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Abstract. The key agreement protocol (KAP) using matrices over the ring of multivariate polynomials is pre-
sented. The compromisation of proposed KAP relies on the solution of multivariate quadratic (MQ) system of equa-
tions problem – the problem, which is reckoned as being NP-complete. The general method of solving MQ problem is 
Grobner basis algorithm, which is of exponential or even double exponential time in general case. For special cases 
such as overdefined and sparse systems, there are some special solution methods, i.e. XL and XSL algorithms. By 
choosing suitable security parameters for the compromisation of the proposed KAP, we obtained a random not over-
defined and not sparse system of MQ equations and hence we recon that our KAP compromasation relies on the hard 
MQ problem. 

 
 

1. Introduction 

Key agreement protocol is one of the basic crypto-
graphic protocols. KAP allows two or more parties 
negotiate a common secret key using insecure commu-
nications. 

The first KAP was presented by Diffie and Hell-
man [5]. This algorithm caused rapid development of 
asymmetric cryptography. 

In 1993 new ideas appeared in asymmetric crypto-
graphy [14] using known hard computational prob-
lems in infinite non-Abelian groups instead of hard 
number theory problems such as discrete logarithm or 
integer factorization problems to construct one-way 
functions. 

These ideas were realized in [1] where KAP was 
constructed using conjugator search problem and 
membership problem in Braid groups. The similar 
result was presented in [9]. 

Later, in [13] it was showed that conjugator search 
problem in braid groups does not produce sufficient 
security level.  

The idea to use non-commutative infinite group 
e.g. braid group representation was used for the one-
way functions construction as a background of KAP in 
[11]. The other approach of hypothetical one-way 
function construction applied for the digital signature 
scheme using infinite non-commutative group repre-
sentation in finite field was presented in [10]. 

In this paper we present KAP using matrices over 
the ring of multivariate polynomials. This function 
pretends to be a one-way function since its inversion 

is related with a solution of multivariate quadratic 
(MQ) system of equations over finite field. 

2. Key agreement protocol  

Now we propose the following two parties key 
agreement protocol. 

1. Parties agree on publicly available matrices Q, 
L, R of order m over the multivariate polynomials ring 
Z2[t1, …, tp]. The set of these matrices is a non-
commutative matrix ring which we denote by M or 
more formally by M(m, Z2[t1, …, tp]). Let ML and MR are 
the subsets in M consisting of commuting matrices. 
This means that for any L1, L2∈ML and R1, R2∈MR the 
following commuting condition holds 

L1L2 = L2L1, 

R1R2 = R2R1. 

Let L∈ML and R∈MR are the publicly known 
parameters. 

2. Alice randomly generates two secret matrix 
polynomials represented by the randomly chosen bit 
sequences {bxi}, {byi}, i = 0, 1, …, k  and computes  
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Then ∈X ML and ∈Y MR. 
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3. Analogously, Bob randomly generates two 
randomly chosen secret bit sequences {bui}, {bvi}, i = 
0, 1, …, k  and computes  
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…10
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After these precomputations ∈U ML  and ∈V MR 
and  

XU = UX; YV = VY. (5) 

4. Alice computes intermediate value KA and sends 
result to Bob: 

KA = XQY. (6)  

5. Bob computes intermediate value KB and sends 
result to Alice: 

KB = UQV. (7) 

6. Since matrices X, U and Y, V are commuting, 
both parties compute common secret key  

K = XKBY = UKAV = XUQVY = UXQYV. (8) 

The public key of the proposed KAP consists of 
matrices Q, L and R. 

3. KAP compromisation 

If adversary (Eve) could find any X ′ , Y ′ , 
satisfying commutating conditions (5) and relation 

,AKYQX =′′  (9) 

then he (she) can determine the common secret key K 
in the following way 

=′′=′′= YUQVXYKXK B  [if commutating condi-
tion holds] .KVUKVYQXU A ==′′=  

Let Eve choose any matrix Y ′  = Y0 ∈MR(m, Z2[t1, 
…, tp]). Then (6) can be rewritten in the form 

.0 AKQYX =′  

By denoting the product QY0 = T, we obtain the 
following linear matrix equation  

,AKTX =′  (10) 

which can be easily solved with respect to the un-
known matrix X ′ . But nevertheless there is no 
guarantee that solution X ′  of matrix equation (10) is 
in subring ML(m, Z2[t1, …, tp]), i.e. the commuting 
equation 

UX ′  = XU ′   
does not necessary hold even if solution X ′  exists. 

Hence to break the system, an adversary must 
solve the initial equation (9) with two unknown mat-
rices X ′ and Y ′ . 

The same compromisation equation holds for the 
relation (7). 

Hence the security of the proposed KAP relies on 
the complexity of the solution of (9). This problem 
can be formulated in the following way: for instances 
Q and KA find any matrices X ′ and Y ′ , satisfying 
commutation conditions (5). If the functions (6), (7) 
and (9) are one-way, then the proposed KAP is secure. 
According to intuitive definition, the function is re-
ckoned as one-way function (OWF) if the calculation 
of its value is easy but the calculation of its inverse 
values is not. More specifically a function can be 
treated as one-way if the effective polynomial time 
algorithm for its inversion is not known. We use this 
methodology in our investigation below to confirm 
our conjecture. In our case the calculation of inverse 
value is to find any X ′ and Y ′  in (9) satisfying com-
mutation conditions (5). 

We are making a conjecture that the function 
related to (6), (7) and (9) equations is one-way. We 
present the analysis confirming in some sense our 
conjecture below. 

4. One-way function analysis 

We rewrite the proposed candidate for OWF in a 
more convenient form 

f(X, Q, Y) = XQY = A. (11) 

For investigation of the function f(X, Q, Y) to be 
OWF we use known theorem which states that: 

Theorem 1 ([8]). Pseudorandom number genera-
tors (PRNG) exist, if and only if one-way functions 
exist . 

This result can be used to test if the proposed func-
tion is one-way. Then on the basis of this function the 
PRNG must be constructed and the tests for random-
ness must be performed. Then if the obtained PRNG 
output passes pseudo random bit tests, this function 
can be a good candidate to be an OWF. If PRNG 
output fails pseudo random bit tests, it will be an in-
dication that the investigated function is not a one-way 
function.  

One-way function used in the proposed key 
agreement protocol is a function of three parameters 
X, Q, Y, i.e.  f(X, Q, Y) = XQY. Two of them (matrices 
X and Y) are chosen at random and are assumed to be 
fixed in our PRNG construction. Some matrix Q0 must 
be chosen to define the initial value. Then the PRNG 
corresponding to this function can be expressed by the 
formula: 

Qi = XQi-1Y,   

where initial value Q0 = Q is required for the generator 
initialization. 

To test PRNG output, we have used monobit, 
poker, runs and long runs pseudo random bits tests 
described in [12]. 



Key Agreement Protocol over the Ring of Multivariate Polynomials 

53 

To perform a modelling, we selected some toy 
example of PRNG by choosing multivariate polyno-
mials rings Z2[t1, t2, t3] and Z2[t1, t2, t3, t4] with 
matrices of dimensions ranging from 3 to 20. 

Modelling results are presented in Table 1 and 
showed that PRNG output fits the tests with matrices 
dimension equal to or higher than 12. Hence we can 

make a conjecture that for the bigger multivariate 
polynomials rings results will be similar and, 
referencing to Theorem 1, the function f(X, Q, Y) = 
XQY pretends to be a one-way function. The further 
step to investigate the one-wayness of the proposed 
function is to perform its security analysis based on 
the function inversion. 

Table 1. Percentage of “bad” bit blocks in PRNG output 

Matrix dimension 3 4 5 6 7 8 9 10 11 
Z2[t1, t2, t3] 100,0% 100,0% 100,0% 100,0% 51,7% 26,2% 9,9% 5,1% 2,7% 

Z2[t1, t2, t3, t4] 100,0% 100,0% 100,0% 67,6% 43,0% 8,1% 2,9% 2,0% 0,5% 
          

Matrix dimension 12 13 14 15 16 17 18 19 20 
Z2[t1, t2, t3] 0,5% 0,5% 0,5% 0,5% 0,5% 0,5% 0,5% 0,5% 0,5% 

Z2[t1, t2, t3, t4] 0,5% 0,5% 0,5% 0,5% 0,5% 0,5% 0,5% 0,5% 0,5% 
 

5. Security analysis 

We define the following security parameters:  mat-
rix dimension d, number of variables p in polynomials 
ring and secret length k of sequences in (1) – (4). They 
must be large enough to prevent brute force attack. To 
compromise the key K, the adversary must solve the 
(9) type of matrix equations to find any matrices X ′ , 
Y ′ (or U ′ , V ′ ) with known instances Q, KA (Q, KB), 
i.e. find inverse function of either f(X, Q, Y) or f(U, Q, 
V). Then commutation conditions (5) will be satisfied. 

To determine the matrices X and Y from (6) it is 
required to find the unknown binary sequences bx0, …, 
bxk and by0, …, byk in (1), (2). Hence, equation (6) can 
be rewritten as follows: 

0 0

0 0

k k
i j

xi yj
i j

k k
i j

xi yj
i j

b L Q b R

b b LQR A

= =

= =

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =

∑ ∑

∑∑
, (12) 

where L, Q, R and A are known matrices over the 
multivariate polynomial ring. Then the system of 
equations (12) will be a MQ system of equations over 
the field Z2 with respect to the unknown binary 
variables bx0, …, bxk and by0, …, byk. 

It is known that MQ problem over any field is NP-
complete [6]. Moreover, it is believed that this prob-
lem is NP-Hard not only in worst case but in average 
case as well [15]. 

The general method for the MQ problem solution 
is the Grobner basis algorithm and its modifications. 
In the case of overdefined sparse system of equations 
the special ad hock methods are introduced such as 
XL, XSL and others [2], [4]. 

In our case we can obtain an underdefined or over-
defined MQ problem near to the equaldefined case by 
choosing suitable parameters m, p, k. 

As we see from (12), in general case when the 
order of matrices is m, the system consists of m2 

polynomial equations and can be rewritten to m22p 
multivariate quadratic equations with 2(k+1) unknown 
variables. Depending on parameters m, p, k we will 
obtain different cases: underdefined (m22p < 2k+2), 
overdefined (m22p > 2k+2) or equaldefined systems 
(m22p = 2k+2). 

In all cases when parameters {bxi} and {byj} are 
chosen at random in (1), (2), the constructed MQ 
system of type (12) is not sparse and has a general 
form. Hence, so far no special methods except the 
Grobner bases algorithm can be applied. 

The complexity of Grobner bases algorithm can 
vary from the polynomial time algorithm with respect 
to p up to double exponential algorithm, e.g. O ( )p22 . 
Recall that the polynomial time algorithms can be 
applied in very special cases [3]. 

Hence we can make a conjecture that the comple-
xity of our general MQ problem is at least an expo-
nential time since it has no special structure. 

As we see, the number of MQ equations depends 
exponentially with respect to the number of variables 
t1, …, tp. The greater number of equations the harder is 
the solution of obtained MQ system of equations. 

According to this investigation, we can define the 
following security parameters: m, p and k. It is be-
lieved that the solution of randomly generated MQ 
system is hopeless when system consists of n ≥ 80 
equations with s ≥ 80 variables [7] when the system is 
near to equaldefined case. Hence, the values of secu-
rity parameters can be chosen according to these fi-
gures. We propose the security parameters values to be 
m = 4, p = 5, k = 255. Then we obtain the MQ system 
with 512 equations and 512 variables. In this case, the 
total scan area consists of 2256 elements and hence the 
brute force attack is prevented. Then the bit length of 
public key matrices Q, L and R is of 512 bits each, and 
the total public key length is of 1536 bits. 
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6. Conclusions 

• The new KAP over the ring of multivariate 
polynomials is presented.  

• According to the preliminary investigations, based 
on mathematical modelling, we can make a con-
jecture that KAP based on constructed matrix func-
tion over multivariate polynomial ring pretends to 
be a one-way function.  

• The compromisation of the proposed KAP relies 
on the solution of system of multivariate quadratic 
(MQ) polynomial equations, which is an NP-
complete problem over any field. 

• The security parameters are defined and their 
values are presented.  
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