
32

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2010, Vol.39, No.1

EFFICIENT GENERATION OF NEAR OPTIMAL INITIAL
POPULATIONS TO ENHANCE GENETIC ALGORITHMS

FOR JOB-SHOP SCHEDULING

Artur M. Kuczapski1, Mihai V. Micea1, Laurentiu A. Maniu2, Vladimir I. Cretu1
1 Department of Computer and Software Engineering, "Politehnica" University of Timisoara,

2, V. Parvan Blvd., 300223, Timisoara, Romania
artur.kuczapski@cs.upt.ro, mihai.micea@cs.upt.ro, vladimir.cretu@cs.upt.ro

2 Advanced clean production Information Technology (acp-IT),
7, Constantin Brancusi Str., 300050, Timisoara, Romania

laurentiu.maniu@acp-it.com

Abstract. This paper presents an efficient method of enhancing genetic algorithms (GAs) for solving the Job-Shop
Scheduling Problem (JSSP), by generating near optimal initial populations. Since the choice of the initial population
has a high impact on the speed of the evolution and the quality of the final results, we focused on generating its
individuals using genetically evolved priority dispatching rules. Our experiments show a significant increase in quality
and speed of scheduling with GAs, and in some cases the evolved priority rules alone determined better solutions then
the GA itself. The analyzed reference GA uses Giffler & Thompson (GT) heuristic and priority lists. To speed up the
generation of priority rules, we have used a "weighted sum of priority rules" formula that revealed significantly better
performances than Genetic Programming (GP). For evaluation of the proposed algorithm, the well known benchmark
data sets from Fisher & Thompson (F&T) and Laurence Kramer (LA) have been used.

Keywords: genetic algorithms, job-shop scheduling, initial populations, chromosomes.

1. Introduction

Production scheduling is one of the hardest combi-
natorial optimization problems. A particular type of
production scheduling is the Job-Shop Scheduling
Problem (JSSP). This is the most addressed by re-
searchers because it presents almost all the peculia-
rities of this domain and in the same time it has a quite
simple formal representation. It was demonstrated that
JSSPs are NP-hard and therefore no deterministic
algorithms can solve them in a reasonable amount of
time [1] − [3].

Genetic Algorithms (GAs) have proven their
efficiency in solving high complexity combinatorial
optimization problems, thus many researchers have
applied them also to the scheduling problems [4] −
[7]. The results seem to be encouraging but the quality
of the schedules depends on several parameters. To
improve the performance of the GA-based techniques,
considerable effort was spent on developing optimal
chromosome representation and genetic operations for
JSSP [5], [7], [8]. However, the performance of
solutions still depends on the quality of the initial
population.

This paper describes an efficient method for gene-
rating near optimal initial populations in order to
speed up GAs for JSSP. The proposed method also
uses GAs, but in this case, for the purpose of evolving
priority dispatching rules. These rules employ Giffler
& Thompson (GT) heuristics to generate feasible
schedules that serve as initial populations for the JSSP
scheduling algorithms. To reduce the time required to
find good dispatching rules, instead of Genetic
Programming (GP) [9], [10], we use a "weighted sum
of priority"-type of rules. This formula blends a set of
predefined priority rules [2] − [4], [6], to create a
better one.

To illustrate the performance of the proposed
method, we use GAs for JSSP based on GT heuristic
with ordinal representation of priority permutations
[8]. The tests were run with the well known
benchmark data sets from Fisher & Thompson [11]
and Laurence Kramer [12], with and without Initial
Population Generation (IPG).

Efficient Generation of Near Optimal Initial Populations to Enhance Genetic Algorithms for Job-Shop Scheduling

33

2. Definition of the Job-Shop Scheduling
Problem

A Job-Shop (JS) model contains a set of n jobs (J)
and a set of m machines (M), where each job j visits a
number of machines in a predetermined order. The
processing times for each job at each machine are
given and no machine can process more than one job
at a time. If a job is started on a machine, then it
cannot be interrupted (non preemptive), but any job
can stay an arbitrary amount of time idle [1]. Briefly,
the Job-Shop Scheduling Problem (JSSP) can be
formulated as finding a job processing order at each
machine that conforms to operations predetermined
processing order of each job and minimizes or maxi-
mizes a given objective function [1][13].

To simplify, we further make the following as-
sumptions which, nevertheless, are not detrimental to
the generality of the proposed method:
• Each job has to undergo exactly m processing

steps;
• No job can visit any machine more than once;
• The operation times are fixed and predetermined

(no setup-times allowed);
• Any operation time is represented as a positive

integer number which specifies the duration of the
operation in terms of time units.
According to these statements, a JS can be de-

scribed by a matrix of n × m entries JS[n, m], where
each entry consists of two integer numbers. The row
JS[j] describes the list of the operations, according to
their execution order, for the job j, while the entry
JS[j, i] specifies the machine needed for the operation
i and the corresponding processing time.

There are several optimization objectives but the
current paper will focus only on reducing the make-
span (Cmax), which is measured in time units, for all
our case studies and tests.

3. Generating Dispatching Rules
3.1. Dispatching Rules

Many authors claim that priority dispatching rules
can be successfully used in solving large JSSPs and
even other scheduling problems [2], [3], [9]. In real
applications, priority dispatching rules are actually the
most widely used. Basically, a priority dispatching
rule is a simple mathematical formula that, based on
some processing parameters, specifies the priority of
operations to be executed. The usual processing para-
meters are shown in Table 1.

There are several dispatching rules which present a
significant optimization capacity [1], [3], [6]. Table 2
shows some of these rules, in unsigned format, where
the higher or the lower value has the highest priority,
depending on the JSSP. This representation has been
chosen because it will directly support the evolution of
dispatching rules.

Table 1. Production parameters for priority dispatching

Symbol Description

rj Job arrival time – the moment when the job
arrives at the machine

wj Job weight – the importance of the job
pjm Processing time – the time needed to process

job j on machine m
nj Remaining operations – the number of

remaining operations
Rj Remaining work – the time needed to

complete the job’s remaining operations

Pj Total work – the time needed to execute all
the operations of the job

dj Due date – the moment when the job should
be finished

Table 2. Simple priority rules used in the GA

Symbol Expression Description

AT rj Arrival time (FIFO)
W wj Weight

wPT wjpjm Weighted
processing time

wWR wjRj Weighted remaining
work

wTW wjPj Weighted total work
DD dj Global due date

ODD rj + (dj − rj)(Rj/Pj) Operation due date
MODD max(ODD, t + pjm) Modified operation

due date
ST dj − Rj − t Slack time

wSpO wi[1 − (dj − Rj − t)/nj)]
/pjm

Weighted slack per
operation

wCR wi[1 − (dj − t)/Rj)]/pjm Weighted critical
ratio

3.2. Evolving Dispatching Rules

Many researchers demonstrated that, for general
JSSPs, simple priority rules alone cannot determine an
optimal or near optimal solution [1], [3], [4], [9]. To
improve the scheduling performance, they proposed
the usage of evolutionary algorithms to generate bet-
ter, composite dispatching rules (CDRs) which are
mathematical combinations of various simple dispat-
ching rules. Usually, Genetic Programming (GP) is
employed for this purpose. The advantage of GP is
that, theoretically, it can generate CDRs of any comp-
lexity, but on the other hand, generating high comp-
lexity CDRs requires a long computational time. To
reduce the solution space and the computation time
needed, the complexity of the CDRs was limited, and
a smaller number of simple dispatching rules were
selected.

To further increase the evolution speed, we opted
for a CDR formula called "weighted sum of priority
rules".

A. M. Kuczapski, M. V. Micea, L. A. Maniu, V. I. Cretu

34

3.3. Chromosome Representation

To implement any evolutionary algorithm, first we
need to define the representation of the solution. In
our case the CDR is composed of a sum of priority
rules (PRi(x)) multiplied by their respective weights
(pwi):

 () ()∑
=

⋅=
N

i
ii xPRpwxCDR

1
, (1)

where CDR(x) is the composite dispatching rule
generated; N is the number of priority dispatching
rules used; pwi is a real number in the interval [−1, 1]
(the weight of the rule i); and PRi(x) is a priority
dispatching rule from those defined in Table 2.

According to this representation the chromosomes
that encode a CDR are constituted as a list of real
numbers, from the interval [−1, 1], which has a length
equal to the number of simple priority rules used. This
representation has no additional constraints and it is
similar to the classical chromosome representation,
therefore all the genetic operations (crossover, selec-
tion, mutation) are well defined. In comparison with
the GP approach, this representation has a much
smaller solution space and therefore can evolve much
faster, but in the same time, theoretically, it cannot
find solutions as good as GP can.

Table 3. Genetic Programming compared to “weighted sum
of priority rules” approach

GP WSPR Input data OPT Cmax Gn

Cmax Gn
FT6 (6x6) 55 58 58 55 23
FT10 (10x10) 930 1070 91 1043 27
FT20 (20x20) 1165 1264 77 1230 29

LA1 (10x5) 666 744 62 701 36
LA2 (10x5) 655 775 79 704 26
LA3 (10x5) 597 670 78 653 31

LA26 (20x10) 1218 1391 63 1348 35
LA27 (20x10) 1235 1547 66 1460 32
LA28 (20x10) 1216 1474 64 1460 35
LA29 (20x10) 1157 1462 83 1449 38
LA30 (20x10) 1355 1576 100 1560 35

LA36 (15x15) 1268 1546 51 1543 38
LA37 (15x15) 1397 1579 51 1580 29
LA38 (15x15) 1196 1415 70 1370 33
LA39 (15x15) 1233 1510 52 1417 34
LA40 (15x15) 1222 1356 96 1297 35

A set of tests have been conducted to compare the
GP and the "weighted sum of priority rules" (WSPR)
approaches. Table 3 shows the test results, where OPT
stands for the best known (optimal) solution, Cmax is
the overall makespan, Gn is the number of generations
needed to reach the solution, FT6 (6x6) is the 6x6
Fisher & Thompson problem (6 operations on 6
processing machines), LA1 (10x5) is the first Lau-
rence Kramer problem (10 operations of 5 processing

machines), and so on. The test results show that
WSPR performs constantly better than GP.

3.4. Crossover

In our implementation we used the standard uniform
crossover operation that, according to our tests,
proved to be better than simple or multipoint
crossover. Each crossover operation generates two
complementary children whose genes are selected
randomly from the two parents. The procedure of
crossover is exemplified in Figure 1, where genes 2, 3
and 4 were randomly selected to be swapped.

Figure 1. Uniform crossover operation example

3.5. Mutation

For mutation we have chosen to randomly alter a
single gene in every chromosome selected to be
mutated. The new value of the selected gene is
generated randomly with a uniform distribution in the
interval [−1, 1].

3.6. Reproduction

Although all genetic operations are well defined
for canonical chromosome representation, we stress
the fact that a significant performance increase can be
obtained by using Stochastic Universal Sampling
Selector (SUSS) [14] with exponential ranking.

Because usually the relative fitness difference
between individuals in the same population is small,
Roulette Wheel Selection proves to be insufficient to
ensure convergence in the evolution [10]. To avoid
this problem, we have used SUSS with linear and
exponential ranking. The latter shows the best results
with the following exponential formula:

 () kiP
ik

i ,1,01.0
1/1 ==

− (2)

where Pi is the probability to reproduce the i-th
individual, k is the number of individuals, and 0.01
(1%) is the probability to reproduce the worst
individual.

3.7. Fitness Value

In order to use GAs, it is necessary to define a
method that quantifies the "goodness" of a chromo-
some. In our case the fitness value of a chromosome is
specified by the makespan (Cmax) of the generated
schedule. To generate the schedule we used GT
heuristic [15]. In GT, when there are more operations
that can be started on the same machine at the same

Efficient Generation of Near Optimal Initial Populations to Enhance Genetic Algorithms for Job-Shop Scheduling

35

time, a decision rule is needed for selecting the first
operation to run. In our case this decision rule is the
CDR itself that we have to evaluate. When a schedule
is generated the makespan is calculated.

3.8. Solutions Deviation

Figure 2 shows statistics for 100 consecutive runs
of the CDR generation with GP and GA using WSPR.
Both methods use the same population size, and stop
condition. We can observe that even if GP
occasionally generates better results, the GA-WSPR
offers more reliable solutions with a better
performance.

Figure 2. Distribution of 100 solutions of the FT10 dataset,

using GP and GA-WSPR

4. Genetic Algorithms for JSSP

To evaluate the increase in performance, when
using the proposed initial population generation me-
thod, we have implemented a simple genetic scheduler
based on GT heuristic. In our implementation each
individual in the population represents a list of
priorities for each operation to be scheduled (permu-
tation). To translate this priority list in schedules the
GT heuristic is used.

4.1. Chromosome encoding

As each individual should represent a permutation,
we have chosen the ordinary representation of permu-
tation problems for GA [8]. Each chromosome
consists of a list of n integer values, where n is the
total number of operations in the JSSP, with the
condition that each entry gi of the list should contain
an integer from 1 to n − i + 1. The meaning of each
entry gi is that on the i-th position of the permutation
is the gi-th element from a reference permutation
(1, 2, ..., n). In other words, to translate a chromosome
to a permutation one must iterate over the entries and
for each gi pick the gi-th element from a reference list
and add it to the i-th position of the permutation.
When an element is picked from the reference list, it
must be deleted, so that the number of available
entries in the reference list is n − i + 1 for each
iteration. Figure 3 illustrates the translation from ordi-
nary representation to permutation.

Figure 3. Translating ordinary representation to permutation

4.2. Genetic operations

 This chromosome encoding has been used because
the same genetic operation is applicable as in the case
of GA-WSPR, so for crossover we have used the
standard uniform representation, and for mutation,
random gene altering with the condition that, if we
alter the i-th gene of the chromosome then the new
value should be generated for the interval
[1, n − i + 1].

5. Experimental Results

For evaluating the performance increase we have
tested the presented GA scheduling with and without
initial population generation (IPG) using GA-WSPR.
The two algorithms were executed several times for
each benchmark data set, and then the mean value was
calculated. In addition, we have calculated the mean
number of generations resulted upon the algorithm
stop condition. The configuration used during the eva-
luation is presented in Table 4.

Table 4. Configuration of the test environment

Value
Parameter CDR

Generation
GA

Scheduling
Population size 20 50
Crossover ratio 0.9 0.9
Mutation ratio 0.1 0.1
Random new individuals
ratio

0.25 0.25

Number of populations to
stop (stop criteria)

20 50

Table 5 synthesizes some of the most interesting
measurement results. The input data column contains
the same Fisher & Thompson and Laurence Kramer
problems, as described in Table 3. In a similar way,
OPT means the best known (optimal) solution, Cmax is
the overall makespan (measured in time units), Gn is
the number of generations needed to reach the solu-
tion. The scheduling techniques compared are the First
In First Out (FIFO) and the Genetic Algorithm (GA) –
based schedulers. IPG stands for initial population
generation.

A. M. Kuczapski, M. V. Micea, L. A. Maniu, V. I. Cretu

36

Table 5. Experimental Results

OPT FIFO GA IPG+GA IPG
Input data

[Gn] [Cmax] [Cmax] [Gn] [Cmax] [Gn] [Cmax] [Gn]

FT6 (6x6) 55 61 55 112 55 124 55 23
FT10 (10x10) 930 1228 1051 178 1007 187 1043 27
FT20 (20x20) 1165 1565 1295 200 1223 151 1230 29

LA1 (10x5) 666 772 676 154 668 195 701 36
LA2 (10x5) 655 899 697 26 677 149 704 26
LA3 (10x5) 597 771 628 141 640 179 653 31

LA26 (20x10) 1218 1433 1479 200 1316 166 1348 35
LA27 (20x10) 1235 1593 1556 186 1426 224 1460 32
LA28 (20x10) 1216 1557 1506 238 1403 206 1460 35
LA29 (20x10) 1157 1496 1481 208 1385 287 1449 38
LA30 (20x10) 1355 1614 1595 210 1492 269 1560 35

LA36 (15x15) 1268 1546 1500 191 1434 221 1543 38
LA37 (15x15) 1397 1579 1623 195 1554 194 1580 29
LA38 (15x15) 1196 1466 1442 185 1338 202 1370 33
LA39 (15x15) 1233 1532 1460 220 1397 177 1417 34
LA40 (15x15) 1222 1539 1438 96 1288 170 1297 35

6. Additional Scheduling Aspects

Although in this research we addressed just the
JSSP, the proposed method can be used for almost any
kind of scheduling problems.

We have also obtained good results in optimizing
the Total Weighted Tardiness in Flexible Job-Shop
with Recirculation (FJSR) scheduling problem. In this
case the GT heuristic has been modified so that the
additional peculiarities of this model could be hand-
led.

7. Conclusions

In this paper we propose an efficient method of
enhancing genetic algorithms for the Job-Shop Sche-
duling Problem by generating near optimal initial
populations. We have shown that by using GAs and
CDRs, it is possible to implement a fast evolutionary
algorithm that generates good schedules in a short
amount of time, which can be used as initial popula-
tion for the target GA.

We have also shown that, for our purpose, it is
much more efficient to use the "weighted sum of
priority rules" representation than GP.

Finally we have proven that generating initial
populations with CDRs can increase the quality of
solutions up to 10% and, in the same time, the com-
putational time can be reduced to up to 50%. Another
advantage of the proposed method is that it can be
easily adapted to other scheduling problems and it is
feasible for large scale scheduling problems.

Acknowledgements

This work is supported by the Romanian Ministry
of Education and Research, through the grant PNCDI
II INOV-1262/2008-2011 and, in parts, through the
grant PNCDI II ID-22/2007-2010.

References
 [1] M.L. Pinedo. Planning and Scheduling in Manufac-

turing and Services. 1st Ed. Springer New York, 2006.
 [2] K. Kemppainen. Priority Scheduling Revisited: Do-

minant Rules, Open Protocols, and Integrated Order
Management. Helsinki School of Economics, 2005.

 [3] A.S. Jain, S. Meeran. Deterministic job-shop
scheduling: past, present and future. European Journal
of Operational Research, 113 (2), 1999, 390−434.

 [4] J. Käschel, T. Teich, G. Köbernik, B. Meier. Algo-
rithms for the Job Shop Scheduling Problem: A
Comparison of Different Methods. European Sympo-
sium on Intelligent Techniques, Greece, Jun. 1999.

 [5] C. Bierwirth. A Generalized Permutation Approach
to Job Shop Scheduling with Genetic Algorithms. OR
Spektrum, 17, 1995, 87−92.

 [6] S.-C. Lin, E. D. Goodman, W. F. Punch, III. A
Genetic Algorithm Approach to Dynamic Job Shop
Scheduling Problems. Proceedings of the Seventh
International Conference on Genetic Algorithms,
1997, 481−488.

 [7] J. Garen. Multiobjective Job-Shop Scheduling With
Genetic Algorithms Using a New Representation and
Standard Uniform Crossover. Workshop on Multiple
Objective Metaheuristics, Paris, Nov. 2002.

Efficient Generation of Near Optimal Initial Populations to Enhance Genetic Algorithms for Job-Shop Scheduling

37

 [8] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I.

Inza, S. Dizdarevic. Genetic Algorithms for the
traveling Salesman Problem: A Review of Represen-
tations and Operators. Artificial Intelligence Review,
13, 1999, 129–170.

 [9] N.B. Ho, J. C. Tay. Evolving Dispatching Rules for
solving the Flexible Job-Shop Problem. IEEE Con-
gress on Evolutionary Computation, 3, 2005,
2848−2855.

[10] W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone.
Genetic Programming: An Introduction − On the
Automatic Evolution of Computer Programs and Its
Applications. 1st Ed., Morgan Kaufmann San
Francisco, 1997.

[11] H. Fisher, G. L. Thompson. Probabilistic Learning
Combinations of Local Job-Shop Scheduling Rules.
Industrial Scheduling, J. F. Muth and G. L. Thompson
(eds.), Prentice-Hall Englewood Cliffs, NJ, 1963,
225−251.

[12] S. Lawrence. Resource constrained project schedu-
ling: an experimental investigation of heuristic sche-
duling techniques. Graduate School of Industrial
Administration, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania, 1984.

[13] V. T'kindt, J.-C. Billaut. Multicriteria Scheduling.
European Journal of Operational Research, 167 (3),
Elsevier B. V., Dec. 2006, 589-591.

[14] J. E. Baker. Reducing Bias and Inefficiency in the
Selection Algorithm. Proceedings of the Second
International Conference on Genetic Algorithms and
their Application (Hillsdale), 1987, 14−21.

[15] B. Giffler, G. L. Thompson. Algorithms for Solving
Production-Scheduling Problems. Operation Re-
search, 8 (4), 1960, 487−503.

[16] T. Yamada, R. Nakano. Genetic Algorithms for Job-
Shop Scheduling Problems. Proceedings of Modern
Heuristic for Decision Support, UNICOM Seminar,
London, 1997, 67−81.

Received September 2009.

