
the inlet airflow, Fp_in. Liquid and air flow are varied 
with separate pumps. The pumps are the actuators and 
have an electrical input-range of 0 to 10 V. The tank 
has two outlets, one for the liquid flow and one for the 
airflow.  

The exit liquid flow Fl_out depends on the liquid 
input flow and the pressure in the tank. The manipu-
lation of pressure is performed through the air pump, 
which affects the air flow, Fp_in. The pressure in the 
tank is also affected by the change of liquid level as it 
increases or decreases the air volume.  

The plant is two inputs two outputs coupled sys-
tem, where each input affects both outputs. The out-
flow of liquid is also affected by the varying 
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temperature of the liquid and the fact that the liquid 
outflows through the convoluted pipe. 

 
Figure 1. Plant’s scheme 

The control objectives in this part of the manufac-
turing process are to maintain a pressure and a level 
around the reference values in the tank. 

3. Adaptive control system 
3.1. Control system configuration 

From the earlier experiments on the plant, cont-
rolled with two independent PI and fuzzy controllers 
[4], Figure 2, it was evident that the level control with 
independent controller was satisfactory even if the 
process was coupled, but in order to get a satisfactory 
control of the pressure it is necessary to take into 
account the level control action [5].  
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Figure 2. Closed-loop control system 

A popular approach to dealing with control loop 
interactions is to design decoupling control schemes, 
Figure 3 [6].   

 

 

 

Figure 3. Structure of decoupling control system 

Decouplers decompose a multivariable process in-
to a series of independent single-loop sub-systems. In 

such a case the multivariable process can be controlled 
using independent loop controllers. Decouplers are 
derived from a mathematical model of a plant and the 
model itself should be not complicated [3, 6, 7]. But 
the coupling and non-minimum-phase behavior, the 
nonlinearities from valves, high amount of noise 
present in sensor readings (caused by turbulent water 
flow) complicate mathematical modeling of the sys-
tem. It was experimentally shown in [4] that the 
derived mathematical model of the analyzed level-
pressure system is adequate only at the designed ope-
rating regime and requires tuning of its parameters 
each time the set points changes. Considered that, and 
the fact, that the model-based control approach will 
not, in this case, significantly improve the level-pres-
sure control results in practice, comparing to PI cont-
rol (noise forbids derivative action, and non-minimum 
phase limits bandwidth) [3], fuzzy logic was intro-
duced to control level-pressure system. To overcome 
the problem with the loop interactions, a fuzzy com-
pensator was used instead of the pressure loop de-
coupler. The control system is shown in Figure 4. 
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Figure 4. Closed-loop control system with compensator 

As expert knowledge in a linguistic form is more 
convenient to represent with Mamdani type fuzzy 
structures [8] than with Takagi type structures [9], the 
Mamdani type fuzzy rule bases are used throughout 
this paper. Every rule is presented by a conjunction 
and the aggregation of the rules by a disjunction. Tri-
angular fuzzification and center of gravity defuzzifica-
tion on implied fuzzy sets are used for the calculation 
of crisp outputs [10].  

3.2. Level fuzzy controller  

For the control of liquid level, a direct adaptive 
fuzzy controller was used [4]. Fuzzy controller has 2 
inputs and 1 output, Figure 5. Each of the inputs is 
covered with nine triangular symmetric membership 
functions across the universes of discourse. Member-
ship functions are normalized and uniformly distri-
buted, see Figure 6.  

The fuzzy controller uses adaptation mechanism to 
observe numerical data from fuzzy control system. 
Using this data, the mechanism characterizes system’s 
current performance and automatically adjusts 
controller parameters so that given performance 
objectives are met. 

Controller Decoupler Plant 
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Figure 5. Level fuzzy controller 
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Figure 6. Inputs membership functions 

The adaptation mechanism consists of two parts: a 
“fuzzy inverse model” and a “knowledge-base modi-
fier”. The fuzzy inverse model performs the function 
of mapping the deviation from the desired behavior to 
changes in the process input, that are necessary to 
force process error to zero. The knowledge-base modi-
fier directly adjusts the fuzzy controller’s rule-base to 
affect the changes needed in the process inputs [4]. 

3.3. Pressure controller 

3.3.1. Controller’s structure 

For the control of pressure in the tank, a more 
complex fuzzy controller, shown in Figure 7, is used.  
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Figure 7. Pressure fuzzy controller 

This fuzzy controller has 4 inputs and 1 output. 
The inputs are: the actuating error, linguistically 
named “pe”, the change of actuating error, linguisti-
cally named “pc”, and the level and pressure reference 
values, linguistically named “l”, and “p”. These 
reference inputs are used to identify the plant’s ope-
rating mode. The output is the air pump rotation speed 

control signal upressure. For all these signals, the scaling 
gains are defined and their values are stored in the 
controller’s knowledge base.  

Linguistic variables are described using member-
ship functions of the triangular form. The “effective” 
universes of discourse for the air pressure actuating 
error and the changes of error linguistic variables are 
defined by experiment, taking into account the dyna-
mical characteristics of the plant. 

For the pressure actuating error “pe”, the effective 
universe of discourse is set to [-5.0, 5.0], for the 
change of actuating error linguistic variable “pc”, the 
range is set to [-1.09, 1.09]. The “effective” universes 
of discourse for reference inputs linguistic variables 
are chosen taking into account the plant’s physical 
parameters, so for the water level linguistic variable 
the universe of discourse is set to [0.0, 25.0], for the 
air pressure linguistic variable – [0.0, 50.0]. The 
“effective” universes of discourse of the output lin-
guistic variable are chosen taking into account the 
physical characteristics of actuating mechanisms (the 
control signal can take values from the interval 0-
10V), so it is set to [0.0, 10.0]. According to the de-
fined effective universes of discourse, scaling gains 
are chosen so that input universes of discourse are 
normalized to interval [-1; 1], and the output – to 
interval [0, 1]. The linguistic variable of the actuating 
error is composed of 9 membership functions, the 
change in error, and reference inputs – of 7 member-
ship functions.  

The linguistic values of the second inference me-
chanism are calculated on-line, using the basic, de-
fined in advance, 9 linguistic values that vary depen-
ding on the decision of the first inference mechanism, 
u1, Figure 8. 
 

 u, (Volts)

 ‘0’‘1’‘2’‘3’ ’4’   ‘5’ ‘6’ ‘7’ ‘8’ 

u1 0.94u1 0.98u1 
0.99u1 

1.06u1 1.03u1 
1.01u1 1.05u1  

Figure 8. Output membership functions 

3.3.2. Controller’s knowledge base 
The knowledge base of the fuzzy controller stores 

information about the scaling gains of the universes of 
discourses of linguistic input and output variables and 
the rule bases. The difference of the proposed fuzzy 
controller is that it has two rule bases where the first 
rule base is used to online form the main rule base of 
the controller.   

The first rule base links the pressure and level re-
ference signals with the basic control signal value and 
it contains 49 rules. These rules are tuned online based 
on the process data. The rules of the second rule base 
specify the values of the output depending on the cur-
rent values of the actuating error and the change of the 
actuating error. This rule base is recalculated every 



Adaptive Fuzzy Control of Pressure and Level 

235 

time the reference signals are changed or after the 
tuning mechanism was activated.   

The second rule base has 63 linguistic rules, where 
the centers of the conclusion membership functions of 
each of the rule are calculated according to formula:  

( )( )( )jskbc iij −⋅−⋅= 31 ,            (1) 

where cij is the center of the area of the output’s 
implied fuzzy set, bi – the center of area of the i-th 
basic output membership function, that are defined in 
advance (Figure 8), the index i is related with the 
linguistic-numeric value of the actuating error, j is 
related with the linguistic value of the controlled vari-
able, and sk defines how much in percent to correct 
the center position of the calculated output member-
ship function. Here sk is set to 0.0004. The second rule 
base of the controller inference mechanism physically 
stores only 9 rules, i.e. 9 values of the centers of 
output membership functions. These values describe 
control signal membership functions when the change 
in error is 0. These nine rules (the centers of output 
membership functions) are adjusted by the adaptation 
mechanism. The other 54 rules are defined on line. At 
the start up of the controller, the assumption is made 
that the controller knows nothing about how to control 
the process. This form of the rules generation reduces 
the number of rules in the controller’s rule base and 
easy its tuning process. 

3.3.3. Adaptation mechanism 
Even if a large amount of expert knowledge about 

the process is presented, the synthesis of a tolerable 
fuzzy controller for this process in most cases is a 
challenging task due to many parameters of fuzzy 
controller. As research and experiments show, an 
expert knowledge in most cases has to be tuned in 
order to reach the desired performance of a controller. 
In order to effectively select the correct values for 
these parameters, tuning mechanism for fuzzy cont-
roller is implemented. 

Fuzzy controller’s adaptation mechanism contains 
performance analysis unit, fuzzy decision making sys-
tems and knowledge base modifier. The performance 
analysis unit operates like an input preprocessing unit 
that keeps track on the plant’s operation, analyses data 
and provides the fuzzy decision making system with 
the relevant statistical data, in this case current pres-
sure, the pressure error, and control signal values. 
Fuzzy decision making system is used for the 
calculation of the necessary adjustment values for the 
particular rules. According to the information from the 
process analysis unit, it calculates the adjustment 
value for the appropriate data. Fuzzy decision making 
system uses triangular fuzzification, min-max infe-
rence and center of gravity defuzzification techniques. 
In case of a rule correction in a fuzzy controller’s 
knowledge base, fuzzy decision making system calcu-
lates a shift values for centers of the output member-
ship functions of the rule.  

The tuning fuzzy system of the adaptation mecha-
nism is synthesized using an expert knowledge: an 
expert decides what inputs are essential for the tuning 
process of particular data structures, what the speed of 
tuning should be. The role of the knowledge base 
modifier is to correct the appropriate rules by the pro-
vided values. The adjustments are performed on the 
first rule base of the controller and, because the first 
rule base is used for the online synthesis of the cont-
roller’s rules the, change of these values directly affect 
the controller performance. In order to prevent the 
controller from the over tuning, the knowledge base 
modifier is complimented with the tuning supervisory 
system. 

3.3.4. Control loop interaction compensation 

For the level control action compensation in the 
pressure loop, a simple two input-one output fuzzy 
system is used, Figure 9.  
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Figure 9. Interaction fuzzy compensator 

Taking into consideration the air pressure reference 
signal and level control action, fuzzy decision making 
system calculates adjustment value for the air pressure 
control action. The rule base of this fuzzy system is 
made of 63 Mamdani type fuzzy rules (7 membership 
functions for pressure reference input and 9 member-
ship functions for level control signal input), that are 
chosen and tuned experimentally.  

4. Experiments 

The performance of the controllers was experi-
mentally tested and the results were compared with 
the performance of the controllers that control the 
plant independently of each other. 

For the analysis of the controllers, 400 seconds of 
control data were examined. The reference values 
were changed every 57 seconds; the data from the 
plant were collected at one-second intervals. The level 
and the pressure reference signals are chosen to have a 
step form.  

The efficiency of the controllers was evaluated cal-
culating the standard deviations of pressure errors and 
level errors, Table 1. The response of the plant, cont-
rolled with the independent controllers, see Figure 2, 
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is shown in Figure 10 [4]. Figure 10 shows the 
response of the plant, controlled with the decoupled 
adaptive air pressure fuzzy controller. Liquid level is 
this case was controller not taking into consideration 
pressure control. The standard deviations were 
calculated according to formulas 
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The experiment shows that the overall control of 
the plant is more efficient when air pressure is cont-
rolled taking into consideration the level control 
action. The visual difference of the control quality in 
this case is noticeably better than comparing the stan-
dard deviation values, but these are also smaller in 
values: pressure error is decreased by 22%. As the 
same controller was used for the control of level, level 
error remained almost unchanged. The smaller stan-
dard deviation value here is because level and pressure 
processes are strongly related and, as the variation of 
pressure decreased, level variation slightly decreased 
too.  

Table 1. Comparison of controllers 

Controller  
type 

Independent 
control of 
level and 
pressure 

With 
compensated 

pressure 
control  

Pressure error , ep 1.2629 0.9943 
Level error, eh  0.9110 0.9070 

 

 

Figure 10. Independent control of level and pressure in  
a 2x2 system 

5. Conclusions 

In this paper the synthesis and application of the 
adaptive fuzzy controllers with a fuzzy loop inter-
action compensator for the in multiple input-multiple 
output level-pressure plant was presented. The effi-
ciency of the controllers and the fuzzy system as a 
loop interaction compensator was experimentally tes-
ted and compared with the performance of the un-
coupled controllers. The results of experiment proves 
that fuzzy logic can be used for the design of loop 
compensators in control systems for the control of 
multiple input-multiple output plants in case there is 
no adequate mathematical model of that plant. It was 
experimentally shown that the adaptive fuzzy pressure 

control using fuzzy compensator makes sense and can 
increase the control efficiency of the level-pressure 
system. 

 
Figure 11. Level and pressure control in a 2x2 system with 
the level control action compensation in the pressure loop 
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