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Abstract. The aim of the given paper is development of a minimum variance control (MVC) approach for a closed-

loop discrete-time linear time-invariant (LTI) system when the parameters of a dynamic system as well as that of a controller 

are not known and ought to be estimated. The parametric identification of the open-loop LTI system and the determination 

of the coefficients of the MV controller are performed in each current operation by processing observations in the case of 

additive noise on the output with contaminating outliers uniformly spread in it. The robust recursive technique, based on the 

S-algorithm, with a version of Shweppe’s GM-estimator is applied here in the calculation of estimates of the parameters of a 

LTI system with one time-varying coefficient in the numerator of the system transfer function. Then, the recursive parameter 

estimates are used in each current iteration to determine unknown parameters of the MV controller. Afterwards, the current 

value of the control signal is found in each operation, and it is used to generate the output of the system, too. The results of 

numerical simulation by computer are presented and discussed. 

Key words: Adaptive systems, closed-loop, self-tuning controller, the minimum variance control law, parametric 

identification, observations, outliers. 

1. Introduction It is known [1, 4, 9, 11–16] that, for parametric iden-

    To  provide  self-tuning  control  of  a  real 
tification of open-loop, as well as of closed-loop sys-

plant several ordinary control approaches, such as,
tems, robust recursive techniques ought to be applied 
that are efficient in the case of nonnormal noise. To minimum-variance  control MVC, generalized  MVC 

(GMVC), incremental GMVC, and so on, are fre- implement the self-tuning MV controller, it is neces-

quently used that take into consideration random sary, firstly, to estimate LTI system’s model parame-

disturbances affecting the process. The MVC and ters in such a noisy environment and, secondly, to de-

GMVC algorithms, as noted in [17], were the first termine the controller coefficients in each current op-

that were designed specially for self-tuning applica- eration (see Fig. 1,[2]). that are recalculated using the 

tions and are now considered ’classical’ formulations. values of abovementioned estimates. Then, the cur-

The algorithms described there can be implemented rent value of the control signal, based on the values of 

as self-tuning controllers that underpin the design the reference signal and that of input-noisy output of 

and development of a modern model based predic- a system, multiplied by the respective weighting co-

tive control approach. On the other hand, it has been efficients, is obtained according to Fig. 1. However, in 

emphasized in [10] that in designing a robust control such a case, the transfer of meanings of large outliers 

system, one ought to determine the type of uncertain- proceeds in random noise appearing in output obser-

ties appearing in the system to be controlled. There vations. Therefore, in each current operation before 

are many types of uncertainties in system description calculating the value of the control signal it is impor-

models. One of the main ones of them is the uncer- tant to find the values of the output that have not been 

tainty arising in the output disturbance description of harmed by outliers. To this end, we propose here to 
a plant model to be used. It is frequently assumed that generate an auxiliary output signal that will be with-
system’s output is affected by Gaussian disturbance. out outliers. 
However, nonnormal noise, and particularly the pres- In Section 2, a statement of the problem is pre-
ence of outliers, degrades the performance of a sys- sented. In Section 3, the method for a design of a 
tem acting in a closed-loop. In such a case ordinary self-organizing system is given. In Section 4, an or-
recursive techniques used for a parametric identifica- dinary direct approach is described for a parametric 
tion of any control systems, are inefficient, as a rule. identification of the system transfer function. We an-
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alyze a recursive parametric identification, based on 
GM- estimators in the presence of outliers in output 
observations, in Section 5. Section 6 presents the sim-
ulation and parametric identification results. Section 
7 contains conclusions. 

2. Statement of the Problem 

Assume that a system to be observed is a causal 
and LTI system with one output fy(k)g and one input fu(k)g, expressed by the equation �� �1 �1y(k) = q G0(q ; � )u(k) +H0(q ;')�(k);| {z }v(k)

(1) 
that consists of two parts (Fig. 2): a system model �1 �1G0(q ; �) H0(q ; kand a noise model '). Here 
is the current number of observations of a respec-
tive signal, is an known time delay, are un-� �; '�1known parameter vectors to be estimated, q is the �1backward time-shift operator such that q u(k) =u(k�1); and H0(q�1; is an inversely stable monic ')
filter [3]. Given the model (1) and measured data N Z = fu(1); u(2); : : : ; u(N); y(1); y(2); : : : ; y(N)g

(2) 
and assuming that a noise f�(k)g; is re-k = 1; 2; :::
ally a sequence of independent identically distributed 
variables with an �-contaminated distribution of the 
form 2 2p(�(k)) = (1� �)N(0; � ) + �N(0; � ); (3) � & 
and the variance 2 2 2� = (1� �)� + �� ; (4) � � &
let us suppose that f�(k)g is used to generate unmea-
surable noise fv(k)g. Here pf�(k)g is the probabil-
ity density distribution of the sequence f�(k)g;1; 2; : : :; k =�(k) = (1� 
k)�k + 
k&k (5) 

is the value of the sequence f�(k)g; at a k = 1; 2; : : :
time moment k; 
 is a random variable, taking values 
0 or 1 with probabilities p(
k 1) = �; �k; &k are sequences of independent Gaus-

= 0) = 1 � �; p(�
;k�=& 2 2sian variables with zero means and variances � , 
respectively; besides, �� < ; 0�1 is the unknown �& 
fraction of contamination; 
The aim of the given paper is to design a parame-
ter adaptive self-organizing system with the MV con-
trol law, shown in Fig. 1, in the case of additive noise fv(k)g, that contains large outliers and corrupts the 
output fy(k)g of the LTI system (see Fig. 2). 

noise 

Control

System 

Estimate model 

parameters 

Control law 

Estimated 

parameter vector 

System 

output y(t) 

input u(t) Reference r(t) 

Figure 1. Self-organizing system [2] 

3. Design of a self-organizing system 

The MVC controller seeks to design the required 
control signal na nbX X1u(k) = f aly(k+��l)� biu(k�i)+r(k)gb0 l=1 i=1

(6) 
by minimizing with respect to fu(k)g the quadratic 
performance function N�1X1 2JMV = lim Ef [r(k) � y(k + �)] g; (7) N!1 N k=0
that refers to the variance of the error between set-
point r(k) and the controlled output � -time steps in 
the future, y(k+� [17]. Here na; are general num-) nb
bers of respective parameter sets of difference equa-
tion (6). 

To implement the self-tuning MVC controller, 
it is necessary, firstly, to estimate LTI system’s model 
unknown  parameters  in  such  a  noisy  environment 
using robust techniques [1, 4, 5, 8, 9, 11 – 14, 16] 

r(k) e(k) u(k) v(k) y(k)�(k)GR G0H0
� 

Figure 2. The closed-loop system to be observed. G0 � GHere 0(q�1G;R�), and 
� GRH(q0��1;H�)0, (q�1; ') . 
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and, secondly, to determine the value of control sig- Here the output y(k) of the general model of the LTI 
nal in each current operation by substitutingu(k)
in (6) the values of abovementioned estimates (b̂0; b̂1; : : : ; b̂nb); âT = (â1; â2; : : : ; âna). However, 

b̂T =
in such a case, the transfer of meanings of large out-
liers proceeds in random noise appearing in output 
observations. Therefore, in each current operation be-
fore calculating the value of the control signal fu(k)g 
it is important to find the values of the output that 
have not been harmed by outliers. In such a case, we 
propose here to generate an auxiliary output signal ŷ(k + �) that will be without outliers. 

A self-organizing MVC strategy is achieved 
when estimation and control are carried out every cur-
rent instant k simultaneously. 

4. The direct approach 

The direct approach ignores the feedback and �1identifies the system G0(q using the measure-; �)
ments of the input u(k) and output y(k) 8k = 1; 2; :::
[3] assuming that the noise f�(k)g; is sta-k = 1; 2; :::
tistically independent and stationary with the follow-
ing characteristics: 2Ef�(k)g = 0; Ef�(k)�(k + �)g = � Æ(�); (8)� 2where Ef�(k)g is the mean value, � is the variance,� Æ(�) is the Kronecker delta function. Using the direct 
parameric identification method one has to estimate 
the prediction error value ̂ of the vector of param-�N
eters � by N�̂N = arg min VN (�;Z ): (9) �2DM
Here is the set of allowable parameter values,DM 
which is assumed compact and connected [3], N X1N T �1 TVN (�;Z ) = e (k; �)� e (k; �); (10)F F N k=1
with �1eF (k; �) = L(q ; �)�(k; �); (11) � is a symmetric, positive definite weighting matrix, �1and L(q is a monic prefilter that can be used to; �)
enhance certain frequency regions [3]. The prediction 
error is calculated by ^�(k; �) = y(k)� ŷ(k; �) = (12) �1 �1 �1 ^H (q ; '̂)[y(k)�G(q ; �)u(k)]:

�1 �1system G(q and noise filter H(q '), respec-; �) ;
tively, are of the form �1 �1y(k) = G(q ; �)u(k) +H(q ;')�(k) (13) �1where G(q corresponds to the first part of equa-; �)�1tion (1) and H(q to the second one. Then, the;')
one-step-ahead predictor for the model structure (13) 
is �1 �1 �1^ ^ŷ(k; �) = H (q ; '̂)G(q ; �)u(k)+ (14) �1 �1[1�H (q ; '̂)]y(k):
Here is the estimate of the parameter vector'̂ '. 
The parameter vector � can be determined by an ordi-
nary prediction error method, based on the recursive 
LS (RLS) of the form �(k � 1)z(k)^ ^�(k)=�(k � 1)+ "̂(k);T1 + z (k)�(k � 1)z(k)

(15) T �(k � 1)z(k)z (k)�(k � 1)�(k)=�(k � 1)� T 1 + z (k)�(k � 1)z(k)Twith the vector of observations z (k) = [�y(k� 1); : : :;�y(k�m); u(k�1); : : :; u(k�m)]; and some 
initial values of the vector ̂  and matrix �(0):Here�(0)T T T^ ^� (k) = [â (k);b (k)] = (16) ^ ^ ^[â1(k); : : : ; âm(k); b0(k); b1(k); : : : ; bm(k)];T T Tis the current estimate of the vector � = (a ;b ) =(a1; : : : ; am; b0; b1; : : : ; bm), and T ^"̂(k) = y(k)� z (k)�(k � 1) (17) 

is the prediction error on the current k-th iteration, �1respectively, where G0(q is the system transfer; �)
function of the form �1B(q ;b)�1G0(q ; �) = = (18)�1A(q ; a)�1 �2 �mb0 + b1q + b2q + : : :+ bmq :�1 �m1 + a1q + : : :+ amqT THere b bm), and a= (b0; b1; : : : ; = (a1; : : : ; am)
are vectors of the parameters to be estimated, m =nb = na. 

It is known that RLS is efficient only in the case 
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^where in the vector form. Here is the robust estimate�N 1�1H0(q ;') = = (19)�11 +A(q ; a)1 ; ' � a:�1 �m1 + a1q + : : :+ amq
It could be emphasized that, before the closed-loop 
direct parametric identification, the respective iden-
tifiability conditions should be satisfied according to 
[7]. 

5. Parametr ic identification in the presence of 
large outliers 

In what follows, we introduce the robust recur-
sive generalized maximum likelihood (GM) for cal-
culating robust estimates of the parameters of LTI dy-
namic systems, acting in a closed-loop (Fig. 2) in the 
case of correlated noise of special form (19) with out-
liers in it. A class of GM-estimators is defined implic-
itly by the first order condition [6] N X T x(t)�fx(t); [y(t)� x (t)�]=�g = 0: (20) t=1
Here x(t) is a set of regressors, � denotes the scale of 
residuals n(t) of the linear regression model y(t) =T x (t)� + Æ(t); t = 1; :::; N �, where is a vector 
of unknown parameters. The function �f�; in (20)�g 
depends on both the set of regressors and thex(t)
standardized residual The conditions thatÆ(t)=�. 
ought to be satisfied by �f�; in order that the GM-�g 
estimator have nice asymptotic properties are known 
in advance [8]. The ordinary least-squares estima-
tor could be obtained as a special case of (20) by 2setting in it the function with�(x(t); r) = r =2@�(x(t); r)=@r = �fx(t); rg, where r is a short form 
of the standardized residual. Thus, one can determine 
the prediction error estimate ̂ of the parameter vec-�N T T Ttor � = (a ;b ) = (a1; : : : ; am; b0; b1; : : : ; bm)
by minimizing N�̂N = arg min fVN (�;Z ): (21) �2DM
with NX1N fVN (�;Z ) = �(eF (k; �=s)); (22) N k=1
or by solving the equation N X T z(t)f [y(t)� z (t)�]g = 0; (23) t=1

of the parameter vector �, established by process-
ing pairs of input-output samples; is the scaleN s
of residuals (examples of the scale are the standard 
deviation, the median, absolute deviation from the 
median, etc.,); is a real-valued function that is�(�)
even and nondecreasing for positive residuals, and 0�(0) = 0;  = � . 
For the Huber M -estimator, the �-function is given 
by [6] ( 2cH j x j �c =2 j> cH ;if j xH�(x) = (24)2x =2 otherwise;
where cH is a cutoff value. The most often used func-
tion  is: (cHsign(x) j> cH ;if j x (x) = (25) x otherwise 

with given cH 0. To get a better performance of>^ in the case of very long-tailed distributions, the 
function (25), satisfying 0, if 
�N > 0  (x) = j x j> cH , 
for some cH could be selected. It is known [9] 
that, in both such cases, i.e., � = and H0(q�1 ')6 0 ;
of the form (19), the current M - estimates of an un-
known vector of the parameters � of LTI system (1) �1with G(q of form (18) can be calculated using; �)
three techniques: the S-algorithm, the H-algorithm, 
and the W -one. All the three of them could be writ-
ten in the general form: �(k � 1)z(k)^ ^�(k)=�(k � 1)+ �(k)T�(k) + z (k)�(k � 1)z(k)

(26) T �(k � 1)z(k)z (k)�(k � 1)�(k)=�(k � 1)� T �(k) + z (k)�(k � 1)z(k)
Here �(k) = ŝ [�(k)] (27) 

with �(k) = "̂(k)=ŝ (28) 

for the S- and H-algorithms, and �(k) = ŝ"̂(k) (29) 

for the W -algorithm; T ^"̂(k)=ŝ = fy(k)� z (k)�(k � 1)g=ŝ (30) 

is the same for all the three algorithms, while �(k) = 1 (31) 
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for the H-algorithm, ( �1fŝ [�(k)]="̂(k)g (k) 6= 0;for "̂�(k) = 1 (k) = 0;for "̂
(32) 

for the W -algorithm, and 0 �1�(k) =  [�(k)] (33) 

for the S-algorithm. Here ̂s is the robust estimate of 
the scale s of residuals. 
In [4] it has been proposed to use �(k) = ŝ�z1 [�(k)=�z2]; (34) 

and (��zz11 [�(k)=�z2]=[�(k)=�z2] for �(k) =�(k) =
for �(k) 6=00;;

(35) 
respectively, instead of (27) and (32). Here �z1 = �z2 = 1 (36) 

for Huber’s M -estimator; �z1 = �z [h(k)]; �z2 = 1 (37) 

for Mallow’s, and �z1 = �z2 = �z [h(k)]; (38) 

for Shweppe’s GM -estimators [8], respectively, where p�z [h(k)] = 1� h(k) (39) 

with Th(k) = z (k)�(k)z(k): (40) 

The S-algorithm represents a version of the algorithm 
proposed by [9] for an on-line robust identification 
of parameters of a linear dynamic model of an LTI 
system. The ordinary RLS (15) is modified by substi-
tuting the “winsorization” step of the residuals in the 
first equation and changing the second equation in the 
system of equations (15). The recursive H-algorithm 
is obtained only by inserting the “winsorization” step 
into the first equation of (15). The W - algorithm is 
worked out by inserting different weights in respect 
to the function  f�g into the already existing ordinary 
RLS. 

6. Simulation example 

A closed-loop system to be simulated is shown 
in Fig. 2 and described by a linear difference equation 
of the form �1 �2 �1 �1(1 + a1q + a2q )y(k) = q (b0 + b1q )u(k)+

(41) �1 �2 �1(1 + a1q + a2q ) �(k);
while the GMV controller design equation is [2, 17] P (a1y(k)+a2y(k � 1)�b1u(k � 1)+Rr(k))u(k) = :P b0 +Q

(42) 
Here a1 and the value of= �1:5; a2 = 0:7; b0 = 1
coefficient b1 varries from 0.5 to 0.6 over 400 obser-
vations, P, Q, and R are tuning parameters. Thus, �1 �2q � (0:5 + 0:1k=400)qG0 = ; (43)�1 �21� 1:5q + 0:7q1H0 = (44)�1 �21� 1:5q + 0:7q
in Fig. 2. If P=R=1 and Q=0 the controller becomes 
a MV controller that will be used in our paper. The 
value of control signal in each current opera-u(k)
tion k has been determined by substituting in (42) the ^values of estimates ̂ of theb0(k); b1(k); â1(k); â2(k)
true parameters, respectively. The output fy(k)g; k =0; 1; 2; : : : ; 400 of the closed-loop system will be ob-
served under the additive noise in the pres-fv(k)g 
ence of large outliers according to (3)–(5) (see Fig. 
3a – 3c). Note that all the three noise realizations 
given there are the same except that their amplitudes 
are artificially increased from one realization to the 
other by ten times. In such a case, the meanings of 
rare outliers have especially grown in any realiza-
tion of The reference signalfv(k)g. fr(k)g; k =0; 1; 2; : : : ; 400 is given in Fig. 3d. 

The parameter adaptive self-organizing system 
has been implemented here according to the structure 
shown in Fig. 1. Firstly, the initial values of estimates ^ ^ of the true parameters of 
equation (41) were calculated by the ordinary LS 
with Mallow’s estimator using 23 pairs of observa-

â1; â2; b0; b1 a1; a2; b0; b1
tions of u(k); y(k). Secondly, we recursively calcu-^ ^late the estimates of the same parame-â1; â2; b0; b1
ters a1; by processing ka2; b0; b1 = 24; 25; : : : ; 400
observations of the control signal fu(k)g and the out-
put in each current iteration, using two S-fy(k)g 
algorithms (26) with a version of Shweppe’s -GM
estimator (38)–(40) (see Fig.’s 4 – 6). The output sig-
nals fy(k)g of the same system (41) to be processed 
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by both algorithms were different and generated in 
two ways: �1 �2 �1y(k) = y�(k) + (1 + a1q + a2q ) �(k); (45) �1 �1 �1 �2y�(k) = q (b0+b1q )u(k)�(a1q +a2q )y�(k);

(46) 
with ^â1y(k) + â2y(k � 1)� b1u(k � 1) + r(k)u(k) = ;b̂0

(47) 
and with ^â1ŷ(k) + â2ŷ(k � 1)� b1u(k � 1) + r(k)u(k) = ;b̂0

(48) 
where �1 �1 �1 �2^ ^ŷ(k) = q (b0+b1q )u(k)�(â1q +â2q )ŷ(k);

(49) 
respectively, because in each recursive iteration k =24; 25; : : : ; 400 the current value of the control signal fu(k)g is generated according to (47) (here the ob-
served noisy values of are substituted), andfy(k)g
according to (48) (here the values of the noiseless 
auxiliary signal are applied). In both casesfŷ(k)g ^ ^the current estimates are used. After-â1; â2; b0; b1
wards, two different current values of the output sig-
nal fy(k)g are calculated by formulas (45), where dif-
ferent current values of fu(k)g are used. Then, dif-
ferent values of u(k); are processed separately,y(k) ^ ^in calculating the estimates ̂a1; of true val-â2; b0; b1
ues of the parameters a1; , respectively, us-a2; b0; b1
ing two recursive procedures (26) with the same 
versions of Shweppe’s GM -estimator (38)–(40) (see 
Fig.’s 4 – 6). ^ ^It follows that the accuracy of estimates ̂a1; â2; b0; b1
of the parameters a1; , obtained by two sepa-a2; b0; b1
rate acting recursive procedures (26) with the version 
of Shweppe’s GM -estimator (38)–(40) (see Fig.’s 4c, 
d – 6 c, d), decreases when the amplitudes of values 
of the additive noise fv(k)g with outliers in it are in-
creasing (see Fig. 3a – 3c). In such a case, the true 
output signal fy�(k)g (46) does not track the refer-
ence one (Fig. 3d), if the control signal fu(k)g is cal-
culated according to (47) (see Fig.’s 4e – 6 e). There-
fore it is important for calculating current values of 
the control signal fu(k)g to use formulas (48)–(49) 
because, in such a case, the output signal fy�(k)g of 
form (46) tracks the reference one (Fig.’s 4f – 6f). 

7. Conclusions 

Despite that the MV approach has been worked 
out for a random disturbance generated from the sta-

tistically independent and stationary sequence with (8), 
it appears to be also applicable in the presence of 
large, but rare outliers in output observations (see 
Fig.’s 3a – 3c) in case the robust recursive paramet-
ric identification algorithms are used. If the amplitude 
values of outliers are increasing, then the recursive 
estimates, obtained by the S-algorithm (26) with the 
version of Shweppe’s GM -estimator (38)–(40), and 
the auxiliary signal of form (49) used to calculate the 
current values of the control signal fu(k)g, approach 
the respective true values of parameters more rapidly 
(Fig.’s 4d – 6d) than that calculated by the same pro-
cedure without determining such a signal (Fig.’s 4c 
– 6c). In such a case, the true output fy�(k)g of the 
LTI system tracks the reference signal (Fig. 3d) much 
more accurately ( Fig.’s 4f – 6f) for relatively large, in 
the sense of amplitudes, outliers in the additive noise fv(k)g (see Fig.’s 3a – 3c) in comparison with (Fig.’s 
4e – 6e), respectively. Thus, one can state that the use 
of auxiliary signal fŷ(k)g (49) allowed us to increase 
the efficiency of an parameter adaptive LTI system 
with a self-tuning MV controller. 
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