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Abstract. This paper presents an efficient method of enhancing genetic algorithms (GAs) for solving the Job-Shop 
Scheduling Problem (JSSP), by generating near optimal initial populations. Since the choice of the initial population 
has a high impact on the speed of the evolution and the quality of the final results, we focused on generating its 
individuals using genetically evolved priority dispatching rules. Our experiments show a significant increase in quality 
and speed of scheduling with GAs, and in some cases the evolved priority rules alone determined better solutions then 
the GA itself. The analyzed reference GA uses Giffler & Thompson (GT) heuristic and priority lists. To speed up the 
generation of priority rules, we have used a "weighted sum of priority rules" formula that revealed significantly better 
performances than Genetic Programming (GP). For evaluation of the proposed algorithm, the well known benchmark 
data sets from Fisher & Thompson (F&T) and Laurence Kramer (LA) have been used. 
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1. Introduction 

Production scheduling is one of the hardest combi-
natorial optimization problems. A particular type of 
production scheduling is the Job-Shop Scheduling 
Problem (JSSP). This is the most addressed by re-
searchers because it presents almost all the peculia-
rities of this domain and in the same time it has a quite 
simple formal representation. It was demonstrated that 
JSSPs are NP-hard and therefore no deterministic 
algorithms can solve them in a reasonable amount of 
time [1] − [3]. 

Genetic Algorithms (GAs) have proven their 
efficiency in solving high complexity combinatorial 
optimization problems, thus many researchers have 
applied them also to the scheduling problems [4] − 
[7]. The results seem to be encouraging but the quality 
of the schedules depends on several parameters. To 
improve the performance of the GA-based techniques, 
considerable effort was spent on developing optimal 
chromosome representation and genetic operations for 
JSSP [5], [7], [8]. However, the performance of 
solutions still depends on the quality of the initial 
population. 

This paper describes an efficient method for gene-
rating near optimal initial populations in order to 
speed up GAs for JSSP. The proposed method also 
uses GAs, but in this case, for the purpose of evolving 
priority dispatching rules. These rules employ Giffler 
& Thompson (GT) heuristics to generate feasible 
schedules that serve as initial populations for the JSSP 
scheduling algorithms. To reduce the time required to 
find good dispatching rules, instead of Genetic 
Programming (GP) [9], [10], we use a "weighted sum 
of priority"-type of rules. This formula blends a set of 
predefined priority rules [2] − [4], [6], to create a 
better one. 

To illustrate the performance of the proposed 
method, we use GAs for JSSP based on GT heuristic 
with ordinal representation of priority permutations 
[8]. The tests were run with the well known 
benchmark data sets from Fisher & Thompson [11] 
and Laurence Kramer [12], with and without Initial 
Population Generation (IPG). 
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2. Definition of the Job-Shop Scheduling 
Problem 

A Job-Shop (JS) model contains a set of n jobs (J) 
and a set of m machines (M), where each job j visits a 
number of machines in a predetermined order. The 
processing times for each job at each machine are 
given and no machine can process more than one job 
at a time. If a job is started on a machine, then it 
cannot be interrupted (non preemptive), but any job 
can stay an arbitrary amount of time idle [1]. Briefly, 
the Job-Shop Scheduling Problem (JSSP) can be 
formulated as finding a job processing order at each 
machine that conforms to operations predetermined 
processing order of each job and minimizes or maxi-
mizes a given objective function [1][13]. 

To simplify, we further make the following as-
sumptions which, nevertheless, are not detrimental to 
the generality of the proposed method: 
• Each job has to undergo exactly m processing 

steps; 
• No job can visit any machine more than once; 
• The operation times are fixed and predetermined 

(no setup-times allowed); 
• Any operation time is represented as a positive 

integer number which specifies the duration of the 
operation in terms of time units. 
According to these statements, a JS can be de-

scribed by a matrix of n × m entries JS[n, m], where 
each entry consists of two integer numbers. The row 
JS[j] describes the list of the operations, according to 
their execution order, for the job j, while the entry 
JS[j, i] specifies the machine needed for the operation 
i and the corresponding processing time.  

There are several optimization objectives but the 
current paper will focus only on reducing the make-
span (Cmax), which is measured in time units, for all 
our case studies and tests. 

3. Generating Dispatching Rules 
3.1. Dispatching Rules 

Many authors claim that priority dispatching rules 
can be successfully used in solving large JSSPs and 
even other scheduling problems [2], [3], [9]. In real 
applications, priority dispatching rules are actually the 
most widely used. Basically, a priority dispatching 
rule is a simple mathematical formula that, based on 
some processing parameters, specifies the priority of 
operations to be executed. The usual processing para-
meters are shown in Table 1. 

There are several dispatching rules which present a 
significant optimization capacity [1], [3], [6]. Table 2 
shows some of these rules, in unsigned format, where 
the higher or the lower value has the highest priority, 
depending on the JSSP. This representation has been 
chosen because it will directly support the evolution of 
dispatching rules. 

 
Table 1. Production parameters for priority dispatching 

Symbol Description 

rj Job arrival time – the moment when the job 
arrives at the machine 

wj Job weight – the importance of the job 
pjm Processing time – the time needed to process 

job j on machine m 
nj Remaining operations – the number of 

remaining operations 
Rj Remaining work – the time needed to 

complete the job’s remaining operations 

Pj Total work – the time needed to execute all 
the operations of the job 

dj Due date – the moment when the job should 
be finished 

 
Table 2. Simple priority rules used in the GA 

Symbol Expression Description 

AT rj Arrival time (FIFO) 
W wj Weight 

wPT wjpjm Weighted 
processing time 

wWR wjRj Weighted remaining 
work 

wTW wjPj Weighted total work 
DD dj Global due date 

ODD rj + (dj − rj)(Rj/Pj) Operation due date 
MODD max(ODD, t + pjm) Modified operation 

due date 
ST dj − Rj − t Slack time 

wSpO wi[1 − (dj − Rj − t)/nj)]
/pjm 

Weighted slack per 
operation 

wCR wi[1 − (dj − t)/Rj)]/pjm Weighted critical 
ratio 

3.2. Evolving Dispatching Rules 

Many researchers demonstrated that, for general 
JSSPs, simple priority rules alone cannot determine an 
optimal or near optimal solution [1], [3], [4], [9]. To 
improve the scheduling performance, they proposed 
the usage of evolutionary algorithms to generate bet-
ter, composite dispatching rules (CDRs) which are 
mathematical combinations of various simple dispat-
ching rules. Usually, Genetic Programming (GP) is 
employed for this purpose. The advantage of GP is 
that, theoretically, it can generate CDRs of any comp-
lexity, but on the other hand, generating high comp-
lexity CDRs requires a long computational time. To 
reduce the solution space and the computation time 
needed, the complexity of the CDRs was limited, and 
a smaller number of simple dispatching rules were 
selected. 

To further increase the evolution speed, we opted 
for a CDR formula called "weighted sum of priority 
rules". 
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3.3. Chromosome Representation 

To implement any evolutionary algorithm, first we 
need to define the representation of the solution. In 
our case the CDR is composed of a sum of priority 
rules (PRi(x)) multiplied by their respective weights 
(pwi): 

 ( ) ( )∑
=

⋅=
N

i
ii xPRpwxCDR

1
, (1) 

where CDR(x) is the composite dispatching rule 
generated; N is the number of priority dispatching 
rules used; pwi is a real number in the interval [−1, 1] 
(the weight of the rule i); and PRi(x) is a priority 
dispatching rule from those defined in Table 2. 

According to this representation the chromosomes 
that encode a CDR are constituted as a list of real 
numbers, from the interval [−1, 1], which has a length 
equal to the number of simple priority rules used. This 
representation has no additional constraints and it is 
similar to the classical chromosome representation, 
therefore all the genetic operations (crossover, selec-
tion, mutation) are well defined. In comparison with 
the GP approach, this representation has a much 
smaller solution space and therefore can evolve much 
faster, but in the same time, theoretically, it cannot 
find solutions as good as GP can. 

Table 3. Genetic Programming compared to “weighted sum 
of priority rules” approach 

GP WSPR Input data OPT Cmax Gn 
 

Cmax Gn 
FT6        (6x6) 55 58 58  55 23 
FT10  (10x10) 930 1070 91  1043 27 
FT20  (20x20) 1165 1264 77  1230 29 
       
LA1      (10x5) 666 744 62  701 36 
LA2      (10x5) 655 775 79  704 26 
LA3      (10x5) 597 670 78  653 31 
       
LA26  (20x10) 1218 1391 63  1348 35 
LA27  (20x10) 1235 1547 66  1460 32 
LA28  (20x10) 1216 1474 64  1460 35 
LA29  (20x10) 1157 1462 83  1449 38 
LA30  (20x10) 1355 1576 100  1560 35 
       
LA36  (15x15) 1268 1546 51  1543 38 
LA37  (15x15) 1397 1579 51  1580 29 
LA38  (15x15) 1196 1415 70  1370 33 
LA39  (15x15) 1233 1510 52  1417 34 
LA40  (15x15) 1222 1356 96  1297 35 

A set of tests have been conducted to compare the 
GP and the "weighted sum of priority rules" (WSPR) 
approaches. Table 3 shows the test results, where OPT 
stands for the best known (optimal) solution, Cmax is 
the overall makespan, Gn is the number of generations 
needed to reach the solution, FT6 (6x6) is the 6x6 
Fisher & Thompson problem (6 operations on 6 
processing machines), LA1 (10x5) is the first Lau-
rence Kramer problem (10 operations of 5 processing 

machines), and so on. The test results show that 
WSPR performs constantly better than GP. 

3.4. Crossover 

In our implementation we used the standard uniform 
crossover operation that, according to our tests, 
proved to be better than simple or multipoint 
crossover. Each crossover operation generates two 
complementary children whose genes are selected 
randomly from the two parents. The procedure of 
crossover is exemplified in Figure 1, where genes 2, 3 
and 4 were randomly selected to be swapped. 

 
Figure 1. Uniform crossover operation example 

3.5. Mutation 

For mutation we have chosen to randomly alter a 
single gene in every chromosome selected to be 
mutated. The new value of the selected gene is 
generated randomly with a uniform distribution in the 
interval [−1, 1]. 

3.6. Reproduction 

Although all genetic operations are well defined 
for canonical chromosome representation, we stress 
the fact that a significant performance increase can be 
obtained by using Stochastic Universal Sampling 
Selector (SUSS) [14] with exponential ranking. 

Because usually the relative fitness difference 
between individuals in the same population is small, 
Roulette Wheel Selection proves to be insufficient to 
ensure convergence in the evolution [10]. To avoid 
this problem, we have used SUSS with linear and 
exponential ranking. The latter shows the best results 
with the following exponential formula: 

 ( ) kiP
ik

i ,1,01.0
1/1 ==

−  (2) 

where Pi is the probability to reproduce the i-th 
individual, k is the number of individuals, and 0.01 
(1%) is the probability to reproduce the worst 
individual. 

3.7. Fitness Value 

In order to use GAs, it is necessary to define a 
method that quantifies the "goodness" of a chromo-
some. In our case the fitness value of a chromosome is 
specified by the makespan (Cmax) of the generated 
schedule. To generate the schedule we used GT 
heuristic [15]. In GT, when there are more operations 
that can be started on the same machine at the same 



Efficient Generation of Near Optimal Initial Populations to Enhance Genetic Algorithms for Job-Shop Scheduling 

35 

time, a decision rule is needed for selecting the first 
operation to run. In our case this decision rule is the 
CDR itself that we have to evaluate. When a schedule 
is generated the makespan is calculated. 

3.8. Solutions Deviation 

Figure 2 shows statistics for 100 consecutive runs 
of the CDR generation with GP and GA using WSPR. 
Both methods use the same population size, and stop 
condition.  We can observe that even if GP 
occasionally generates better results, the GA-WSPR 
offers more reliable solutions with a better 
performance. 

 
Figure 2. Distribution of 100 solutions of the FT10 dataset, 

using GP and GA-WSPR 

4. Genetic Algorithms for JSSP 

To evaluate the increase in performance, when 
using the proposed initial population generation me-
thod, we have implemented a simple genetic scheduler 
based on GT heuristic. In our implementation each 
individual in the population represents a list of 
priorities for each operation to be scheduled (permu-
tation). To translate this priority list in schedules the 
GT heuristic is used. 

4.1. Chromosome encoding 

As each individual should represent a permutation, 
we have chosen the ordinary representation of permu-
tation problems for GA [8]. Each chromosome 
consists of a list of n integer values, where n is the 
total number of operations in the JSSP, with the 
condition that each entry gi of the list should contain 
an integer from 1 to n − i + 1. The meaning of each 
entry gi is that on the i-th position of the permutation 
is the gi-th element from a reference permutation 
(1, 2, ..., n). In other words, to translate a chromosome 
to a permutation one must iterate over the entries and 
for each gi pick the gi-th element from a reference list 
and add it to the i-th position of the permutation. 
When an element is picked from the reference list, it 
must be deleted, so that the number of available 
entries in the reference list is n − i + 1 for each 
iteration. Figure 3 illustrates the translation from ordi-
nary representation to permutation. 

 

 
Figure 3. Translating ordinary representation to permutation 

4.2. Genetic operations 

 This chromosome encoding has been used because 
the same genetic operation is applicable as in the case 
of GA-WSPR, so for crossover we have used the 
standard uniform representation, and for mutation, 
random gene altering with the condition that, if we 
alter the i-th gene of the chromosome then the new 
value should be generated for the interval 
[1, n − i + 1]. 

5. Experimental Results 

For evaluating the performance increase we have 
tested the presented GA scheduling with and without 
initial population generation (IPG) using GA-WSPR. 
The two algorithms were executed several times for 
each benchmark data set, and then the mean value was 
calculated. In addition, we have calculated the mean 
number of generations resulted upon the algorithm 
stop condition. The configuration used during the eva-
luation is presented in Table 4. 
 
Table 4. Configuration of the test environment 

Value 
Parameter CDR 

Generation 
GA 

Scheduling 
Population size 20 50 
Crossover ratio 0.9 0.9 
Mutation ratio 0.1 0.1 
Random new individuals 
ratio 

0.25 0.25 

Number of populations to 
stop (stop criteria) 

20 50 

Table 5 synthesizes some of the most interesting 
measurement results. The input data column contains 
the same Fisher & Thompson and Laurence Kramer 
problems, as described in Table 3. In a similar way, 
OPT means the best known (optimal) solution, Cmax is 
the overall makespan (measured in time units), Gn is 
the number of generations needed to reach the solu-
tion. The scheduling techniques compared are the First 
In First Out (FIFO) and the Genetic Algorithm (GA) – 
based schedulers. IPG stands for initial population 
generation. 
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Table 5. Experimental Results 

OPT FIFO GA IPG+GA IPG 
Input data 

[Gn] [Cmax] [Cmax] [Gn] [Cmax] [Gn] [Cmax] [Gn] 

FT6         (6x6) 55 61 55 112 55 124 55 23 
FT10   (10x10) 930 1228 1051 178 1007 187 1043 27 
FT20   (20x20) 1165 1565 1295 200 1223 151 1230 29 

         
LA1      (10x5) 666 772 676 154 668 195 701 36 
LA2      (10x5) 655 899 697 26 677 149 704 26 
LA3      (10x5) 597 771 628 141 640 179 653 31 

         
LA26  (20x10) 1218 1433 1479 200 1316 166 1348 35 
LA27  (20x10) 1235 1593 1556 186 1426 224 1460 32 
LA28  (20x10) 1216 1557 1506 238 1403 206 1460 35 
LA29  (20x10) 1157 1496 1481 208 1385 287 1449 38 
LA30  (20x10) 1355 1614 1595 210 1492 269 1560 35 

         
LA36  (15x15) 1268 1546 1500 191 1434 221 1543 38 
LA37  (15x15) 1397 1579 1623 195 1554 194 1580 29 
LA38  (15x15) 1196 1466 1442 185 1338 202 1370 33 
LA39  (15x15) 1233 1532 1460 220 1397 177 1417 34 
LA40  (15x15) 1222 1539 1438 96 1288 170 1297 35 

 
6. Additional Scheduling Aspects 

Although in this research we addressed just the 
JSSP, the proposed method can be used for almost any 
kind of scheduling problems. 

We have also obtained good results in optimizing 
the Total Weighted Tardiness in Flexible Job-Shop 
with Recirculation (FJSR) scheduling problem. In this 
case the GT heuristic has been modified so that the 
additional peculiarities of this model could be hand-
led. 

7. Conclusions 

In this paper we propose an efficient method of 
enhancing genetic algorithms for the Job-Shop Sche-
duling Problem by generating near optimal initial 
populations. We have shown that by using GAs and 
CDRs, it is possible to implement a fast evolutionary 
algorithm that generates good schedules in a short 
amount of time, which can be used as initial popula-
tion for the target GA. 

We have also shown that, for our purpose, it is 
much more efficient to use the "weighted sum of 
priority rules" representation than GP. 

Finally we have proven that generating initial 
populations with CDRs can increase the quality of 
solutions up to 10% and, in the same time, the com-
putational time can be reduced to up to 50%. Another 
advantage of the proposed method is that it can be 
easily adapted to other scheduling problems and it is 
feasible for large scale scheduling problems. 
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