
125

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.2

ASSOCIATION RULE HIDING OVER DATA STREAMS

Ufuk Günay, Taflan İmre Gündem
Computer Engineering Department, Boğaziçi University

34342 Bebek, İstanbul, Turkey
e-mail: ugunay@gmail.com, gundem@boun.edu.tr

Abstract. Association rule mining is used in various applications. Also information systems may need to take
privacy issues into account when releasing data to outside parties. Due to recent advances, releasing data to other
parties may be done in a streaming fashion. In this paper, we introduce a new system in which association rule mining
over data streams and association rule hiding for traditional databases are merged. The stream association rule hiding
algorithm presented can be applied on both raw data and template guided XML data. The algorithms presented are
implemented and tested.

Keywords: Association rule mining, stream mining, association rule hiding.

1. Introduction

Association rule mining techniques [1, 2] have
been widely used in various applications such as mar-
keting, modern business, medical analysis and website
navigation analysis [3-6]. In e-commerce, for instance,
a company can understand the behavior of its custo-
mers, support decision making and gain an overall
significant benefit over its rivals using association rule
mining. Thus, some association rule mining algo-
rithms have been developed especially for handling
transactional data in e-commerce [7-8].

In spite of its benefits in all of these applications,
association rule mining can also have a threat to pri-
vacy and information security, if not done or used
properly [9]. There are a number of realistic scenarios
in which privacy and security issues in association
rule mining arise. Three challenging e-commerce sce-
narios are described in the following.

Scenario 1: First let us consider the scenario of a
supermarket and two drink suppliers A and B explai-
ned in [10]. Let us suppose that, as purchasing direc-
tors of our large supermarket chain, we are negotiating
an agreement with Drink Company A. Drink Compa-
ny A offers its products at a reduced price, if we agree
to give it access to our database of customer pur-
chases. We accept the deal and Drink Company A
starts mining our customer purchases data. By using
an association rule mining tool, Company A finds out
that people who purchase products of Biscuit Com-
pany X also purchase Drink B. Drink Company A now
runs a marketing campaign advertising that “you can
get 60 cents off Biscuit X with every purchase of a
Drink A product”. This campaign cuts heavily into the

sales of Drink B, which in turn may increase the price
for us due to decreased sales. During our next nego-
tiation with Drink Company A, we find out that with
reduced competition, they are unwilling to offer us a
low price. Finally, we start to lose business to our
competitors, who were able to negotiate a better deal
with Drink B. From this aspect, releasing the database
is disadvantageous for our supermarket. Therefore, for
our supermarket, an effective way to hide sensitive
rules while releasing the database is required.

Scenario 2: Let us now consider the following
scenario explained in [11]. Suppose that two or more
companies have huge dataset records of their cus-
tomers’ buying activities. To have an advantage over
other competitors, these companies decide to coopera-
tively conduct association rule mining on their data-
sets for their mutual benefit. However, some of these
companies may not want to share some strategic
patterns hidden within their own data (sensitive
association rules) with the other parties. They would
like to transform their data in such a way that these
sensitive association rules cannot be discovered.

Scenario 3: Let us consider the e-commerce
scenario explained in [12]. Let us think of a system
which consists of a server and many clients. In this
system, each client has a set of sold items (e.g. books,
clothes, movies, etc). The clients want the server to
collect statistical information about associations
among items. On the other hand, the clients do not
want the server to know some sensitive association
rules. In this context, the clients represent companies
and the server is a recommendation system for an e-
commerce application. In this system association rules
can be effectively used to build models for on-line

U. Günay, T. İ. Gündem

126

recommendation. When a client sends its frequent
itemsets or association rules to the server, it sanitizes
some sensitive itemsets according to some specific
policies. The server then gathers statistical information
from the sanitized itemsets and recovers from them
the actual associations.

In all of these scenarios we ask ourselves the
following question. “How can we get rational data
mining results that will allow for correct decision
making while preventing the disclosure of sensitive
information?” In other words, “Is it possible for us to
benefit from the collaborations in which we share our
data (as explained in Scenarios 1-3) and still preserve
some sensitive association rules?” In our proposed
system, we try to answer these questions in an
environment where real-time data are sent in a
streaming fashion.

The rest of this paper is organized as follows.
Section 2 explains our proposed system.

Section 3 provides our experimental results. Sec-
tion 4 contains the conclusions.

2. Proposed System
2.1. Problem Definition

In this section, we introduce ARDHS, the system
that we propose for association rule hiding over
streaming data. In ARDHS, we have a single-pass
algorithm for hiding all sensitive itemsets in data
streams, similar to the landmark windows model
explained in [13], when a user-specified minimum
support threshold ms Є (0, 1), and a user-defined er-
ror threshold ε Є (0, ms) for data pruning phase are
given. As explained in [14-15], a data stream can be
defined as follows:

Let I = {I1, I2, I3… Im} be a set of literals, called
items. Let the data stream DS = B1, B2, B3 … BN be an
infinite sequence of blocks, where an identifier i is
attached to each block, and N is the identifier of the
“latest” block, BN. Each block Bi consists of a
timestamp tsi, and a set of transactions; that is, Bi =
[tsi, T1, T2, T3… Tk], where k ≥ 0. Hence, the current
length (CL) of the data stream is defined as CL =
|B1|+|B2|+…+|BN|. A transaction T consists of a set
of items such that T ⊆ I. Moreover, each transaction is
given a unique transaction identifier, called TID. A set
of items X is also called an itemset and an itemset X
with k items is denoted as (x1, x2, x3… xk), such that X
⊆ I.

The support (defined in [1]) of an itemset X,
denoted by sup(X), is the number of transactions seen
so far in which that itemset occurs as a subset. An
itemset X is called a sensitive itemset if sup(X) ≥
ms*CL. An itemset is called an insensitive itemset if
ms*CL > sup(X).

Hence, given a user-defined minimum support
threshold ms Є (0, 1), a user-specified error threshold
ε Є (0, ms) and a data stream DS, our goal is to

develop a single-pass algorithm to hide all sensitive
itemsets, in a manner similar to the landmark windows
model, of the streaming data using as little main
memory space as possible.

2.2. Assumptions

In our proposed system ARDHS, we have the
following assumptions:

1) Arriving items in a transaction or an itemset are
sorted in lexicographic order.

2) The average size of each block of the data
stream is a constant value k, for simplicity (i.e. each
block contains k transactions).

3) We hide only rules that are supported by disjoint
large itemsets, as done in [16]. If we try to hide
overlapping rules, then hiding a rule may have side
effects on the other rules to be hidden. This increases
the time complexity of our algorithm, since hiding a
rule may cause an already hidden rule to haunt back.
Therefore we reconsider previously hidden rules and
hide them back if they are no longer hidden.

4) We hide one rule at a time. Hiding one rule must
be considered as an atomic operation. This is actually
related to the third assumption. Since the rules to be
hidden are assumed to be disjoint, the items chosen for
hiding a rule will also be different for different rules.
Therefore, hiding a rule will not have a side effect on
the rest of the rules. Thus considering the rules one at
a time or all together will not make any difference as
explained in [16].

2.3. ARHDS Algorithm

Our algorithm for ARHDS consists of six steps.
After describing the steps of the algorithm in detail,
we present two examples to illustrate and clarify the
system.

Step 1: Reading a block of transactions: In the
first step, we read a block of transactions from the data
stream.

Step 2: Constructing the Potentially Sensitive
Itemset Forest (PSIF) and the Temporary Database
(TDb) for the block: To have a fast and an efficient
system, the data structures PSIF and TDb are const-
ructed and used. PSIF consists of Potentially Sensitive
Itemset Trees (PSIT) of item suffixes as explained in
[17]. Similarly TDb consists of Temporary Database
Trees (TDbT) where the root of each tree represents
the first item in a transaction. Both PSIT and TDbT
have the same tree structure which is explained in the
following.

Each node in the tree consists of four fields:
itemName, support, ChildTrees and parentTree, where
itemName is the name of the node; support records the
number of transactions containing the item; Child-
Trees is a hash table for faster access to its children
trees and parentTree is a pointer to the parent tree of
the item. In addition to these fields, each root node has
a Hash Table (HT) for its children nodes. The key for

Association Rule Hiding over Data Streams

127

HT is the children item id and the value of HT consists
of two fields: the number of occurrences of children
items in the tree and the pointers to these occurrences.

The construction of TDb can be described as
follows. In the current block, let the first transaction to
be inserted to the system be T1 = (x1, x2, x3, …, xk)
which consists of k items. First, ARDHS reads this
transaction, T1, from the current block and sets item x1
as the root node for the first tree of TDb. Later x2, x3,
…, xk are inserted into the tree one by one, as nodes,
in such a way that the newly inserted one becomes a
child of the one inserted just before it (i.e. xi becomes
the parent of xi+1 for i=1, k-1). Consequently, item xk
becomes the leaf node. Each node represents an item
of the transaction and a support counter is associated
with it. Also a HT will be created for the root node x1
and childrenTree and parentTree HT’s for each of the
other nodes. Then ARDHS reads the next transaction
T2 = (y1, y2, y3, …, yk). If y1 is equal to x1 (or if y1 is
equal to the item associated with the root node of any
tree, ta, in TDb) ARDHS does not add a new tree into
TDb but it adds the path of itemset (y2, y3, …, yk) as a
branch (connected to the node associated with x1 with
an edge) of the first tree (or ta) of TDb and updates
the support of each node accordingly. If the first trans-
action, T1, and the next one, T2, have their first r items
in common (i.e. x1= y1, x2= y2, …, xr= yr), then the
support of the nodes associated with x1, x2, …, xr are
incremented by one and the path associated with yr+1,
yr+2, …, yk is connected to node xr with an edge
(Please refer to Example 1 for concrete examples and
their illustrations). If y1 is not equal to x1 (or if y1 is
not equal to the item associated with the root node of
any tree in TDb) a new tree which has y1 as the root
node and yk as leaf node will be added to TDb.

The construction of PSIF is similar to the const-
ruction of TDb but there is a small difference. Before
the first transaction T1 is inserted into PSIF, it is
converted into the following k small transactions: (x1,
x2, x3, …, xk), (x2, x3, …, xk), …, (xk-1, xk) and (xk). Then
each of these k small transactions are inserted into
PSIF as a tree. For each of these small transactions,
the tree insertion procedure of PSIF is same as the tree
insertion procedure of TDb. After T1 is inserted into
PSIF, ARHDS will read the next transaction T2 = (y1,
y2, y3, …, yk) and divide it into k small transactions:
(y1, y2, y3, …, yk), (y2, y3, …, yk) , …, (yk-1, yk) ,(yk) and
add these small transactions into PSIF in the same
manner.

Each of the remaining transactions in the block is
inserted into PSIF and TDbT in the same manner as T2
is inserted.

For XML data, we use the same structure specified
above. Additionally, at each leaf node, we store the
transaction number for each transaction.

Step 3: Pruning the insensitive itemsets from PSIF.
To speed up the execution of ARHDS, we use pruning.
The user provided error threshold ε Є (0, ms) is used
in pruning the insensitive items from PSIF. Before

starting the hiding process, we repeat Steps 1 to 3 for
the remaining blocks of transactions.

Step 4: Finding sensitive disjoint itemsets from
PSIF to hide: To hide all sensitive association rules,
we developed the following heuristic. Given a
minimum support threshold ms Є (0, 1) provided by
the user, first we find all sensitive itemsets. Then we
sort these sensitive itemsets according to their support.
Next, beginning from the sensitive itemset with the
highest support, we discover the sensitive disjoint
itemsets to hide. We hide sensitive rules from TDb in
Step 5. Then we come back to Step 4 to check if there
still exists any sensitive disjoint itemsets. We repeat
this strategy until we hide all sensitive association
rules from TDb.

Step 5: Hiding sensitive disjoint itemsets and
updating TDb: After determining the sensitive disjoint
itemsets, we hide them by using a modified version of
one of the strategies given in [16]. There are five
different algorithms for association rule hiding in [16].
Here, we use the fastest of these algorithms, since we
are trying to hide association rules over data streams.
Also the algorithm that we use does not introduce new
rules. The algorithm is as follows:

To hide sensitive rules, we decrease the support of
their generating itemsets until the support is below the
minimum support threshold as explained in [18]. If
there are more than one large itemsets to hide, we first
sort the large itemsets with respect to their size and
support. Let Z be the next itemset to be hidden. Let
TSZ be the set of transactions in which Z occurs as a
subset. We hide Z from Database D by removing the
items in Z, from the transactions in TSZ, in round robin
fashion. We start with a random order of items in Z
and a random order of transactions in TSZ. Assume
that the order of items in Z is i0, i1, …, in-1 and the
order of transactions in TSZ is T0, T1, …, Tm-1. At Step
0 of the algorithm, the item i0 is removed from T0. At
Step 1, i1 is removed from T1, and in general, at Step k,
item is (s= k mod n) is removed from transaction Tk.
The execution stops after the support of the current
itemset, to be hidden, goes below the minimum sup-
port threshold as explained in [16]. The intuition be-
hind the idea of hiding in round robin fashion is fair-
ness. Thus no item is over-killed and the chance of
having a smaller number of side effects is higher than
choosing an item at random and always trying to hide
it.

The mentioned algorithm given in [16] hides only
selected sensitive itemsets, in ARHDS we hide all
sensitive itemsets. When we update the database D,
we also update our PSIF structure to go back to Step 4
to check if sensitive itemsets still exist.

Step 6: Sending the updated TDb (the block): After
hiding all sensitive items from TDb, the hidden TDb is
sent to the receiver.

In the following we present two simple examples
to explain our proposed system. In the first example,
we will inspect our algorithm step by step for raw

U. Günay, T. İ. Gündem

128

data. In the second example, we will give only the
structure of TDb for XML data, since the other steps
are the same.

Example 1: Let us suppose that the data stream
consists of two blocks each having five transactions.
Let the first block B1 of the data stream be (acdef),
(df), (abe), (acdf), (cef), the second block B2 be (bef),
(bdg), (def), (bg), (ceg). Let ε = 0.25 be the error
threshold for pruning and ms = 0.3 be the minimum
support for hiding phases where a, b, c, d, e, f, g are
items in the stream.

Step 1: We read the first block B1 from the data
stream.

Step 2: 1) First transaction acdef: ARHDS reads
the first transaction acdef, inserts item-suffix
transactions acdef, cdef, def, ef, f into PSIF and acdef
into TDb. The results are shown in Figure 1. Here,
item name and support of each PSIT (Potentially
Sensitive Itemset Tree) are presented. Also for each
PSIT, HT (Hash Table) for the children nodes are
shown. In the following steps, we omit the pointers to
the occurrences of each children node for a concise
representation.

Figure 1. PSIF and TDb after inserting

the first transaction acdef

2) Second transaction df: ARHDS reads the second
transaction df, inserts item-suffix transactions df, f into
PSIF and df into TDb. The results are shown in Figure
2.

3) Third transaction abe: ARHDS reads the third
transaction abe, inserts item-suffix transactions abe,
be, e into PSIF and abe into TDb. The results are
shown in Figure 3.

4) Fourth transaction acdf: ARHDS reads the
fourth transaction acdf, inserts item-suffix transactions
acdf, cdf, df, f into PSIF and acdf into TDb. The re-
sults are shown in Figure 4.

5) Fifth transaction cef: ARHDS reads the fifth
transaction cef, inserts item-suffix transactions cef, ef,

f into PSIF and cef into TDb. The results are shown in
Figure 5.

Figure 2. PSIF and TDb after inserting

the second transaction df

Figure 3. PSIF and TDb after inserting

the third transaction abe

Figure 4. PSIF and TDb after inserting

the fourth transaction acdf

Association Rule Hiding over Data Streams

129

Figure 5. PSIF and TDb after inserting

the fifth transaction cef

Step 3: After processing the first block B1,
ARHDS prunes insensitive itemsets from the current
PSIF. At this time, ARHDS deletes the PSIT(b) and its
corresponding HT(b), and prunes the entry b from all

other PSIT ’s because item b is an insensitive item (i.e.
sup(b) < ε * CL (1 < 0.25 * 5)). The resulting PSIF is
shown in Figure 6.

Figure 6. PSIF TDb after pruning insensitive item b

Figure 7. PSIF and TDb after processing the second block B2

After pruning the insensitive items from PSIF, we
read the second block B2 for constructing the PSIF and
TDb. The construction process is repeated for block
B2. The resulting PSIF and TDb are given in Figure 7.
Next, we go to Step 4 and start hiding sensitive
itemsets.

Step 4: After processing the second block B2, first
we find all sensitive itemsets with respect to the
minimum support threshold ms =0.30 and then we
sort these sensitive itemsets according to their support
(df with support 4, ef with support 4, ce with support
3, cf with support 3). Next, beginning from the
sensitive itemset with the highest support, we compute
the sensitive disjoint itemsets to hide (df with support
4, ce with support 3).

Step 5: At this step, we hide sensitive itemsets by
using the hiding algorithm we proposed. Pairs of
transactions and the items to be hidden are acdef-d,
acdf-f, acef-c.

After completing the first iteration we go back to
Step 4 to check if there still exists any sensitive
itemsets. We find the itemset ef with support 4. Then,

we come back to Step 5 to hide the sensitive itemsets
we discovered during the second iteration. Pairs of
transactions (to be changed) and the items to be
hidden are aef-e, def-f. After the second iteration, we
again go back to Step 4 to check if there still exists
any sensitive itemsets. Since we find no sensitive
itemsets, we continue with Step 6. Figure 8 shows the
hidden TDb.

Figure 8. Hidden TDb

U. Günay, T. İ. Gündem

130

Example 2: Let us suppose that the data stream is
the same as that in Example 1, but the stream arrives
in XML format. Figure 9 shows the XML stream for
block B1.

Figure 9. XML stream for the first block B1

The steps of our algorithm for the template guided
XML stream are the same as that for raw data. The
only difference is that at each leaf node, we store the
transaction number for each transaction. Figure 10
shows the TDb after processing block B1.

Figure 10. TDb for XML data after processing
the first block B1

Figure 11 shows the TDb after processing the se-
cond block B2 and Figure 12 shows the hidden TDb
for the XML stream.

Figure 11. TDb for XML data after processing

the first block B2

Figure 12. Hidden TDb for XML data

The reason for storing the transaction number,
while hiding an item from a transaction, is as follows.
When we send the hidden data to the receiver, we use
the transaction numbers to merge the data (on which
we apply association rule hiding) with its related part.

3. Experimental Results

In this section we present the performance and
scalability assessment of ARHDS for raw data and
XML data with different parameter settings. The most
important issue in ARHDS is the execution time since
we must hide the sensitive rules of the data and send
the hidden database to the receiver in a very short
time. We evaluated the time consumed to finish diffe-
rent steps of ARHDS such as creating PSIF (Poten-
tially Sensitive Itemset Forest) and TDb (Temporary
Database), hiding the sensitive rules and writing the

Association Rule Hiding over Data Streams

131

output data to the file (sending the hidden database to
the receiver).

Later, we analyzed the performance of ARHDS
under different parameter settings. We performed tests
under different values of parameters such as user-spe-
cified minimum support threshold ms Є (0, 1), user-
defined error threshold ε Є (0, ms) and block size for
the synthetic data. Finally we ran ARHDS for XML
data that we generated and compared our algorithm on
XML and on raw data for execution time.

The experiments were done on a PC with AMD
Athlon (TM) 1.8GHz CPU, 1GB main memory and
Microsoft XP Professional. The code for the proposed
algorithm is written in Microsoft Visual C# 2.0 and
the application development environment Microsoft
Visual Studio 2005 is used. We ran our code in VS
2005 environment. We made use of Dictionary (imple-
mented as a generic hash table) and List (generic equi-
valent of the ArrayList class) classes of the Generic
collection in Microsoft Visual C# 2.0.

IBM Synthetic Dataset: To evaluate the perfor-
mance of ARHDS, we generated some synthetic data-
sets via the IBM’s data generator in [2]. For clarity, we
named each dataset in the form of TxxIxxDxx where

T, I and D mean the average transaction length, the
average length of maximum pattern, and the total
number of transactions, respectively. To evaluate our
work, we used four datasets: T7I4D200K, T5I4D10K,
T5I4D50K, and T5I4D100K. For T7I4D200K, the
number of distinct items is 1000 and for other datasets
it is 50. We made use of T7I4D200K for the execution
time evaluation of the proposed system. We used other
datasets for comparing the hiding time of ARHDS
with that of one of the algorithms given in [16].

To evaluate ARHDS on XML data, we generated
synthetic XML data by using the synthetic data gene-
rated via the IBM’s data generator. We used the syn-
thetic data which we generated earlier as the essential
part of the synthetic XML data on which we applied
association rule hiding.

Test 1: The first test is performed to examine the
time executed by our algorithm at each step. With ms
= 0.0025 and ε = 0.0005, we ran ARHDS on
T7I4D200K data. The data are broken into blocks of
size 25K for simulating the continuous characteristics
of streaming data. Hence there are 8 blocks in this test.
Figure 13 shows the execution time for creating PSIF
and TDb (prior to association rule hiding).

Figure 13. Execution time for creating PSIF and Tdb

Note that after arrival of each block, we prune
PSIF. We expect that the time needed for inserting
new transactions into both PSIF and TDb will increase
with the incoming new blocks. In Figure 13, we see
some points where the execution time decreases. This
may be due to the characteristic of the data that we
generated. Since there is no sharp increase in execu-
tion time we may say that our system creates the data
structure for ARHDS reasonably efficiently.

Table 1 shows the number of all sensitive itemsets,
the number of disjoint sensitive itemsets chosen after
sorting all sensitive itemsets with respect to their sup-
port and the number of transactions changed during
the hiding process. As expected, all of them decrease
from one iteration to the next. Also note that by
number of transactions changed we actually mean that
the number of different transactions changed as we
can change the same transaction several times.

Table 1. Number of all and disjoint sensitive itemsets and the
number of transactions changed

Number
of all

sensitive
itemsets

Number of
disjoint
sensitive
itemsets

Number
of trans.
changed

Iteration 1 20 7 849

Iteration 2 15 5 449

Iteration 3 8 4 192

Iteration 4 5 1 57

Iteration 5 4 1 53

Iteration 6 3 1 40

Iteration 7 2 1 2

Iteration 8 1 1 1

U. Günay, T. İ. Gündem

132

In this test, constructing PSIF and TDb takes 47
seconds, hiding disjoint itemsets takes 15 seconds and
sending the hidden database to the receiver takes 4
seconds. These results can change with respect to the
parameter settings (i.e. hiding time may exceed const-
ruction time of PSIF and TDb).

Test 2: To evaluate the scalability of our approach,
we performed our second test on user-defined
minimum error threshold. We change the minimum
error threshold ε while keeping other variables cons-
tant (ms = 0.0025, block size=25K, number of blocks
= 8). Figure 14 shows execution times for different
minimum error threshold. As there is no sharp in-
crease or decrease in the graph, we may say that our
approach is stable.

Test 3: As the third test, to examine the execution
time of hiding the association rules for the disjoint
sensitive itemsets, we ran ARHDS with different mini-
mum support threshold ms while keeping other
variables constant (ε = 0.0005, block size=25K, num-
ber of blocks = 8). Figure 15 shows the execution time
for hiding disjoint sensitive itemsets changing with
different minimum support threshold values. Note that
in addition to the time required for the hiding process,
execution time includes the time spent for finding all
sensitive itemsets and getting the disjoint sensitive
itemsets. Figure 15 shows that our heuristic for hiding
all sensitive itemsets from the database gives reason-
ably efficient results.

Figure 14. Execution time vs. minimum error threshold

Figure 15. Execution time for hiding vs. minimum support threshold

Table 2 shows the hiding time and the number of
transactions changed for different minimum support
threshold values. We see that if the minimum support
threshold value decreases, the number of transactions
changed increases but hiding time does not always

increase. This is due to the heuristic we developed for
hiding sensitive rules. Also we can conclude that one
should choose the minimum support threshold care-
fully to execute ARHDS fast.

Association Rule Hiding over Data Streams

133

Table 2. Execution time of ARDHS at each step

ms execution
time

Number of transactions
changed

0,0030 3 620

0,0029 12 740

0,0028 3 899

0,0027 4 1098

0,0026 5 1344

0,0025 15 1642

0,0024 17 1968

0,0023 21 2487

Test 4: The fourth test is performed to examine the
time taken by our ARHDS for different block size
while keeping other variables constant (ms = 0.0025
and ε = 0.0005). Figure 16 shows the total execution
time of ARHDS with changing block size for
T7I4D200K data. Having the highest execution time

with block size 10K may be due to the highest number
of pruning or the characteristics of the data tested.
Figure 16 shows that the system is stable under dif-
ferent block sizes.

Raw data XML data comparison: The fifth test
is performed to compare the execution time of our
algorithm for raw data and that for XML data that we
generated. For comparison, we used the same para-
meters (ms = 0.0025, ε = 0.0005, and the block size =
25K) in both executions. Also T7I4D200K is used for
generating raw data and XML data. Figure 17 shows
the execution time to create PSIF and TDb for raw
data and XML data (prior to association rule hiding).
From Figure 17, we see that the execution time grows
sharply at the last block. This is due to the fact that we
store parts of XML data that we do not use for
association rule hiding but for sending back to the
receiver. File sizes for raw data and XML data are
6MB and 120MB, respectively.

Figure 16. Total execution time for hiding vs. different block size

Figure 17. Comparison of execution times to create PSIF and Tdb

Table 3 shows the hiding time and time of sending
the hidden database (DB) to the receiver for raw data
and the XML data. As expected, there is not much

difference in hiding time. However it is important to
note the difference in time for sending hidden data-
base to the receiver.

U. Günay, T. İ. Gündem

134

Table 3. Hiding time and time of sending hidden DB to
receiver

 hiding
time(sec)

sending hidden DB (sec)

Raw Data 15 4

XML Data 17 20

Comparison with another hiding Algorithm: As
explained in Section 3, we modified and adopted one
of the algorithms given in [16] for the sensitive rule
hiding part of ARHDS. We also compared the hiding
time of our algorithm with that of the mentioned algo-
rithm in [16].

The algorithm in [16] hides 5 or 10 chosen rules
but in ARHDS all sensitive rules above a user spe-
cified minimum support threshold are hidden. From
this view point, a correct comparison of our algorithm
with that in [16] is not possible. Yet we ran ARHDS
with different minimum support thresholds and with
different size databases, similar to those given in [16]
to get some idea about the hiding time of our system.
The results show that the two algorithms have similar
hiding times.

4. Discussion and conclusion
Mining data streams is an interesting and challen-

ging research field. Also, due to the fact that recent
advances in data mining algorithms have increased the
disclosure risks that one may encounter when relea-
sing data to outside parties, association rule hiding is
another interesting and challenging research field [16].
We merged these two challenging research areas. In
this paper we introduce a novel system we named
ARHDS for discovering and hiding association rules
over data streams.

ARDHDS mainly consists of two parts. The first
part creates our data structure to discover sensitive
itemsets to hide and the second part hides these item-
sets from the data we stored. For the first part we use a
prefix tree structure similar to that in [17]. In the
second part we hide sensitive itemsets by decreasing
their supports.

We ran ARHDS with different parameter settings
to examine the scalability and stability of our
algorithm. We also tested our proposed system on both
raw data and the XML data. We have found that our
algorithm is reasonably fast and efficient.

Our approach is open for improvements. It remains
a future work to make a more efficient implementation
for our proposed system.

References
 [1] R. Agrawal, T. Iimielinski, A. Swami. Mining Asso-

ciation Rules Between Sets of Items in Large Databa-
ses. Proc. of the 1993 ACM SIGMOD International
Conference on Management of Data, 1993, 207-216.

 [2] R. Agrawal, R. Strikant. Fast algorithms for mining
association rules. Proc. of International Conference on
Very Large Data Bases, VLDB, 1994, 487-499.

 [3] S. Halatchev, L. Gruenwald. Estimating Missing
Values in Related Sensor Data Streams. Proceedings
of the 11th International Conference on Management
of Data (COMAD 2005), 2005, 83-94.

 [4] D. Erik, A. Lopez-Ortiz, J. Munro. Estimation of In-
ternet Packet Streams with Limited Space. Procee-
dings of 10th European Symposium on Algorithms,
2002, 348-360.

 [5] D. Cai, G. Pape, J. Han, M. Welge, L. Auvil.
MAIDS: Mining Alarming Incidents from Data
Streams. Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data,
2004, 919-920.

[6] H. Kargupta, R. Bhargava, K. Liu, M. Powers, P.
Blair, S. Bushra, J. Dull, K. Sarkar, M. Klein, M.
Vasa, D. Handy. VEDAS: A Mobile and Distributed
Data Stream Mining System for Real-Time Vehicle
Monitoring. Proceedings of SIAM International Con-
ference on Data Mining, 2004, 300-311.

 [7] A. Geyer-Sshulz, M. Hashler. Comparing Two Re-
commender Algorithms with the Help of Recommen-
dations by Peers. In: WEBKDD 2002 – MiningWeb
Data for Discovering Usage Patterns and Profiles,
LNCS, Springer, 2003, 137-158.

 [8] J.A. Major, J.J. Mangano. Selecting among rules in-
duced from a hurricane database. Journal of Intelligent
Information systems, Vol.4, No.1, 1995, 39-52.

 [9] V.S. Verykios, E. Bertino, I.N. Fovino, L.P. Pro-
venza, Y. Saygin and Y. Theodoridis. State-of-the-
Art in Privacy Preserving Data Mining. ACM
SIGMOD Record, Vol.3, No.1, 2004, 50-57.

[10] Y.H. Wu, C.M. Chiang, A.L.C. Chen. Hiding Sen-
sitive Association Rules with Limited Side Effects.
IEEE Trans. Knowledge Data Engineering, Vol.19,
No.1, 2007, 29-42.

[11] S.R.M. Oliviera, O.R. Zaiane. Protecting Sensitive
Knowledge by Data Sanitization. Proceedings of Third
IEEE International Conerence on Data Mining, 2003,
613-616.

[12] S.R.M. Oliviera, O.R. Zaiane, Y. Saygin. Secure
Association Rule Sharing. Proceedings of the 8th
Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining, LNCS, Springer, 2004,
74-85.

[13] Y. Zhu, D. Shasha. StatStream: Statistical Monitoring
of Thousands of Data Streams in Real Time. Procee-
dings of International Conference on Very Large
Database, VLDB, 2002, 358-369.

[14] S. Guha, N. Koudas, K. Shi. Data Streams and Histo-
grams. Proceedings of ACM Symposium on Theory of
Computing, 2001, 471-475.

[15] N. Jiang, L. Gruenwald. Research Issues in Data
Stream Association Rule Mining. ACM SIGMOD
Record, Vol.35, No.1, 2006.

[16] V.S. Verykios, A. Elmagarmid, E. Bertino, Y.
Saygin, E. Dasseni. Association Rule Hiding. IEEE
Transactions on Knowledge and Data Engineering,
Vol.16, No.4, 2004, 434-447.

[17] H.F. Li, S. Lee, M. Shan. An Efficient Algorithm for
Mining Frequent Itemsets over the Entire History of
Data Streams. International Workshop on Knowledge
Discovery in Data Streams, 2004.

[18] A. Elmagarmid, M. Atallah, E. Bertino, M. Ibra-
him, V.S. Verykios. Disclosure Limitation of Sen-
sitive Rules. Proceedings of Knowledge and Data
Exchange Workshop, 1999, 45-52.

Received October 2008.

