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Abstract. The aim of the given paper is development of a minimum variance control (MVC) approach for a closed-
loop discrete-time linear time-invariant (LTI) system when the parameters of a dynamic system as well as that of a controller
are not known and ought to be estimated. The parametric identification of the open-loop LTI system and the determination
of the coefficients of the MV controller are performed in each current operation by processing observations in the case of
additive noise on the output with contaminating outliers uniformly spread in it. The robust recursive technique, based on the
S-algorithm, with a version of Shweppe’s GM-estimator is applied here in the calculation of estimates of the parameters of a
LTI system with one time-varying coefficient in the numerator of the system transfer function. Then, the recursive parameter
estimates are used in each current iteration to determine unknown parameters of the MV controller. Afterwards, the current
value of the control signal is found in each operatanrd it is used to generate the output of the system, too. The results of
numerical simulation by computer are presented and discussed.
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1. Introduction

To provide self-tuning controlof a real
plant several ordinary control approaches, such as,
minimum-variance control MVC, generalized MVC
(GMVCQC), incremental GMVC, and so on, are fre-
quently used that take into consideration random
disturbances affecting the process. The MVC and
GMVC algorithms, as noted in [17], were the first
that were designed specially for self-tuning applica-
tionsand are now considered ' classical’ formulations.
The algorithms described there can be implemented
as self-tuning controllers that underpin the design
and development of a modern model based predic-
tive control approach. On the other hand, it has been
emphasized in [10] that in designing a robust control
system, one ought to determine the type of uncertain-
ties appearing in the system to be controlled. There
are many types of uncertaintiesin system description
models. One of the main ones of them is the uncer-
tainty arising in the output disturbance description of
aplant model to be used. It isfrequently assumed that
system’s output is affected by Gaussian disturbance.
However, nonnormal noise, and particularly the pres-
ence of outliers, degrades the performance of a sys-
tem acting in a closed-loop. In such a case ordinary
recursive techniques used for a parametric identifica-
tion of any control systems, are inefficient, as arule.
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Itisknown [1, 4, 9, 11-16] that, for parametric iden-
tification of open-loop, aswell as of closed-loop sys
tems, robust recursive techniques ought to be applied
that are efficient in the case of nonnormal noise. To
implement the self-tuning MV controller, it is neces-
sary, firgtly, to estimate LTI system’s model parame-
tersin such anoisy environment and, secondly, to de-
termine the controller coefficientsin each current op-
eration (see Fig. 1,[2]). that are recal culated using the
values of abovementioned estimates. Then, the cur-
rent value of the control signal, based on the val ues of
the reference signal and that of input-noisy output of
a system, multiplied by the respective weighting co-
efficients, isobtained accordingto Fig. 1. However, in
such acase, the transfer of meanings of large outliers
proceeds in random noise appearing in output obser-
vations. Therefore, in each current operation before
calculating the value of the control signal it isimpor-
tant to find the values of the output that have not been
harmed by outliers. To this end, we propose here to
generate an auxiliary output signal that will be with-
out outliers.

In Section 2, a statement of the problem is pre-
sented. In Section 3, the method for a design of a
self-organizing system is given. In Section 4, an or-
dinary direct approach is described for a parametric
identification of the system transfer function. We an-
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alyze a recursive parametric identification, based on
GM- estimators in the presence of outliers in output
observations, in Section 5. Section 6 presentsthesim-
ulation and parametric identification results. Section
7 contains conclusions.

2. Statement of the Problem

Assumethat asystem to be observedisacausal
and LTI system with one output {y ()} and oneinput
{u(k)}, expressed by the equation

y(k) = a7 Gola™"; 0)ulk) + Holq s p)E(k),
u(k)

(1)
that consists of two parts (Fig. 2): a system model
Go(g~1;6) and a noise model Ho(q ';¢). Here k
is the current number of observations of a respec-
tive signal, 7 is an known time delay, 6, ¢ are un-
known parameter vectors to be estimated, ¢~! is the
backward time-shift operator such that ¢ u(k) =
u(k—1),and Ho(q~ ", ¢) isaninversely stable monic
filter [3]. Given the model (1) and measured data

ZN = {u(1),u(2),...,u(N),y(1),y(2),.. .,yu\p;

2
and assuming that anoise {£(k)}, k = 1,2, ... isre-
ally a sequence of independent identically distributed
variables with an e-contaminated distribution of the
form

p(&(k)) = (1 —€)N(0,07) +eN(0,07),  (3)
and the variance
ag =(1- e)ai + €a?, 4

let us suppose that {£(k)} isused to generate unmea:
surable noise {v(k)}. Here p{&(k)} is the probabil-
ity density distribution of the sequence {¢(k)}, k =
1,2,..

§(k) = (1 — vi) pr + VkSk ©)

isthe value of the sequence {¢£(k)}, k= 1,2,...ata
time moment k; v isarandom variable, taking values
0 or 1 with probabilitiesp(yx = 0) = 1 — ¢, p(y, =
1) = € uk, s, are sequences of independent Gaus-
sian variables with zero means and variances o}, o2,
respectively; besides, o, < o; Oel is the unknown
fraction of contamination;

The aim of the given paper is to design a parame-
ter adaptive self-organizing system with the MV con-
trol law, shown in Fig. 1, in the case of additive noise
{v(k)}, that contains large outliers and corrupts the
output {y(k)} of theLTI system (seeFig. 2).

noise

C 3 System
output y(t)

System

Estimate model
parameters

Control Control law

input u(t)

[+ Reference 1(t)

Figure 1. Self-organizing system [2]

3. Design of a self-organizing system

The MV C controller seeksto design the required
control signal

ulk) = 03 a1 = bu(k—i) ()}
=1 i=1

0
(6)
by minimizing with respect to {u(k)} the quadratic
performancefunction
1 N-1
. H 2
Juy = Jim B{= ;wk) —yk+7)} (@)

that refers to the variance of the error between set-
point (k) and the controlled output 7-time steps in
thefuture, y(k+7) [17]. Heren,, n;, are general num-
bers of respective parameter sets of difference equa-
tion (6).

To implement the self-tuning MV C controller,
it is necessary, firstly, to estimate LTI system’s model
unknown parameters irsuch a noisyenvironment
using robust techniques [1, 4, 5, 8, 9, 11 — 14, 16]

£(k) v(k)
—» HO
r(k)  e(k) u(k) y(k)
Gr » Go  —»Pe>

Figure 2. The closed-loop system to be observed.

HereGr = Gr(g™ ' 0),
Go =Go(q ';0),and Ho = Ho(q ;)
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and, secondly, to determine the value of control sig-
nal u(k) in each current operation by substituting
in (6) the values of abovementioned estimates b =
(bo,b1,...,bn,), a7 = (a1,a0,...,an,). However,
in such a case, the transfer of meanings of large out-
liers proceeds in random noise appearing in output
observations. Therefore, in each current operation be-
fore calculating the value of the control signal {u(k)}
it is important to find the values of the output that
have not been harmed by outliers. In such a case, we
propose here to generate an auxiliary output signal
g(k + 7) that will be without outliers.

A self-organizing MV C dtrategy is achieved
when estimation and control are carried out every cur-
rent instant k£ simultaneously.

4. Thedirect approach

The direct approach ignores the feedback and
identifies the system G (¢~'; #) using the measure-
ments of theinput u(k) and output y(k) Vk = 1,2, ...
[3] assuming that thenoise {¢(k)}, k = 1,2, ... isster
titically independent and stationary with the follow-
ing characteristics:

E{&(k)} = 0, B{E(K)E(k + 1)} = 026(7),  (8)

where E{¢(k)} isthe mean value, o2 isthe variance,
0(7) isthe Kronecker delta function. Using the direct
parameric identification method one has to estimate
the prediction error value 6y of the vector of param-
etersf by

On = arg grenli)n Vn(8,ZN). 9

Here D), is the set of alowable parameter values,
which is assumed compact and connected [3],

N
Vn(8,ZN) = %Ze% k,O)A" el (k,6), (10)
k=1

with

er(k,0) = L(q~",0)e(k.0), (11)

A isasymmetric, positive definite weighting matrix,
and L(g—*;6) isamonic prefilter that can be used to
enhance certain frequency regions[3]. The prediction
error is calculated by

e(k,0) = y(k) — §(k,0) = (12
u(k

296

R. Pupeikis

Here the output y(k) of the general model of the LTI
system G(¢~'; #) and noisefilter H(q™!; ¢), respec-
tively, are of the form

y(k) =G~ Ou(k) + H(a™ ' 9)E(k)  (13)
where G (¢ 1; ) correspondsto thefirst part of equa-

tion (1) and H (¢~ '; ¢) to the second one. Then, the
one-step-ahead predictor for the model structure (13)

L @G Duk)+  (14)
[1—H ¢ " @)ly(k).

<<
—
ks
>
=
Il
|
—
—
QI

Here ¢ is the estimate of the parameter vector .
The parameter vector § can be determined by an ordi-
nary prediction error method, based on the recursive
LS (RLS) of theform

T(k — 1)z(k)
1+ 27 ()T (k — 1)z(k)

6(k)=6(k — 1)+ é(k),
(15)
T'(k — 1)z(k)z" (k)T'(k — 1)

L) =Lk = D) == 5T = Dalh)

with the vector of observations z7 (k) = [~y(k —
1),....,—y(k—m),u(k—1),...,u(k—m)], and some
initial values of the vector 6(0 )and matrix T'(0). Here

[dl(k)a 7&7’71(]6)’80(]6)781(]6)7 J;m(k)]
isthe current estimate of the vector 87 = (a”,bT) =
(a1 ..... am,bo bl, b ), and
ek) =y(k) —2"(k)B(k—1)  (17)

is the prediction error on the current k-th iteration,
respectively, where G (¢ *; 0) isthe system transfer
function of the form

71- _ N _
GO(q 70) - A(q—l;a) (18)
bo + b1q71 + b2q72 + ..+ bnpg™
1+a1gt+...+a,qg ™
Hereb? = (bo bl,b ),andaT:(al,...,am)

are vectors of the parameters to be estimated, m =
Ny = Ng.
It isknown that RLS is efficient only in the case
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where
Ho(q ';90) = S (19)
1+ A(g ';a)
1 —
. = a.
1+a1q*1+...+amq*m’(p

It could be emphasized that, before the closed-loop
direct parametric identification, the respective iden-
tifiability conditions should be satisfied according to
(7.

5. Parametric identification in the presence of
largeoutliers

Inwhat follows, we introduce the robust recur-
sive generalized maximum likelihood (GM) for cal-
culating robust estimates of the parametersof LTI dy-
namic systems, acting in a closed-loop (Fig. 2) in the
case of correlated noise of special form (19) with out-
liersinit. A class of GM-estimatorsis defined implic-
itly by thefirst order condition [6]

N
> x(B)¢{x(?), [y(#)

Herex(t) isaset of regressors, o denotes the scale of
residuals n(t) of the linear regression model y(t) =
xT'(t)§ + 6(t),t = 1,..,N, where 6§ is a vector
of unknown parameters. The function ¢{-, -} in (20)
depends on both the set of regressors x(t) and the
standardized residual §(t)/o. The conditions that
ought to be satisfied by ({-, -} in order that the GM-
estimator have nice asymptotic properties are known
in advance [8]. The ordinary least-squares estima-
tor could be obtained as a specia case of (20) by
setting in it the function 7(x(t),r) = r?/2 with
or(x(t),r)/0r = ({x(t),r}, wherer isashort form
of the standardized residual. Thus, one can determine
the prediction error estimate 6 5 of the parameter vec-
tor 67 = (aT,bT) = (al,.. am,bg,bl....,bm)
by minimizing

—xT(t)8))o} =0. (20)

Oy = arg 0renLi)r;/1{VN(9’ ZN). (21)
with
1 N
{Vn(8,2ZN) = NZ er(k,0/s), (22

or by solving the equation

N
Yo a{ulyt) -2 ()8} =0, (23

in the vector form. Here A is the robust estimate
of the parameter vector 6, established by process-
ing N pairs of input-output samples; s is the scale
of residuals (examples of the scale are the standard
deviation, the median, absolute deviation from the
median, etc.,); p(+) is a real-valued function that is
even and nondepreasing for positive residuals, and
p(0) =0,¢p=p.

For the Huber M -estimator, the p-function is given

by [6]

e |z | —c4/2 if|z|>cnh,
= 24
pla) {x2/2 otherwise, (24)

where cg isacutoff value. The most often used func-
tiony is:

() = {cHsign(x)

I x H,
‘ - |> ¢ ' ( 5)

with given cy > 0. To get a better performance of
6 in the case of very long-tailed distributions, the
function (25), satisfying ¢(z) = 0, if | = |> cp,
for some ¢y > 0 could be selected. It is known [9]
that, in both such cases, i.e,, e # 0 and Hy(q ;)
of the form (19), the current M - estimates of an un-
known vector of the parameters # of LTI system (1)
with G(g¢ 1, ) of form (18) can be calculated using
three techniques: the S-algorithm, the H-algorithm,
and the W -one. All the three of them could be writ-
ten in the general form:

T(k — 1)z(k)

6k =8k ~ )+ St - Day P W
(26)
B Tk —1)z(k)z" (k)T(k - 1)
(k) =Lk —1)= AE) + 2T (k)T (k — 1)z(k)
Here
B(k) = spla(k)] 27)
with
a(k) =£é(k)/3 (28)
for the S- and H-agorithms, and
B(k) = se(k) (29)

for the W -algorithm;
E(k)/5 = {y(k) 2" (M)O(k - 1)}/5  (30)
isthe same for all the three algorithms, while

A(k) =1 (31)
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for the H-agorithm,

k) = {8¢[a(k)]/é(k)} " foré(k) # 0,
)1 for (k) = 0,
(32)
for the W-algorithm, and
Ak) = ¢ [a(k)] (33)

for the S-algorithm. Here § is the robust estimate of
the scale s of residuals.
In [4] it has been proposed to use

B(k) = 8¢:1¢[a(k)/ @], (34)

and

AK) = {¢z1w[a<k>/¢zz1/[a(k)/asﬂ] for a(k) £ 0.

1 for a(k) =0,
(35)
respectively, instead of (27) and (32). Here
¢z1 = ¢z2 =1 (36)
for Huber’'s M -estimator;
¢:1 = ¢2[M(k)], pz2 = 1 (37
for Mallow's, and
¢z1 - ¢z2 - (bz[h(k)], (38)

for Shweppe'sG M -estimators [ 8], respectively, where

¢=[h(k)] = /1 = h(k) (39)

with
h(k) = 27 (B)T(k)z(k). (40)

The S-algorithm represents aversion of the algorithm
proposed by [9] for an on-line robust identification
of parameters of a linear dynamic model of an LTI
system. The ordinary RLS (15) is modified by substi-
tuting the “winsorization” step of the residualsin the
first equation and changing the second equationin the
system of equations (15). The recursive H-algorithm
is obtained only by inserting the “winsorization” step
into the first equation of (15). The W- agorithm is
worked out by inserting different weights in respect
to thefunction ¢ {-} into the already existing ordinary
RLS.
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6. Simulation example

A closed-loop system to be simulated is shown
in Fig. 2 and described by alinear difference equation
of theform

(1+a1qg " +axq ?)y(k) = ¢ " (bo + big Hu(k)+
(41)

(1+aig™! +asqg™ ) HE(k),
while the GMV controller design equationis[2, 17]

Plary(k)tasy(k — 1)—biu(k — 1)+Rr(k))
Pby +Q

u(k) = .
(42)
Herea; = —1.5,a2 = 0.7,by = 1 and the value of
coefficient b; varries from 0.5 to 0.6 over 400 obser-
vations, P, Q, and R are tuning parameters. Thus,

g ' — (0.5 + 0.1k/400)q 2

Go =
0 1—1.5¢=" +0.7¢g2

(43)

1
1-15¢7140.7¢2

in Fig. 2. If P=R=1 and Q=0 the controller becomes
a MV controller that will be used in our paper. The
value of control signal (k) in each current opera-
tion & has been determined by substituting in (42) the
values of estimates by (k), by (k), i1 (k), a2 (k) of the
true parameters, respectively. Theoutput {y(k)}, k =
0,1,2,...,400 of the closed-loop system will be ob-
served under the additive noise {v(k)} in the pres-
ence of large outliers according to (3)—5) (see Fig.
3a — 3c). Note that al the three noise realizations
given there are the same except that their amplitudes
are artificialy increased from one readlization to the
other by ten times. In such a case, the meanings of
rare outliers have especially grown in any realiza-
tion of {v(k)}. The reference signa {r(k)},k =
0,1,2,...,400isgivenin Fig. 3d.

The parameter adaptive self-organizing system
has been implemented here according to the structure
shownin Fig. 1. Firstly, theinitial values of estimates
a1, a9, by, by Of the true parameters a, as, by, by of
equation (41) were calculated by the ordinary LS
with Mallow’s estimator using 23 pairs of observa
tions of u(k),y(k). Secondly, we recursively calcu-
late the estimates a1, a», by, by of the same parame-
tersay, as, by, by by processing & = 24,25, ...,400
observationsof the control signa {«(k)} and the out-
put {y(k)} in each current iteration, using two S
algorithms (26) with a version of Shweppe's GM -
estimator (38)—40) (see Fig.'s4 —6). The output sig-
nals {y(k)} of the same system (41) to be processed

Hy

(44)
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by both agorithms were different and generated in
two ways:

y(k) = yu(k) + (1 +a1q" + azq )" 1€(K), (45)

y«(k) = ¢ M (bo+big u(k)—(arq~ " +a2q ). (k),

(46)
with
ullk) = ary(k) + asy(k — 1) — bu(k — 1) + r(k)
b ;
0 (47)
and with
u(k) = arg(k) + asg(k — 1) — I;lu(k; — 1) +r(k)
8 b
0 (48)
where

(k) = g~ (bo+brg™u(k)—(a1g™ " +a2q"?)g(k),
(49)
respectively, because in each recursive iteration £ =
24,25, ...,400 the current value of the control signal
{u(k)} is generated according to (47) (here the ob-
served noisy values of {y(k)} are substituted), and
according to (48) (here the values of the noiseless
auxiliary signal {g(k)} are applied). In both cases
the current estimates a1, a», bo, b1 are used. After-
wards, two different current values of the output sig-
nal {y(k)} arecaculated by formulas (45), wheredif-
ferent current values of {u(k)} are used. Then, dif-
ferent values of u(k), y(k) are processed separately,
in calculating the estimates a; , -, by, b1 of true val-
ues of the parameters ay, as, b, b1, respectively, us-
ing two recursive procedures (26) with the same
versions of Shweppe's G M -estimator (38)—(40) (see
Fig's4—6). o
It follows that the accuracy of estimates aq, as, bg, by
of the parametersay , as, bg, by, Obtained by two sepa-
rate acting recursive procedures (26) with the version
of Shweppe's G M -estimator (38)—(40) (see Fig.’s4c,
d — 6 ¢, d), decreases when the amplitudes of values
of the additive noise {v(k)} with outliersin it are in-
creasing (see Fig. 3a— 3c). In such a case, the true
output signal {y.(k)} (46) does not track the refer-
ence one (Fig. 3d), if the control signal {u(k)} iscal-
culated according to (47) (see Fig.'s4e—6 €). There-
fore it is important for calculating current values of
the control signal {u(k)} to use formulas (48)—(49)
because, in such a case, the output signal {y.(k)} of
form (46) tracks the reference one (Fig.'s 4f — 6f).

7. Conclusions

Degpite that the MV approach has been worked
out for arandom disturbance generated from the sta-

tistically independent and stationary sequencewith (8),
it appears to be also applicable in the presence of
large, but rare outliers in output observations (see
Fig.'s 3a— 3c) in case the robust recursive paramet-
ric identification algorithmsare used. If theamplitude
values of outliers are increasing, then the recursive
estimates, obtained by the S-algorithm (26) with the
version of Shweppe's G M -estimator (38)—40), and
the auxiliary signal of form (49) used to calculate the
current values of the control signal {u(k)}, approach
the respective true values of parameters more rapidly
(Fig.’s 4d — 6d) than that calculated by the same pro-
cedure without determining such a signal (Fig.'s 4c
— 6¢). In such a case, the true output {y.(k)} of the
LTI system tracks thereference signal (Fig. 3d) much
more accurately ( Fig.'s4f —6f) for relatively large, in
the sense of amplitudes, outliersin the additive noise
{v(k)} (see Fig.s 3a— 3c) in comparison with (Fig.'s
4e — 6€), respectively. Thus, one can state that the use
of auxiliary signal {g(k)} (49) allowed usto increase
the efficiency of an parameter adaptive LTI system
with a self-tuning MV controller.
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Figure 6. The signals and parametric identification

results in the presence of additive noise
(see Fig. 3c). Other values and notation are
thesame asin Fig.4.





