
271

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.4

TOWARDS A FORMAL METHOD FOR THE TRANSFORMATION
OF ONTOLOGY AXIOMS TO APPLICATION DOMAIN RULES1

Olegas Vasilecas, Diana Kalibatiene
Vilnius Gediminas Technical University, Information Systems Research Laboratory

Saulėtekio al. 11, LT-10223 Vilnius
e-mail:diana@isl.vgtu.lt, olegas@isl.vgtu.lt

Giancarlo Guizzardi
Ontology and Conceptual Modeling Research Group (NEMO),

Federal University of Espirito Santo, Vitoria – ES – Brazil
e-mail:gguizzardi@inf.ufes.br

Abstract. Ontologies in nowadays are widely used in the process of development of modern information systems

(IS), since they are suitable to represent application domain knowledge. However, some aspects of ontology-based IS
required to be developed. We propose a formal method for ontology axioms transformation into application domain
rules, making them an important and integral part of each application domain and used to constrain or direct different
aspects of business. Such rules can be consecutively transformed into an executable form and implemented in a
software system of an IS. We propose to use the Z notation for formalisation of previously authors’ introduced
ontology-based semi-formal method for development of application domain rules.

1. Introduction

In the information systems (IS) development con-
text, researchers use ontology for conceptual data
modelling mainly, since a conceptual data model and
ontology are closed in some aspects. I.e., both include
concepts, relationships between them and rules (in
ontology – axioms). The main reasons of applying
ontology for IS development are reducing the cost of
conceptual analysis, the ontological adequacy of the
IS [1, 2, 3], sharing and reusing application domain
knowledge across heterogeneous software platforms
[1, 4], and cognizing of application domain. However,
it is typically the case that in ontology-based concep-
tual data modelling approaches, a process of develop-
ing application domain rules is skipped or not defined
in a formal manner in quite rare cases of using.1

The importance of rules in IS development process
is discussed and motivated by a number of researchers
[5, 6, 7], etc. Rules make an important and integral
part of each application domain by expressing const-

1 The work is supported by Lithuanian State Science and

Studies Foundation according to High Technology
Development Program Project “Business Rules Solutions
for Information Systems Development (VeTIS)” Reg. No.
B-07042

raints on concepts, their interpretation, and/or relation-
ships in application domain. A number of methods
were proposed to develop rule models: UML with
OCL [7, 8, 9], [10], Demuth et al method [11], the
Ross method [12], CDM RuleFrame [13] etc. But
none of the proposed languages or methods has been
accepted as technology standard yet, since they are not
suitable for modelling all types of rules [14]. Only a
few of them deal with reuse of knowledge acquired in
the analysis of some particular application domain and
automatic implementation of rules.

We consider that domain ontology should be used
in the process of application domain rules modelling
for reasons as follows:
a. Domain ontology is about concepts and properties

(intrinsic and relational ones) organised in a
(taxonomic, mereological) structure, but it is also
about excluding unintended interpretations,
named as consolidation axioms [15] that can be
made on this structure.

b. A widespread design criterion for domain ontolo-
gies is the use of competence questions. Deriva-
tion axioms are used to answer the set of compe-
tence questions by showing that the information
necessary to answer these questions is encoded in
the ontology.

O. Vasilecas, D. Kalibatiene, G. Guizzardi

272

c. Thus, ontology axioms such as Consolidation and
Derivation axioms can be used to model specific
types of application domain rules.

d. Finally, as stated in [2], ontology axioms (and
ontology as a whole) are typically expressed in a
formal way. For this reason, they can in principle
be transformed to application domain rules
automatically.

We use the Z notation to formalise the approach
for mapping ontology axioms to application domain
rules previously presented in [16].

The paper is structured as follows. Related works
are analysed in Section 2. Our formal characterisation
of ontology and conceptual data model using Z are
proposed in Section 3. Section 3 also presents the
formal transformation rules developed to transform
ontology axioms to application domain rules. Section
4 describes the implementation of the proposed
method into a developed prototype. Finally, Section 5
concludes the paper.

2. Implementing Rules in IS

Since we address the automatic implementation of
application domain rules, they are here analysed at
three different abstraction levels.

• At the business system level that can be under-
stood as OMG’s MDA computation independent
(CIM) level [17], rules are statements that define
or constrain some aspects of a particular business
domain in a declarative manner. For example, a
customer could not buy more than her / his credit
limit permits.

• At the IS level that can be understood as OMG’s
MDA platform independent (PIM) level [17], rules
are statements that define information processing
rules using a rule-based language, like OCL [9]
etc. Expressions of information processing rules
are very precise, e.g. terms used in expressions are
taken from the particular data model [18]. For
example, the following formal OCL expression
“context c: Company inv
enoughEmployees: c.numberOfEmployees >
50” constrains the number of employees in the
Company that must always exceed 50.

• At the software system level that can be under-
stood as OMG’s MDA platform specific (PSM)
level [17], rules are statements represented using
language of a specific execution environment, like
Oracle 10g [19], Microsoft SQL Server 2008 [20],
ILOG JRules [21], etc.

Figure 1 presents rules at different abstraction levels.

Application
Domain Rule

Integrity Constraint

Structural Rule Dynamic Rule

Term

Fact

Derivation rule

Reaction rule

Dynamic
constraint

Business system

Integrity constraint of
a conceptual data

model/OCL Invariant
ECA Rule

ECA Rule ECA Rule/
OCL Initial

and/or
derived value

Information system

Software system SQL Assertion/
Check

SQL Trigger /
SQL View

SQL Trigger

SQL Trigger

Definition

Figure 1. Application domain rules at different abstraction levels2

2 Note: Figure 1 presents implementation of rules only by SQL assertions/checks, triggers and views; however, languages of

other execution environments can be used for implementation of rules.

At business system level, application domain rules
can be classified into:
• Structural rules (terms, definitions, facts, and in-

tegrity constraints), which can be implemented by
a conceptual data model of an application domain,
e.g., entity-relationship or UML class model (for
the sake of simplicity, implementation of terms,
definitions and facts is not shown in Figure 1).

Therefore, terms, definitions, facts can be regarded
as concepts in ontology and not as rules. Integrity
constraints can be implemented by conceptual data
model integrity constraints, like referential integri-
ty constraints, cardinality constraints, and manda-
tory constraints, and in case of UML models
expressed as OCL invariants. At software system
level, integrity constraints can be implemented like
SQL assertions, checks, and foreign keys.

Towards a Formal Method for the Transformation of Ontology Axioms to Application Domain Rules

273

• Dynamic rules, which can be expressed by ECA
rules and implemented, like SQL triggers and SQL
views (for the case of some derivation rules).
o A dynamic constraint restricts transitions from

one state of the application domain to another.
o A derivation rule creates new information

from existing information by calculating or
logical inference from facts.

o A reaction rule evaluates a condition and upon
finding it true performs a predefined action.

Since implementation of structural rules is defined
quite precisely (it can be seen from the precise defi-
nitions of integrity constraints in a conceptual data
model, like CHECK, DOMAIN, NOT NULL, referen-
tial integrity and other constraints), we concentrate our
research on the implementation of dynamic rules.
Therefore, the case of domain ontology axioms is
analysed in depth.

According to the observation in [2, 22, 23, 24, 25]
papers, ontology defines the basic concepts, their
definitions and their relationships comprising the
vocabulary of an application domain and the axioms
for constraining relationships and interpretation of
concepts. Some authors, like [25], distinguish proper-
ties from concepts also. In the simplest case [2], an
application domain ontology describes a hierarchy of
concepts related by particular relationships (e.g., is-a,
part-of, etc.). In more sophisticated cases, constraints
are added to restrict the values of concepts and rela-
tionships, like cardinality constraints, possible length,
etc. In the most sophisticated cases, suitable axioms
are added in order to express and restrict complex
relationships between concepts and to constrain their
intended interpretation.

In field of mathematics [26], an axiom is any
starting assumption from which other statements are
logically derived. It can be a sentence, a proposition, a
statement or a rule that enables the construction of a
formal system. Axioms cannot be derived by prin-
ciples of deduction, because they are starting assump-
tions.

From application domain perspective, axioms are
constraints of an application domain, which are in
force in all possible situations of interest.

Following the terminology used in [15] and [25],
axioms in ontology can be classified in epistemologi-
cal, consolidation, and derivation axioms. Episte-
mological axioms are defined to show constraints
imposed by the way concepts are structured. These
include all axioms which can be directly included by
the use of modelling primitives and relations that are
used in a structural specification of ontology (e.g., is-a
relation, part-of relations, cardinality constraints). An
example of epistemological axioms imposed by the
most basic form of a part-whole relation is: if there
exists x and y and x is a part of y, then y is not a part
of x (∀x,y partOf(x,y)→ ¬partOf(y,x)). Con-
solidation axioms impose constraints that exclude
unintended interpretations over the structure of the

ontology specification. An example of the consoli-
dation axiom from a software quality ontology
presented in [27] is: if a product quality characteristic
(qc) is decomposed in subcharacteristics (qc1), then
these subcharacteristics should also be a product qua-
lity characteristic ((∀qc,qc1)(subqc(qc1,qc) ∧
prodqc(qc) → prodqc(qc1))(C1)). Finally,
derivation axioms allow new knowledge to be derived
from the previously existing knowledge represented in
the ontology. Typically, derivation axioms are created
in order to derive information which can be used to
answer the ontology competence questions. An
example of a derivation axiom from [27] states that “if
there is not a paradigm to which a quality characteris-
tic qc is applicable, than qc is paradigm-independent”
((∀qc) ¬(∃p)(applicability(qc,p) → pdgIn
d(qc)).

If it is necessary, the fourth type of axioms can be
defined in addition. They are definitional axioms that
define the meaning of concepts in ontology.

However, the analysis of ontology development
tools, like Protégé [28], from the implementation pers-
pective shows that epistemological axioms are imple-
mented by structuring concepts in an ontology; con-
solidation and derivation axioms are not distinguished
and they are implemented using some languages
suitable for this purpose, like Protégé Axiom Lan-
guage (PAL) [29] or OWL [30]. Some consolidation
and definitional axioms are implemented by restricting
definition of concepts in a particular ontology.

Therefore, the following conclusions, which relate
domain ontology axioms and application domain
rules, can be drawn:
• Consolidation axioms can be modelled by dynamic

constraints and/or reaction rules.
• Derivation axioms can be modelled by derivation

rules.
• Epistemological axioms can be modelled by

structuring the concepts in a conceptual data
model.
Figure 2 presents ontology axiom-based model-

ling of application domain rules.
Since application domain ontology including

axioms can be formalised using some suitable
language, like OWL [30], it is reasonable to use this
formalisation for automatic transformation of
ontology axioms to information processing rules or
even to executable rules, like SQL triggers.

The proposed transformation of ontology axioms
to application domain rules can be formalised using
predicate logic, description logic, denotational
semantics, etc.

We use the Z notation [31] in this research to
formalise the mapping between ontological axioms
and application domain rules that was earlier proposed
in [16]. The Z notation is purposed for the formal
specification of computer-based systems. It is based
on set theory and predicate calculus, and has been

O. Vasilecas, D. Kalibatiene, G. Guizzardi

274

accepted as the ISO standard in 2002 [32]. We have
chosen Z, because it is language independent. E.g. we
can define mapping of two distinct families of meta-
models disregarding languages, which can be used to
express those meta-models (like UML, ORM, OWL,
etc.). Moreover, the resulting mapping can be
implemented by a number of languages, like Java,
C++, ATL [33], etc.

Ontology
Axiom

Consolidation
axiom

Derivation
axiom

Epistemological
axiom

Derivation
rule

Structuring of
conceptsReaction rule

Dynamic constraint

Figure 2. Ontology axiom-based modelling of
application domain rules

3. The Method for Transformation of
Ontology Axioms to Application Domain
Rules Using Z notation

Based on the results of analysis of the related
works, we propose the following expression of onto-
logy using Z (Figure 3).

The Ontology schema consists of a part above the
central dividing line, in which some variables are
declared, and a part below the line, which gives a
relationship between values of the defined variables,
e.g. extra constraints between the defined variables in
the form of predicates.

It is important to highlight that this is a syntactic
characterisation of an ontology as a specification and
one which has been simplified for the specific
purposes of this paper. For an in-depth study on issue
how ontologies as a specific kind of specification
relates to other classes of models such as meta-mo-
dels, or application-specific conceptual data models
(i.e., the real-world semantics of ontologies), one
should refer to [34].

Ontology

)]([)]([::

)]([)]([::
O
i

O
i

O
i

O
i

O
i

O
i

statementPSTATEstatementPIFcaxiom

statementPSTATEstatementPIFdaxiom

=

=

)()()(::|:

))(()((::,|:

))((::|:

)()(::|:

)))((()))(((::|:

::|:

:|:

)(::,|:

)(::|:

)(::|:

)|)((::|:

QUANTZPLCZPstatementZPcaxiomNiCAXIOMcaxiom

valuepropertystatementconceptstatementZPdaxiomNjiDAXIOMdaxiom

propertyconceptrelconceptstatementNiSTATstatement

valuepropertyvaluereldomainNiDOMAINdomain

conceptZPrelpropertyZPconcepteaxiomNiEAXIOMeaxiom

vocabularyconceptdefaxiomNiDEFAXIOMdefaxiom

NiVALUEvalue

CHARZPrelNjiRELrel

CHARZPpropertyNiPROPERTYproperty

CHARZPvocabularyNiVOCvocabulary

NOUNCHARZPconceptNiCONCEPTconcept

O
i

O
i

OO
i

O
i

O
i

O
i

O
j

O
i

O
i

OO
i

O
i

O
j

O
i

O
i

O
i

OO
i

O
i

O
i

O
i

O
i

O
i

OO
i

O
i

O
i

O
i

O
i

O
i

OO
i

O
i

O
i

O
i

OO
i

OO
i

O
i

OO
i

O
i

OO
i

O
i

OO
i

O
i

OO
i

×∧×∧×∧

→∨∨→×∧

∨∧∧∧

→∨→∧

×∨×→∧

→∧

×∧

×∧

×∧

×∧

Figure 3. The expression of Ontology using Z

For a formal semantics of many ontological primi-
tives such as different sorts of concept categories or
different sorts of mereological relations, one should
refer to [35].

Now we would like to introduce main concepts
used in the paper. CONCEPTO = {conceptO

i | i:N} is a
set of concepts in an ontology. A concept (conceptO

i)
represents real-world things and is expressed as a
word, which is a set of sequences of characters (P (Z ×
CHAR))3. A concept is restricted to be a noun or noun
phrase, for example, customer. N is a set of positive
integers. VOCO = {vocabularyO

i | i:N} is a set of de-
finitions. PROPERTYO = {propertyO

i | i:N} is a set of
properties in an ontology, where a property

3 (P (Z × CHAR)) expression denotes a set of sequences of

characters in all cases in the paper.

(propertyO
i) represents property types of real-world

things, for example, customer-credit-rating-code.
RELO = {relO

i | i:N} is a set of relationships. A
relationship (relO

i) is a word denoting a relationship
between concepts. Some examples of relationships
can be is-a, synonym, part-of, has, etc. VALUEO
= {valueO

i | i:N} is a set of all possible values in an
ontology. For example, value female or a set of values
{Mon, Tues, Wed, Thurs, Fri}. We do not define a type
of values. It can be a character, a real number (Q), etc.

DEFAXIOMO = {defaxiomO
i | i : N} is a set of

definitional axioms in ontology. A definitional axiom
(defaxiomO

i) restricts a definition of the particular con-
cept. In general, one concept may have more than one
definition. However, in a particular application do-
main each concept has one particular definition.

Towards a Formal Method for the Transformation of Ontology Axioms to Application Domain Rules

275

EAXIOMO = {eaxiomO
i | i:N} is a set of epistemo-

logical axioms in ontology. An epistemological axiom
(eaxiomO

i) associates concepts with a relationship
(relO

i (P (Z × conceptO
i))) or concepts and properties

with a relationship (conceptO
i → (P (Z × propertyO

i))).
For example, is-a (bus, vehicle) means that a bus is a
vehicle; student → studentID means that the concept
student has the property studentID. In general, one
concept can be associated with more than one concept
and can have a property or a set of properties.

DOMAINO = {domainO
i | i : N} is a set of domains

in an ontology. A domain (domainO
i) is a set of

possible values (valueO
i) of properties (propertyO

i) and
relationships (relO

i).
STATO = {statementO

i | i : N} is a set of statements
in an ontology about the domain of interest. They are
used to define some types of axioms. A statement
(statementO

i) is built up of concepts (conceptO
i) and

relationships (relO
i) or concepts (conceptO

i), properties
(propertyO

i) and relationships (relO
i). An example of a

statement is dolphin is-a mammal, where there are two
concepts (dolphin and mammal) and one relationship
(is-a). In some cases, values of properties can be used
to aggregate the statement.

DAXIOMO = {daxiomO
i | i : N} is a set of deriva-

tion axioms in an ontology. A derivation axiom
(daxiomO

i) derives new knowledge (at the right-hand
side of the arrow) from existing knowledge (at the
left-hand side of the arrow).

CAXIOMO = {caxiomO
i | i : N} is a set of

consolidation axioms in an ontology. A consolidation
axiom (caxiomO

i) consists of a combination (set) of
statements, which are connected using logical
connectives (LC) and quantifiers (QUANT).

The bottom half of the schema introduces the
following extra constraints. Consolidation axioms and
derivation axioms are of the form condition-state. In
the case of a derivation axiom, a condition defines
some possible predicate of an application domain,
which allows deriving some new state (knowledge) of
an application domain. For example, if customer buys
goods for more than 3000 $, it is a gold customer.
Condition (if-part) indicates some possible state of the
purchasing application domain. When this condition is
satisfied, it allows deriving the information about gold
customer (new state of customer).

For the completeness of the observation we choose
the definition of a conceptual data model from [3] and
[36]. Conceptual data modelling (or semantic data
modelling) focuses on capturing and representing
certain aspects of human perceptions of the real-world
so that these aspects can be incorporated into an IS
[3]. Most conceptual data modelling approaches are
concerned with essential concepts, associations among
concepts and constraints of a domain [36].

We propose the following expression of a concep-
tual data model using Z (Figure 4). Once more, the
model presented below is a syntactic definition of a

conceptual data model focused on the characteristics
which are suitable for the purposes of this paper.

ENTCM = {entityCM
i | i:N} is a set of entities in a

conceptual data model. An entity (entityCM
i) represents

types of real-world things, like person, car, etc. It is
restricted to be a noun or noun phrase. N is a set of
positive integers. ATTRIBCM = {attributeCM

i | i:N} is a
set of attributes representing property types of real-
world things, like name, age, etc. RELCM = {relCM

i |
i:N} is a set of relationships, like is-a, part-of, etc. A
relationship (relCM

i) denotes relationships between
entities (P (Z × entityCM

i) or an entity and a set of
attributes (entityCM

i and P (Z × attributeCM
i)), e.g.

entities are related in a conceptual data model and
entities have a particular set of attributes (representing
properties). For example, customer → {SSN, first_
name, second_name, birth_data} means that the entity
customer has the following attributes {SSN, first_
name, second_name, birth_data}; make (customer,
order) means that the relationship make associate two
entities customer and order (in natural language,
customer makes an order).

INTEGCONSTCM = {integconstCM
i | i : N} is a set

of integrity constraints, like mandatory constraints
(such as must have, must be, must be in list, must not
have, must not be, must not be in list or prerequisite
relationship (for example, an order must have an
order-data)), temporal constraints (for example,
reservation precedes tour [23]), mutually-inclusive
constraints (for example, to travel to a foreign country
a VISA is required, based upon citizenship [23]),
mutually-exclusive constraints (for example, a cruise
cannot be listed as being sold out and have
availability at the same time [23]), etc.

VALUECM = {valueCM
i | i:N} is a set of values in a

conceptual data model. For the sake of simplicity, we
do not define a type of values. It can be a character,
like Jone, a real number (P (Z × Q)), like 18, etc.
DOMAINCM = {domainCM

i | i:N} is a set of domains in
a conceptual data model. A domain (domainCM

i) is a
set of possible values (valueCM

i) of attributes
(attributeCM

i). CARDCONSTCM = {cardconstraintCM
i |

i : N} is a set of cardinality constraints of in a
conceptual data model. A cardinality constraint
(cardconstraintCM

i) assigns values (valueCM
i) to

relationships (relCM
i). RCCM = {ruleclCM

i | i : N} is a set
of rule clauses in a conceptual data model. They are
used to define dynamic rules. A rule clause (ruleclCM

i)
is of the form ((entityCM

i ∨ attributeCM
i ∨ valueCM

i ∨ P
(Z × valueCM

i) ∧ relCM
i ∧ ((entityCM

i ∨ attributeCM
i ∨

valueCM
i ∨ P (Z × valueCM

i)) (see (von Halle, 2002)).
DERRULECM = {derruleCM

i | i:N} is a set of
derivation rules in a conceptual data model, which
allows to derive new entity, attribute, value or a set of
values from the existing rule clause or a set of rule
clauses. The rule clause at the left-hand side should be
true to derive some new information, otherwise it is
not applied. RRULECM = {rruleCM

i | i:N} is a set of
reaction rules in a conceptual data model, which test a

O. Vasilecas, D. Kalibatiene, G. Guizzardi

276

condition at the left-hand side and perform an action
defined at the right-hand side, which depends on the
results of the condition evaluation. The action can be
inserting new value, updating or deleting of existing
values. DYNCONSTCM = {dynconstCM

i | i:N} is a set of
dynamic constraints in a conceptual data model, which
test a condition at the left-hand side and, if it is true,
allow changing of the state of an application domain.

Otherwise the changing of the state of an application
domain is forbidden. Note: integrity constraints
(INTEGCONSTCM), the domain (DOMAINCM) and
cardinality constraints (CARDCONSTCM) in the
Conceptual Data Model schema belong to structural
rules (Figure 1); derivation rules (DERRULECM),
reaction rules (RRULECM) and dynamic constraints
(DYNCONSTCM) belong to dynamic rules (Figure 1).

Conceptual Data Model

)()|)((())(

)|)(((:|:

)())(((::|:

)))((

|)((::|:

))((

))((:|:

)(::,,|:

)))((

))((

)|:

))((

ROLLBACKdofalseruleclZPCOMMITdo

trueruleclZPdynconst N :iDINCONSTdynconst

deleteupdateinsertdoruleclZPrruleNiRRULErrule

valueZPvalueattributeentity

trueruleclZPderruleNiDERRULEderrule

valueZPvalueattributeentityrel

valueZPvalueattributeentityruleclN : iRCrulecl

valuerelcardconstNkjiCARDCONSTcardconst

valueZP(attribute : domain N : kj,i, | DOMAIN :domain

N : i| VALUE :value

entity(P(Z))ttributeaZPentity :egconstint

mincmexctemporalmust_not(must :egconstintN :iINTEGCONSTintegconst

entity(P(Z))ttributeaZPentity: rel

 CHAR)) (Z (P : relN :j i,|REL : rel

CHAR) (Z P :attribute N : i| ATTRIB :attribute

NOUN)|CHAR) (Z (P :entityN : i |ENT :entity

CM
i

CM
i

CM
i

CMCM
i

CM
i

CM
i

CMCM
i

CM
i

CM
i

CM
i

CM
i

CM
i

CM
i

CMCM
i

CM
i

CM
i

CM
i

CM
i

CM
j

CM
i

CM
i

CM
i

CM
i

CM
i

CMCM
i

CM
k

CM
j

CM
i

OCM
i

CM
k

CM
j

CM
i

CMCM
i

CMCM
i

CM
i

CM
i

CM
j

CM
i

CM
i

CMCM
i

CM
i

CM
i

CM
j

CM
i

CM
i

CMCM
i

CM
i

CMCM
i

CM
i

CMCM
i

→×∨

→×∧

∨∨→×∧

×∨∨∨

→×∧

×∨∨∨∧

∧×∨∨∨∧

→∧

×→∧

×∨×→

∧∨∨∨∨∧

×∨×→

∧×∧

×∧

×∧

Figure 4. Expression of a Conceptual Data Model using Z

The analysis of the Ontology and the Conceptual
Data Model schemas allows us to state that conso-
lidation axioms can be used to model dynamic const-
raints or reaction rules, derivation axioms can be used
to model derivation rules, definitional axioms can be
used to define the meaning of concepts, epistemolo-
gical axioms can be used to model the structuring of
entities in the conceptual data model.

Now we can define the transformation of ontology
axioms (consolidation and derivation axioms) to
application domain rules (dynamic constraints,
derivation and reaction rules) (Figure 5). The schema
of transformation contains only the description of
transformation of ontology axioms to conceptual data
model rules, since the main topic of this paper is
ontology axioms and their transformation to
application domain rules.

The Axiom Transformation schema defines the
transformation of derivation axioms to derivation rules
and consolidation axioms to reaction rules or dynamic
constraints. The transformation of definitional axioms
is not presented in the Axiom Transformation schema,
since definitions of entities are presented in a concep-
tual data model as comments of entities. The trans-
formation of epistemological axioms is not presented
in the Axiom Transformation schema, since they are
transformed to the structure of a conceptual data
model.

AxiomTransformation

CMCM
i

CMCM
i

CMCM
i

OO
i

OO
i

DYNCONSTdynconst

RRULErrule

DERRULEderrule

CAXIOMcaxiom

DAXIOMdaxiom

DataModelConceptual
ylogOnto

:!

:!

:!

:?

:?

Ξ
Ξ

)(

:!

:?

CM
i

CM
i

O
i

CM
i

O
i

CMCM
i

OO
i

dynconstrrulecaxiom

derruledaxiom

RCrulecl

STATstatement

∨→

→

Figure 5. The Axiom Transformation schema

defined using Z

Since ontology is a source of the transformation,
the Ontology schema inclusion (ΞOntology) is used to
add all the components of ontology schema to the
Axiom Transformation schema. Since a conceptual
data model is a target of the transformation, the
Conceptual Data Model schema is also included
(ΞConceptualDataModel) to the same schema. It is
used to define the outcome of the transformation. A set
of axioms is an input (a variable ending with a
question mark (?)) or a source of the transformation.
These axioms are transformed into rules of a

Towards a Formal Method for the Transformation of Ontology Axioms to Application Domain Rules

277

conceptual data model, which are output (target) (a
variable ending with an exclamation mark (!)) of the
transformation.

Extra constraints of the transformation process are
the following. Since axioms consist of statements
(statementO

i) and dynamic assertions consist of rule
clauses (ruleclCM

i), statements from ontology axioms
should be transformed to the particular rule clauses of
a conceptual data model. Examples of aggregation of
rules from rule clauses are presented in [6]. For
example, the rule “if customer buys goods for more
than 3000 $, it is a gold customer” can be expressed in
the following way: IF Total_Value > 3000, THEN
Customer_Type = “gold”. This rule is composed of
two rule clauses: “Total_Value > 3000” and
“Customer_Type = “gold””.

The method for the transformation of ontology
axioms to application domain rules is defined as
follows:
1. Choose an application domain ontology.
2. Check if axioms are in the ontology.

Note that this step warranties that axioms are in the
selected ontology. Otherwise, a user should define
axioms.
3. Choose an axiom.
4. Transform the axiom to a dynamic constraint, a

derivation rule or a reaction rule:
4.1. determine the type of the selected axiom – is

it consolidation or derivation axiom?

4.2. in the case of a consolidation axiom –
transform the consolidation axiom to the
corresponding dynamic constraint.

Note that in particular cases a consolidation axiom
can be transformed to a reaction rule, when it is not
only important to permit or forbid a transition from
one state of the application domain to another, but it is
necessary to perform a predefined action.

4.3. in the case of a derivation axiom – transform
the derivation axiom to the corresponding
derivation rule.

5. End of the transformation.
The transformation of ontology axioms to applica-

tion domain rules is presented in Figure 5. The ap-
plication of the proposed method is presented in the
next section (Section 4).

4. A Case Study for Transformation of
Protégé Ontology Axioms

The ontology for a particular application domain
(Newspaper [28]), was chosen to illustrate how onto-
logy axioms can be transformed to information pro-
cessing rules and consequently into executable rules.
We have chosen Protégé because it allows to install
the open source software locally. A free version of the
software provides all features and capabilities required
for the present research as well as being user-friendly.

Table 1. Examples of EZPal constraints for the Newspaper ontology (CA – consolidation axiom, DA – derivation axiom, EA –
epistemological axiom)

No. Axiom representation in a natural
language EZPal constraint Classifier

1.
The salary of an editor should be
greater than the salary of any
employee for which the editor is
responsible for.

For every instance I1 of Class Editor, if the value of Slot
responsible for: Class Editor has instance I2 of class Staff,
then Slot salary: Class Editor of I1 has a value > to Slot
salary: Class Staff of I2.

CA

2.
Every advertisement on the same page
must be authored by a different
salesperson.

Every Instance of Class Advertisement that share the same
value in Slot page_number: Class Advertisement must not
share values in Slot salesperson : Class Advertisement.

CA

3.
Author cannot be Editor of the same
Article.

For every instance of Class Article, Slot author: Class Article
and Slot editor: Class Article cannot have the same value.

CA

4.
The Newspaper should not include
Article, which expiration date
(expiration_date) is before (less) then
Newspaper‘s date

For every instance I1 of Class Article, if the value of Slot
published_in: Class Article has instance I2 of class
Newspaper, then Slot expiration_date: Class Article of I1 has
a value less than Slot date: Class Newspaper of I2.

CA

5.
No two distinct Articles have the same
headline.

Every instance of Article: Class Article has a unique Slot
headline : Class Article.

CA

6.
The new salary of a reporter equals to
the 1.1*old salary of a reporter, if
he/she writes more then 16 articles per
year.

There is no a template for the implementation of this
derivation axiom. Therefore, a template base should be
extended by a new template for calculating vales of slots
from existing values.

DA
(mathematical
calculation)

The axioms are implemented in Protégé ontology

by the Protégé Axiom Language (PAL) constraints
[29]. PAL is a superset of the first-order logic, which
is used for writing strong logical constraints [29]. The
EZPal Tab plug-in [37] is used to facilitate acquisition

of PAL constraints without having to understand the
language itself. Using a library of templates based on
reusable patterns of previously encoded axioms, the
interface allows users to compose constraints using a
“fill-in-the-blanks” approach. Table 1 presents some

O. Vasilecas, D. Kalibatiene, G. Guizzardi

278

examples of EZPal constraints and their classification
according to Figure 2.

The detailed analysis of PAL constraints shows
that they can be directly transformed to executable
rules. Therefore, formal transformation proposed in
Section 3 was adopted as follows in this section.

According to [38], we define Protégé ontology
using Z in the following way (Figure 6).

CLASSPO = {classPO
i | i:N} is a set of the main

concepts in Protégé ontology. A class (classPO
i) is a

real-world thing. CLASSPO of the Protégé Ontology
schema implements CONCEPTO of the Ontology
schema. N is a set of positive integers.
SLOTPO = {slotPO

i | i:N} is a set of slots presenting
properties of classes and their relationships with other
classes. SLOTPO of the Protégé Ontology schema
implements PROPERTYO and a part of RELO (not is-a,
inverse and has relationships) of the Ontology schema.
RELPO = {relPO

i | i:N} is a set of relationships. They
are is-a, inverse or has, where is-a is used to present
the hierarchical relationship between classes, inverse
is used to present the inverse relationship between
slots, and has is used to present slots of a class. RELPO
of the Protégé Ontology schema implements
EAXIOMO of the Ontology schema. Some EAXIOMO
of the Ontology schema can be implemented by some
elements (representing relationships between classes)
of SLOTPO of the Protégé Ontology schema. VOCO
= {documentationPO

i | i:N} is a set of class definitions.

Documentation (documentationPO
i) gives a particular

description to the class. A class description is a set of
sequences of characters (P (Z × CHAR)). VOCPO of
the Protégé Ontology schema implements
DEFAXIOMO of the Ontology schema. Each class has
one particular definition.

VALUEPO = {valuePO
i | i:N} is a set of values in an

ontology. A value can be string, symbol, class, etc.
VALUEPO of the Protégé Ontology schema
implements VALUEO of the Ontology schema.

DOMAINPO = {domainPO
i | i : N} is a set of do-

mains in Protégé ontology. A domain (domainPO
i) is a

set of possible values (valueO
i) of slots (slotPO

i).
DOMAINPO of the Protégé Ontology schema imple-
ments DOMAINO of the Ontology schema.

STATPO = {statementPO
i | i:N} is a set of statements

in Protégé ontology about the domain of interest. They
are used to define axioms. A statement (statementPO

i)
is composed of a class (classPO

i) or a slot (slotPO
i)

associated by a relationship (relO
i) with some class

(classPO
i) or some slot (slotPO

i) or some value
(valuePO

i). STATPO of the Protégé Ontology schema
implements STATO of the Ontology schema.

There is not distinguish between derivation and
consolidation axioms in Protégé. They are just imple-
mented by PAL constraints. We have defined the PAL
constraints of Protégé ontology by Z in a separate
schema to simplify and improve the understanding of
their definition (Figure 7).

ProtégéOntology

)))(()((::|:

)(::|:

:|:

))((::|:

))):():():((

|)((::,|:

)(::|:

|))((::|:

OP
i

PO
j

PO
j

PO
i

PO
i

PO
i

PO
i

POPO
i

PO
i

PO
i

PO
i

POPO
i

POPO
i

PO
i

PO
i

POPO
i

PO
j

PO
i

PO
j

PO
i

PO
j

PO
i

PO
i

POPO
i

PO
i

POPO
i

PO
i

POPO
i

valueslo tclassrelslotclassstatementNiSTATstatement

valueslotdomainNiDOMAINdomain

NiVALUEvalue

CHARZPclassiondocumentatNiVOCiondocumenta t

slotclasshasslotslotinverseclassclassais

hasinverseaisrelNjiRELrel

CHARZPslotNiSLOTslot

NOUNCHARZPclassNiCLASSclass

∨∨∧∧∨∧

→∧

×→∧

→∧→∧→−

∨∨−∧

×∧

×∧

Figure 6. The Protégé Ontology schema defined using Z

PO
i

PO
i

PO
i

PO
i

PAL
i

PALPAL
i

PO
i

PO
i

POPO
i

PO
j

PO
i

POPO
i

PO
i

POPO
i

PO
i

POPO
i

ntpalstatemepalrangepaldocumamelnpaaxiomNiAXIOMaxiom

QUANTZPLCZPstatementZPntpalstatemeNiNTPALSTATEMEntpalstateme

classZPpalrangeNjiPALRANGEpalrange

CHARZPpaldocumNiPALDOCUMpaldocum

CHARZPamelnpaNiPALNAMEamealnp

ylogotegeOnto

∧∧∧∧

×∧×∧×∧

×∧

×∧

×∧

Ξ

::|:

)()()(::|:

)(::,|:

)(::|:

)(::|:

Pr
PALconstraint

)]([)]([:: PO
i

PO
i

PO
i statementZPSTATEstatementZPIFntpalstateme ××=

Figure 7. The Protégé Ontology Axiom schema defined using Z

The PAL constraint schema defines the Protégé
ontology axioms (PAL constraints). The Protégé
Ontology schema is included (ΞProtegeOntology) to
the PAL constraint schema, since its components are

used to define PAL constraints. First of all,
components of PAL constraints are defined as follows.
PALNAMEPO = {palnamePO

i | i:N} is a set of labels for
PAL constraints. Each label is a set of sequences of

Towards a Formal Method for the Transformation of Ontology Axioms to Application Domain Rules

279

characters (P (Z × CHAR)). PALDOCUMPO
= {paldocumPO

i | i:N} is a set of a natural language
descriptions of PAL constraints. PALRANGEPO
= {palrangePO

i | i:N} is a set of local and global
variables that appear in the statement or arrange of the
PAL constraint. It is a set of classes (classPO

i).
PALSTATEMENTPO = {palstatementPO

i | i:N} is a
sentence of the PAL constraint. It is a set of statements
(statementPO

i), which are connected using logical
connectives (LC) and/or quantifiers (QUANT).
AXIOMPAL = {axiomPAL

i | i:N} is a set of PAL
constraints in Protégé ontology. An axiom (axiomPAL

i)
consists of a PAL-name (palnamePO

i), PAL-documen-
tation (paldocumPO

i), PAL-range (palrangePO
i) and

PAL-statement (palstatementPO
i).

An additional constraint is that a PAL-statement
(palstatementPO

i) is of the form condition-state. E.g., a
state defines a particular admissible state of an
application domain, which can be achieved if a
condition is satisfied. Some PAL constraints do not
have conditions. They define only admissible state.
Moreover, all types of axioms (consolidation and
derivation) are defined by PAL constraints in the same
manner (see Table 1). Epistemological axioms are
implemented by structuring concepts of Protégé
ontology.

The definition of SQL triggers was adopted from
the Conceptual Data Model schema in the following
way (Figure 8).

)()(

::|:

::|:

)()()(::|:

)(::|:

))()_((:

:|:

:|:

:|:

)(::|:

)(::|:

M
i

M
i

M
i

M
i

M
i

M
i

M
i

MM
i

M
i

M
i

M
i

M
i

MM
i

M
i

MM
i

M
i

M
i

SQL
i

M
i

M
i

MM
i

M
i

CM
i

MM
i

M
i

CM
i

MM
i

M
i

MM
i

M
i

MM
i

sqlthenZPsqlifZPsqleventsqltable

namesqltriggercomsqltriggersqltriggerNiSQLTRIGGERsqltrigger

selectdeleteupdateinsertrollbackcommitsqlthenNiSQLTHENsqlthen

QUANTZPLCZPsqlstatZPsqlifNiSQLIFsqlif

selectdeleteupdateinsertsqleventNiSQLEVENTsqlevent

valuesqlattribnotisismatopsqlattribsqlstat

NiTSQLSTATMENsqlstat

sqlattribattributeNiSQLATTRBsqlattrib

sqltableentityNiSQLTABLEsqltable

CHARZPnamesqltriggerNiNAMESQLTRIGGERnamesqltrigger

CHARZPcomsqltriggerNiCOMSQLTRIGGERcomsqltrigger

DataModelConceptual
DataModel

×∧×∧∧

∧∧∧

∨∨∨∨∨∧

×∧×∧×∧

∨∨∨∧

∨∧∨∨∧

∧

→∧

→∧

×∧

×∧

Ξ
Ξ

SQLTrigger

])))][([((][][

]||][[]][[::
M
i

M
i

M
i

M
i

M
i

M
i

M
i

sqlthensqlifZPIFROW EACH FORASsqlevent

OF INSTEADAFTERFORsqltableONcomsqltriggernamesqltriggerTRIGGER CREATEsqltrigger

×

=

Figure 8. The SQL Trigger schema defined using Z

The SQL Trigger schema presents SQL triggers.
The Data Model schema is included into the SQL
Trigger schema to represent a particular data model,
part of which SQL triggers are. The Data Model
schema presents a particular physical data model,
which is an implementation of a conceptual data
model defined by the Conceptual Data Model schema.
Therefore, the Conceptual Data Model schema is also
included into the SQL Trigger schema. For the sake of
simplicity, the Data Model schema is not described in
details in this paper and is going to be defined in
future works.

The elements of SQL trigger schema in Figure 8
are described as follows. SQLTRIGGERCOMM
= {sqltriggercomM

i | i:N} is a set of natural language
descriptions of SQL triggers. They are sets of
sequences of characters (P (Z × CHAR)). SQLTRIG-
GERNAMEM = {sqltriggernameM

i | i:N} is a set of
names of SQL triggers. SQLTABLEM = {sqltableM

i |
i:N} is a set relations to which SQL triggers are
attached. sqltableM

i implements a particular entity
from the Conceptual Data Model schema (entityCM

i).
SQLATTRIBM = {sqlattribM

i | i : N} is a set of
attributes, which are used to define SQL triggers.
sqlattribM

i implements a particular attribute from the

Conceptual Data Model schema (attributeCM
i).

SQLSTATSQL = {sqlstatSQL
i | i : N} is a set of

statements expressed using SQL. They are used to
define SQL triggers. A statement (sqlstatSQL

i) is
composed of attributes (sqlattribM

i) or an attribute
(sqlattribM

i) and a value (valueSQL
i), which are

associated by a mathematical operator (matopSQL
i) or a

keyword (is or is not). An example of a statement is
employee.salary is not null, where salary is an
attribute and null is a possible value of this attribute.
Note that for each attribute in SQL statement the
context or table, to which it belongs, is specified
before this attribute. In the previous example, the
salary attribute is taken from the employee table.

SQLEVENTM = {sqleventM
i | i:N} is a set of events

activating SQL triggers. They are insert, update,
delete or select. SQLIFM = {sqlifM

i | i:N} is a set of
conditions in a SQL trigger, which have to be checked
and evaluated when a SQL trigger is activated. It is a
set of statements (sqlstatSQL

i), which are connected
using logical connectives (LC) and/or quantifiers
(QUANT). SQLTHENM = {sqlthenM

i | i:N} is a set of
actions of a rule, which have to be executed after the
condition is evaluated. If SQL trigger implements a
dynamic constraint from the Conceptual Data Model

O. Vasilecas, D. Kalibatiene, G. Guizzardi

280

schema (dynconstCM
i), there are two possible actions:

(i) if a condition is satisfied, to admit (commit) the
transition from one state of the system to another, (ii)
if a condition is not satisfied, to forbid (rollback) the
transition from one state of the system to another. If a
SQL trigger implements a reaction rule form the
Conceptual Data Model schema (rruleCM

i), an action
can be insert, update or delete. If a SQL trigger
implements a derivation rule from the Conceptual
Data Model schema (derruleCM

i), an action is a SQL
select statement.

SQLTRIGGERM = {sqltriggerM
i | i:N} is a set of

SQL triggers. A SQL trigger (sqltriggerM
i) consists of

a comment (sqltriggercomM
i), a name (sqltrigger-

nameM
i), a table (sqltableM

i), an event (sqleventM
i), a

condition (sqlifM
i) and an action (sqlthenM

i). E.g., it
has the structure of ECA rule.

The bottom half of the schema introduces the extra
constraint for the SQL Trigger schema that a SQL
trigger should have the form as presented.

The PAL SQL Transformation schema is adapted to
the Protégé ontology with PAL constraints and SQL
triggers as follows (Figure 9).

The PAL SQL Transformation schema defines the
transformation of PAL constraints to SQL triggers.
Since PAL constraints are the source of the
transformation, the PAL constraint schema (ΞPAL-
constraint) is included to the PAL SQL Transformation
schema. Since SQL triggers are the target of the
transformation, the SQL Trigger schema is also in-
cluded (ΞSQLTrigger) into the same schema. It is then
used to define the output of the transformation. A set
of PAL constraints (axiomPAL

i) is input (a variable
ending with a question mark (?)) or a source of the
transformation. Those PAL constraints are transformed
to SQL triggers, which are the output (target) (a
variable ending with an exclamation mark (!)) of the
transformation.

PALSQLtransformation

MM
i

PALPAL
i

SQLTRIGGERsqltrigger

AXIOMaxiom

SQLTrigger
intPALconstra

:!

:?

Ξ

Ξ

selectdeleteupdateinsertrollbackcommitsqlthen

ntpalstatemesqlif

selectdeleteupdateinsertsqlevent

palrangesqltable

paldocumcomsqltrigger

amelnpanamesqltrigger

M
i

PO
i

M
i

M
i

PO
i

M
i

PO
i

M
i

PO
i

M
i

∨∨∨∨∨=

=

∨∨∨=

=

=

=

::!

?::!

::!

::!

?::!

?::!

Figure 9. The PAL SQL Transformation schema

defined using Z

Extra constraints of the transformation are the fol-
lowing. PAL-name (palnamePO

i) should be transfor-
med to SQL trigger name (sqltriggernameM

i). PAL-
documentation (paldocumPO

i) should be transformed
to comments of SQL trigger (sqltriggercomM

i). PAL-

range (palrangePO
i) should be transformed to SQL

table (sqltableM
i). An SQL event is insert, update,

delete or select. PAL-statement (palstatementPO
i)

should be transformed to SQL if (sqlifM
i). SQL then

(sqlthenM
i) is commit, rollback, insert, update, delete

or select.
A prototype of the AxiomTransformation plug-in

was developed to carry out the experiment of auto-
matic transformation of ontology PAL constraints to
SQL triggers. In this prototype it is necessary to
specify a file, where SQL triggers will be stored and
all axioms are then automatically transformed to SQL
triggers.

At the moment plug-in is suitable for the imple-
mentation of dynamic constraints only. Therefore, in
the future it should be extended to cover also the
transformation of derivation axioms to derivation
rules.

Table 2 as example presents results of a transfor-
mation of a PAL constraint to the corresponding SQL
trigger.

Some corrections should be made to SQL triggers
obtained so that they can be implemented in specific
ADBMS. The user should choose an activation time
(FOR|AFTER|INSTEAD OF) and an event of triggering
([DELETE] [,][INSERT][,][UPDATE]). The user
should also link the generated SQL triggers with
particular databases, since some names of attributes or
tables may vary depending on implementation details.

The next step of the research is extending the
developed prototype. Firstly, it is necessary to extend
the prototype for the transformation of all types of
axioms that we discussed in this paper; secondly, the
proposed schemas of Z should be extended and re-
fined according to the results of observations obtained.

5. Conclusions
The analysis of the related works in the field of

knowledge-based information systems development
using the domain ontology shows that application
domain rules are part of knowledge represented in
such ontology. Rules are represented in the ontology
by axioms and defined using ontology concepts. How-
ever, the topics of using ontology axioms for applica-
tion domain rules modelling and consequently imple-
mentation in software systems are not investigated
enough before now.

According to the detailed analysis of ontology
axioms and application domain rules, we propose the
method for transformation of ontology axioms to ap-
plication domain rules and define such transformation
in formal way using Z notation. The formal definition
of the method is based on the syntactic expressions of
ontology concepts, conceptual data model and the
developed formal rules for transformation of ontology
axioms into rules of an application domain. We sug-
gested to use consolidation axioms for modelling of
dynamic constraints, derivation axioms – for model-
ling of derivation rules, epistemological axioms – for

Towards a Formal Method for the Transformation of Ontology Axioms to Application Domain Rules

281

modelling of structuring of concepts, and finally to
use definitional axioms for modelling of the concepts
meaning.

In order to illustrate the presented approach and
prove that it is implementable, transformation rules
obtained and defined using Z were applied to trans-
form the Protégé ontology with axioms (PAL const-
raints) to the rules implemented by SQL triggers.

The prototype of a software system was deve-
loped. Using it, the experiment with the automatic
transformation of ontology consolidation axioms to
SQL triggers (class of dynamic constraints) was
carried out. The experiment shows that the suggested
method can be implemented and used for the auto-
mation of the ontology knowledge transformation into
the components of software system of an information
system.

Table 2. Transformation of a PAL constraint to a SQL trigger
PAL constraint
([newspaper_00000] of %3APAL-CONSTRAINT
(%3APAL-NAME "editor-employees-salary-constraint")
(%3APAL-DESCRIPTION "The salary of an editor should be greater than the salary

of any employee which the editor is responsible for <=> For every instance I1 of
Class Editor, if the value of Slot responsible for : Class Editor has instance I2
of class Staff, then Slot salary: Class Editor of I1 has a value > to Slot salary:
Class Staff of I2.\n\n")

(%3APAL-RANGE "(defrange ?editor :FRAME Editor)\n
(defrange ?employee :FRAME Employee responsible_for)")
(%3APAL-STATEMENT "(forall ?editor (forall ?employee\n

(=> (and \n (responsible_for ?editor ?employee)\n
(own-slot-not-null salary ?editor)\n
(own-slot-not-null salary ?employee))\n
(> (salary ?editor) (salary ?employee)))))"))

SQL trigger
/* Documentation */
/* The salary of an editor should be greater than the salary of any employee

which the editor is responsible for <=> For every instance I1 of Class Editor, if
the value of Slot responsible for : Class Editor has instance I2 of class Staff,
then Slot salary: Class Editor of I1 has a value > to Slot salary: Class Staff of
I2. */

CREATE TRIGGER editor-employees-salary-constraint
ON {editor|employee}
{FOR | AFTER | INSTEAD OF}
{[DELETE] [,] [INSERT] [,] [UPDATE]}
AS
FOR EACH ROW
IF (editor.responsible_for=employee.responsible_for AND editor.salary is not

null AND employee.salary is not null) AND (editor.salary>employee.salary)
BEGIN
 COMMIT TRANSACTION
 PRINT ''Transaction is committed.'
END
ELSE
 RAISERROR ('Rule is violated. The salary of an editor should be greater than

the salary of any employee which the editor is responsible for.')
 ROLLBACK TRANSACTION
END

References
 [1] M. Jarrar, J. Demey, R. Meersman. On Using Con-

ceptual Data Modeling for Ontology Engineering. In
S. Spaccapietra et al (eds.), Journal on Data Seman-
tics, Lect. Notes Comput. Sci. 2800, Springer, 2003,
185-207.

 [2] N. Guarino. Formal Ontology and Information Sys-
tems. Proc. of the International Conference On For-
mal Ontology In Information Systems (FOIS’98). IOS
Press, 1998, 3-15.

 [3] Y. Wand, V.C. Storey, R. Weber. An ontological
analysis of the relationship construct in conceptual
modeling. ACM Transactions on Database Systems
(TODS), Vol. 24(4), 1999, 494–528.

 [4] T.R. Gruber. Toward Principles for the Design of
Ontologies for Knowledge Sharing. International
Journal of Human and Computer Studies, Vol. 43,
1995, 907-928.

 [5] Business Rules Group. Defining Business Rules ~
What Are They Really? 3rd edn., 2000 (September,
2009): http://www.businessrulesgroup.org/first_paper
/BRG-whatisBR_3ed.pdf.

 [6] B. von Halle. Business Rules Applied: Building Better
Systems Using the Business Rules Approach. John
Wiley & Sons, 2002.

 [7] Business Rules Group. The Business Motivation Mo-
del. Business Governance in a Volatile World. 2005
(September, 2009): http://www.businessrulesgroup.org
/second_paper/BRG-BMM.pdf.

O. Vasilecas, D. Kalibatiene, G. Guizzardi

282

 [8] G. Booch, J. Rumbaugh, I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley,
2000.

 [9] OMG. UML 2.0 OCL Specification. 2003 (Septem-
ber, 2008): http://www.omg.org/docs/ptc/03-10-14.
pdf.

[10] OMG. Unified Modeling Language Specification.
Version 1.4.2, ISO/IEC 19501:2005(E), 2005
(September, 2008): ftp://ftp.omg. org/pub/docs/formal
/05- 04-01.pdf.

[11] B. Demuth, H. Hussmann, S. Loecher. OCL as a
Specification Language for Business Rules in
Database Applications. In M. Gogolla, C. Kobryn
(eds.), Proc. of UML 2001, Lect. Notes Comput. Sci.
2185, Springer-Verlag, 2001, 104-117.

[12] R.G. Ross. The Business Rule Book. Classifying, De-
fining and Modeling Rules. Business Rules Solutions.
LLC Houston, 1997.

[13] L. Boyd. CDM RuleFrame – The Business Rule
Implementation Framework That Saves You Work.
Proc. of ODTUG (Oracle Development Tools User
Group) 2001 – Business Rules Simposium, 2001
(November, 2006): http://www.dulcian.com/odtug
_conference.htm.

[14] H. Herbst, G. Knolmayer, T. Myrach, M. Schlesin-
ger. The Specification of Business Rules: A Compa-
rison of Selected Methodologies. In A. A. Verrijn-
Stuart, T. W. Olle (eds.), Methods and Associated
Tools for the Information System Life Cycle, Elsevier,
1994, 29-46.

[15] G. Guizzardi, R. A. Falbo, J. G. Pereira Filho.
Using Objects and Patterns to Implement Domain
Ontologies. In Proc. of the 15th Brazilian Symposium
on Software Engineering, Rio de Janeiro, Brazil,
Journal of the Brazilian Computer Society, Special
Issue on Software Engineering, Vol.8, No.1, 2002
(September, 2008): http://www.scielo.br/scielo.php?
pid=S0104-65002002000100005&script=sci_arttext&
tlng=en.

[16] O. Vasilecas, D. Bugaite. Ontology-based Informa-
tion Systems Development: the Problem of Automa-
tion of Information Processing Rules. In E. Neuhold,
T. Yakhno (eds.), Proc. of the Fourth International
Conference Advances in Information Systems
(ADVIS‘2006), Lect. Notes Comput. Sci. 4243,
Springer, 2006, 187-196.

[17] J. Miller, J. Mukerji (eds.). MDA Guide Version
1.0.1. OMG, 2003.

[18] D. C. Hay. Requirement Analysis. From Business
Views to Architecture. Prentice Hall PTR, New Jer-
sey, 2003.

[19] Oracle Database Software Downloads. 2008, (Septem-
ber, 2008): http://www.oracle.com/technology/soft-
ware/products/database/index.html.

[20] Microsoft SQL Server 2008. 2008, (September, 2008):
http://www.microsoft.com/sqlserver/2008/en/us/over-
view.aspx.

[21] ILOG JRules. BRMS Resource Center. 2008,
(September, 2008): http://blogs.ilog.com/brmsdocs
/2008/06/15/ilog-jrules-6-for-architects-and-develo-
pers-2/.

[22] E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho et al.
KAON – towards a large scale semantic web. In K.
Bauknecht et al (eds.), Proc. of E-Commerce and Web
Technologies 2002, Lect. Notes Comput. Sci. 2455,
Springer, 2002, 304–313.

[23] V. Sugumaran, V.C. Storey. The Role of Domain
Ontologies in Database Design: An Ontology Manage-
ment and Conceptual Modeling Environment. ACM
Transactions on Database Systems (TODS), Vol. 31,
Issue 3, 2006, 1064–1094.

[24] Z. Hu, E. Kruse, L. Draws. Intelligent Binding in the
Engineering of Automation Systems Using Ontology
and Web Services. IEEE Transactions on Systems,
Man, and Cybernetics – Part C: Applications and
Reviews, Vol. 33, No.3, 2003, 403-412.

[25] R.A. Falbo, C.S. Menezes, A. R. C. Rocha. A
Systematic Approach for Building Ontologies. In H.
Coelho (ed.), Proc. of the 6th Ibero-American
Conference on Artificial Intelligence (IBERAMIA’98),
Lisbon, Portugal, Lect. Notes Artif. Int. 1484, Sprin-
ger-Verlag, 1998, 349-360.

[26] E. Mendelson. Introduction to mathematical logic.
Wadsworth & Brooks, 1987.

[27] R. A. Falbo, G. Guizzardi, K. C. Duarte. An Onto-
logical Approach to Domain Engineering. Proc. of the
International Conference on Software Engineering
and Knowledge Engineering (SEKE’02), Italy, 2002,
351-358.

[28] Protégé. Stanford Medical Informatics, Stanford
University, 2006 (November, 2006):
http://protege.stanford.edu.

[29] W. Grosso. The Protégé Axiom Language and Toolset
("PAL"). Stanford Medical Informatics, Stanford Uni-
versity, 2002 (September, 2005): http://protege
.stanford.edu/plugins/paltabs/paldocumentation/index.
html.

[30] OMG. OntologyDefinition Metamodel. 2005 (Septem-
ber, 2008): http://www.omg.org/docs/ad/05-08-01
.pdf.

[31] J. Bowen. Formal Specification and Documentation
using Z: A Case Study Approach. International
Thomson Computer Press (ITCP), 2003.

[32] ISO. Information Technology – Z Formal Specifica-
tion Notation – Syntax. Type System and Semantics,
ISO/IEC 13568:2002, 196.

[33] ATL Documentation. The Eclipse Foundation, 2008
(November, 2008): http://www.eclipse.org/m2m/atl
/doc/.

[34] G. Guizzardi. On Ontology, ontologies, Conceptua-
lizations, Modeling Languages, and (Meta)Models,
Frontiers in Artificial Intelligence and Applications. In
O. Vasilecas, J. Edler, A. Caplinskas (eds.), Databases
and Information Systems IV, IOS Press, Amsterdam,
2007, 18-39.

[35] G. Guizzardi. Ontological Foundations for Structural
Conceptual Models. PhD Thesis, University of Twente,
TI-FRS No. 15, Universal Press, The Netherlands,
2005.

[36] G. Guizzardi, H. Herre, G. Wagner. On the General
Ontological Foundations of Conceptual Modeling. In
S. Spaccapietra, et al (eds.), Proc. of 21th Interna-
tional Conference on Conceptual Modeling (ER 2002),
Lect. Notes Comput. Sci. 2503, Springer-Verlag, Ber-
lin, 2002, 65-78.

[37] J. Hou. EZPal Tab. Stanford University. 2005 (March,
2006): http://protege.stanford.edu/plugins/ezpal/.

[38] H. Knublauch. UMLBackend. Stanford Medical
Informatics, Stanford University, (October, 2006):
http://protege.cim3.net/cgi-bin/wiki.pl? UMLBackend.

Received October 2008.

