
325

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.4

SOME FURTHER EXPERIMENTS WITH THE GENETIC ALGORITHM
FOR THE QUADRATIC ASSIGNMENT PROBLEM

Alfonsas Misevičius, Dalius Rubliauskas, Vytautas Barkauskas
Kaunas University of Technology, Department of Multimedia Engineering

Studentų St. 50, LT−51368 Kaunas, Lithuania
e-mail: alfonsas.misevicius@ktu.lt, dalius@soften.ktu.lt, vytautas.barkauskas@ktu.lt

Abstract. In this paper, some further experiments with the genetic algorithm (GA) for the quadratic assignment
problem (QAP) are described. We propose to use a particle-swarm-optimization-based approach for tuning the values
of the parameters of the genetic algorithm for solving the QAP. The resulting combined self-adaptive swarm optimi-
zation-genetic algorithm enables to efficiently auto-configure the control parameters for GA — which leads to
excellent quality solutions, especially for the real-life like (structured) QAP instances.

Keywords: combinatorial optimization, heuristics, particle swarm optimization, genetic algorithms, quadratic assign-
ment problem.

 This work is supported by Lithuanian State Science and Studies Foundation (grant No. T-09293).

Introduction

The quadratic assignment problem (QAP) [10] is
formulated as follows. Given two matrices A = (aij)n×n,
B = (bkl)n×n, and the set Π of all possible permutations
of the integers from 1 to n, find a permutation
π = (π(1), π(2), ..., π(n)) ∈ Π that minimizes the fol-
lowing function:

∑∑
= =

=
n

i

n

j
jiijbaz

1 1
)()()(πππ . (1)

The quadratic assignment problem is a typical
combinatorial optimization problem, where solutions
are represented by permutations and the objective
function is defined according to the above formula.
The QAP is also a good testing platform for different
intelligent optimization techniques.

Due to its quadratic nature, this problem appears to
be one of the most difficult problems in the class of
combinatorial optimization. Since there are no effi-
cient (polynomial time) exact algorithms for the QAP,
the attention of researchers is concentrated on desig-
ning heuristic methods. Genetic algorithms (GAs) are
one of the examples of such methods [1, 5, 11, 12, 13,
22, 25, 30, 31]. In this work, we propose the hybrid
genetic-tabu search algorithm to be used in conjunc-
tion with a particle-swarm-optimization-based algo-
rithm. Swarm optimization algorithm efficiently finds
a good configuration of the values of the control para-
meters and the tuned genetic algorithm quickly and

productively searches for high-quality solutions of the
QAP.

The remaining part of this paper is structured as
follows. In Section 1, an approach of combining par-
ticle swarm optimization and genetic algorithm is
outlined. The results of the computational experiments
with the proposed approach on the random and real-
life like QAP instances taken from the QAP library
QAPLIB are presented in Section 2. Section 3 comp-
letes the paper with concluding remarks.

1. The approach

Genetic algorithms are among the most powerful
tools in various areas of computer science, including
optimization. The basic concepts of GAs were develo-
ped as far back as the 1970s [8], however the investi-
gations in this field still are continued in both theoreti-
cal and experimental studies. GAs are nature-inspired
population-based algorithms, where determinism (de-
terministic recombination of parents' genetic code) is
in harmony with randomness (random mutations ap-
plied to individuals' genetic information). One of the
main important features of GAs is the flexibility and
the conceptual richness of the paradigm. Many modi-
fications and extensions of the canonical GA scheme
are possible, among them: hybridization (combining
genetic and local/heuristic search), various parents' se-
lection, recombination variations, different population
replacement variants, using parallel populations, in-

A. Misevičius, D. Rubliauskas, V. Barkauskas

326

corporating a new sort of operations, and so on (see,
for example, [7, 24, 26] for thorough description of
the genetic algorithms).

The main philosophy of our approach is in propo-
sing a parameter-free like (self-tuning) genetic algo-
rithm without the need for tuning the algorithm to
match an optimization problem at hand. In particular,
we propose a particle swarm optimization (PSO)
based algorithm to be used in conjunction with the
hybrid genetic-tabu search algorithm for the solution
of the QAP. More precisely, the swarm optimization
algorithm effectively finds a good configuration of the
values of the control parameters for the genetic algo-
rithm. Then, the fine-tuned genetic algorithm – which
itself can be viewed as a black-box function for the
particle swarm optimizer – successfully searches for
excellent quality solutions of the QAP. Over many
iterations, the swarm optimization procedure generates
more and more tuned configuration of the control
parameters for GA. This, in turn, increases the perfor-
mance of the genetic search. In addition, there is no
need in human intervention, i.e. "manual repairing" of

the values of the parameters — which would be very
exhausting and require a huge amount of time. The
only exception is choosing the total number of genera-
tions of GA and setting the ranges (limits) for varying
the values of the parameters. The overall global opti-
mization process is continued in an iterative way until
the iteration number reaches a predetermined maxi-
mum available number of global iterations.

1. 1. Swarm optimization

There is some quite tight analogy between swarm
optimization [9] and genetic algorithms. Indeed, a
swarm of particles may be thought of as a population
of individuals, and moving the swarm in a space might
be associated with evolution of population in time.
Our PSO algorithm was designed in such a way that
every particle corresponds to a certain configuration of
the control parameters for GA. In particular, we expe-
rimented with the fixed number of tunable parameters,
NTP, which is equal, in our case, to 12 (see Tables 1
and 2).

 Table 2. Structure
Table 1. Control parameters for the genetic algorithm of particle

 Parameter Domain (ranges) Type p
1 Population size (PS) [2, n] discrete p(1)
2 Number of offspring per generation (Noffspr) [1, n/2] discrete p(2)
3 Number of improving iterations (Q) [1, 10] discrete p(3)
4 Depth of the search (W) [0.1n, 10n] discrete p(4)
5 Selection factor (σ) [1, 2] continuous p(5)
6 Mutation rate (ρ) [0.01, 0.99] continuous p(6)
7 Population improvement factor (γ) [1, 10] discrete p(7)
8 Entropy (variability) threshold (ET) [0, 1] continuous p(8)
9 Variant of invasion {1, 2, 3, 4} discrete p(9)

10 Elitism flag {FALSE, TRUE} boolean p(10)
11 Gender flag {FALSE, TRUE} boolean p(11)
12 Restart variant {1, 2} discrete p(12)

Every particle thus "consists" of NTP coordinates

(components), where each coordinate is associated
with the single parameter. For the convenience, the
values of the coordinates p(i) (i = 1, 2, …, NTP) are
all from the unite interval [0, 1], so that the particle p
may be viewed as being contained in a hypothetical
NTP-dimensional unite hypercube [0, 1]NTP. The
values of p(i) (i = 1, 2, …, NTP) are optimized by
using a modified version of the swarm optimization
based self-adaptive algorithm, as described in [23].
The pseudo-code of this version of the algorithm is
shown in Figure 1. In the experiments, we set the
swarm size to be equal to 5 and the number of global
iterations to be equal to 20.

The current configuration of the parameters for the
genetic algorithm is obtained by using the following
formula: () () ()(()lower upperparam i range i p i range i= +
– ())lowerrange i ; where i = 1, 2, …, NTP; param(i)

denotes the actual value of the ith parameter, p(i) is
the scalar value for the ith coordinate of particle p,

)(irangelower ,)(irangeupper denote the lower and
upper limits for the range of the values of the ith
parameter, respectively. (For example, PS = param(1)
= np(1) + 2(1 − p(1)), provided that the minimum and
maximum available sizes of the population are equal
to 2 and n, respectively.) In case of discrete (integer)
parameters, we simply round up values of p(i) to the
closest integer number. In case of boolean values
(FALSE, TRUE), we associate 0 with FALSE and 1 with
TRUE.

The lower and upper limits for the parameters
(see Table 1) are defined once before running the algo-
rithm.

Some Further Experiments with the Genetic Algorithm for the Quadratic Assignment Problem

327

procedure SwarmOptimizationAlgorithm;
// input: Glob_Iter_N − number of global iterations, SS − swarm size (number of particles)
// output: best parameter configuration found, best QAP solution found
begin

 generate initial swarm S in a random way (| S | = SS);
 for iteration_number := 1 to Glob_Iter_N do // main cycle
 for every particle p from S do begin
 randomly select p~ ∈ S such that p~ ≠ p;
 for every coordinate i of particle p do begin
 Δ := | p(i) − p~(i) |;
 generate random value ξ ∈ [−Δ, Δ];
 p′(i):= { }{ }1,)(min,0max ξ+ip

 endfor;

 if z(GeneticAlgorithm using p′) < z(GeneticAlgorithm using p) then p := p′;
 // p, p′ are to be converted to corresponding configurations of the control parameters
 // before using GeneticAlgorithm
 endfor;
 return best found parameter configuration and QAP solution
end.

Figure 1. High-level pseudo-code of the swarm optimization algorithm

1. 2. Genetic algorithm

The genetic algorithm used in this work is a slight
extension of the algorithms described in [15,17,21]. In
fact, it is a hybrid genetic-tabu search algorithm with
so-called invasions and some other extensions (like
gender modification). As a local search algorithm (im-
proving algorithm), we use the fast version of iterated
tabu search (ITS) [16,19,20], which consists of en-
hanced tabu search algorithm and special mutation
procedure. As the solutions already undergo mutations
within the ITS algorithm, there is no need in mutations
within GA itself (except the restart invasion (see
below)). The number of improving iterations, depth of
the search, and mutation rate are the tunable
parameters of ITS (the tabu list size is between 0.1n
and 0.5n, where n is the problem size). Concerning
invasions, they can be seen as a specific sort of
conceptual operations – some artificial transforma-
tions of individuals (or groups of individuals), which
may be of both "constructive" or "destructive" nature,
for example, "initial burst" ("pre-improvement"),
parent reinforcement, reinforced improvement of off-
spring, combined parent-offspring improvement, pe-
riodic recreation, restart invasion (see also [18]).

Every time, the genetic algorithm starts with the
current configuration of the control parameters actual-
ly produced by the swarm optimization procedure.
Each time, GA is initiated by creation of a new fixed-
size initial population. If the "initial burst" is on, the
improving algorithm is applied for every solution of
the starting population to obtain higher quality popula-
tion. In addition, we increase the number of improving
iterations (the number of iterations of the ITS algo-
rithm) by a factor of γ (improvement factor). (At the

same time, the number of generations of GA should be
correspondingly decreased.)

For the parents selection, rank based selection rule
[29] is applied. In case of reinforcement, one random-
ly selected parent undergoes the additional improve-
ment. Also, if the parameter "Gender" is on, then the
parents are "forced" to be of opposite sex. (All one needs
in this particular case is the additional bit per in-
dividual identifying the gender – male or female. In
this case, it may be convenient (but not necessary) that
the number of the population members is even and the
number of males is equal to the number of females
[4].) The offspring are produced by cohesive crossover
proposed by Drezner [5]. Noffspr children are produced
at each generation. Every produced offspring is
improved by the ITS algorithm. After improving, it is
checked if the new obtained offspring is better than its
parents: if this is not the case, the offspring is additio-
nally reinforced (this is done by simply increasing the
number of improving iterations); otherwise, the algo-
rithm continues in an ordinary way. (By using the
reinforced improvement of parents and/or offspring,
the number of generations should be accordingly de-
creased to prevent the significant increase in run time.)

After this, the replacement of the population takes
place to determine which individuals survive to the
next generation. There are two strategies: "μ + λ"
(elitism) and "μ, λ" (no elitism) (here, μ denotes the
population size (PS) and λ is the number of newly
created individuals (Noffspr)). In the first case, the new
offspring replace the corresponding number of the
worst individuals of the old population. In the second
case, the new individuals (children) simply replace
their predecessors (parents) (the fitness of the children
is not taken into consideration).

A. Misevičius, D. Rubliauskas, V. Barkauskas

328

Then, the genetic variability test [15] is performed
before moving to the next generation. In particular, we
test if the entropy of the population is less than the
pre-defined threshold, ET. If it is, then restart invasion
is activated; otherwise, the algorithm continues with
the current population. During the first phase of
invasion, we apply the mutation procedure with the
increased mutation rate. Optionally, one randomly
chosen individual undergoes mutation with maximally
available strength, which means that all the genes
change their loci in the chromosome. Mutations are
applied to all individuals but the best. During the
second phase of invasion, the improving algorithm is
used for all mutated members to keep high quality
population.

In addition, the periodic recreation of individuals
takes place every ω generations, where ω is the
parameter for controlling the frequency of recreation.

The overall process is continued until the pre-
defined number of generations, Ngen, have been per-
formed.

The high level pseudo-code of the genetic algo-
rithm is presented in Appendix (Figure A1).

2. Results of computational experiments

We have examined our genetic algorithm on the
benchmark problems taken from the quadratic assign-

ment problem library – QAPLIB [3]. The experiments
were performed on a personal computer with an Intel
Pentium IV 3 GHz single-core processor. The following
types of the QAP instances were tested:
a) uniform random instances (these instances are ran-

domly generated according to a uniform distribu-
tion; in QAPLIB, they are denoted by tai20a,
tai25a, tai30a, tai35a, tai40a, tai50a, tai60a, tai80a,
and tai100a);

b) real-life like instances (they are designed to re-
semble real world problems (the distribution of the
data is not uniform); these instances are denoted
by tai20b, tai25b, tai30b, tai35b, tai40b, tai50b,
tai60b, tai80b, tai100b, and tai150b).
In order to compare the efficiency of the algo-

rithms, we use time-to-target plots [2]. In this case, for
any given "target" solution value and the time to
obtain this value, the time-to-target plot represents the
probability that the target value will be obtained. So,
for a given target value, the run time of the algorithm
to achieve this value (or lower) is recorded. This is
repeated multiple times and the recorded times are
then sorted. With the ith shortest time, a probability

m
iPi

5.0−
= (i = 1, 2, …) is associated. Here, m is the

number of trials (we used m = 30).

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.05 0.12 0.23 0.33 0.45 0 .6 0.7 1 2 3.2 4 .3 7.5
time (secs)

pr
ob

ab
ili

ty

RTS

GA

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3 6.4 7.8 9.2 13 19 22 33 57 80
time (secs)

pr
ob

ab
ili

ty

RTS

GA

(a) (b)
Figure 2. Probabilities of obtaining target values of 3150000 (a) and 637250948 (b) versus time for the instances

tai40a (a) and tai40b (b)

In Figure 2, we present the time-to-target plots for
our genetic algorithm (GA) tuned with the self-adap-
tive particle swarm optimization and the robust tabu
search (RTS) algorithm by Taillard [27]. The instances
examined are tai40a and tai40b and the target values
are 3150000 and 637250948, respectively. The first
value is about 0.3% above the best known value for
the instance tai40a – which is equal to 3139370 (see
QAPLIB [3]). The second target value is exactly equal
to the best known value (BKV) for the instance tai40b.
Such target values were chosen taking into account the
results of early preliminary experimentation. During
this experimentation, it was detected that the best
known (pseudo-optimal) solutions are found quite
easily for the real-life like instances (like tai40b);
whereas, for the random instances (like tai40a), the
time needed to find the best known solutions was

drastically long (so far, we were unable to obtain the
best known solutions for the instances tai80a and
tai100a during our experiments). So, we used to expe-
riment with slightly larger target values for the random
instances.

As Figure 2 illustrates, the performance of the
genetic algorithm tuned with the particle swarm
optimization is clearly better than the one of the tabu
search. We observed similar type of behaviour also for
all other random and real-life like instances.

Formally, the performance improvement factor,
PIF, of the genetic algorithm (GA) to the robust tabu
search (RTS) algorithm may be defined by the formula

)(
)(

5.0

5.0

GAt
RTSt

PIF = ; where t0.5 denotes the time needed

to obtain the given target value with probability equal

Some Further Experiments with the Genetic Algorithm for the Quadratic Assignment Problem

329

to 0.5. For example, the performance improvement
factor is approximately equal to 3.3 and 9.7 for the
instances tai40a and tai40b, respectively. The appro-

ximate values of the performance improvement factor
for other QAP instances are shown in Table 3.

Table 3. Performance improvement for the random and real-life like QAP instances

Instance BKV Target
value PIF Instance BKV Target

value PIF

tai20a 703482 703482 1.7 tai20b 122455319 122455319 2.5
tai25a 1167256 1169000 2.3 tai25b 344355646 344355646 3.2
tai30a 1818146 1822000 2.4 tai30b 637117113 637117113 3.5
tai35a 2422002 2430000 3.5 tai35b 283315445 283315445 5.8
tai40a 3139370 3150000 3.3 tai40b 637250948 637250948 9.7
tai50a 4938796 4970000 5.1 tai50b 458821517 458821517 10.0

Table 4. Results of the comparison of the algorithms on the random QAP instances

δ /cbks
†

Instance BKV
RTS FANT GTS HGLSA GGA FHGA PSO-GA

Time‡

tai20a 703482 0.077/ 6 0.991/ 1 0.410/ 2 1.371/ 0 0.356/ 1 0.000/10 0.000/10 0.4
tai25a 1167256 0.150/ 6 1.358/ 2 0.399/ 2 1.544/ 0 0.428/ 2 0.002/ 9 0.000/10 1.3
tai30a 1818146 0.081 /5 1.121/ 1 0.378/ 3 1.569/ 0 0.383/ 1 0.000/10 0.000/10 3.2
tai35a 2422002 0.193 /3 1.288/ 0 0.646/ 0 1.698/ 0 0.642/ 0 0.003/ 9 0.001/ 9 9.8
tai40a 3139370 0.465 /0 1.556/ 0 0.677/ 0 1.956/ 0 0.707/ 0 0.211/ 1 0.197/ 2 23
tai50a 4938796 0.793 /0 1.769/ 0 0.872/ 0 2.090/ 0 0.974/ 0 0.323/ 2 0.346/ 1 110
tai60a 7205962 0.844 /0 1.795/ 0 1.019/ 0 1.982/ 0 1.112/ 0 0.354/ 1 0.352/ 1 240
tai80a 13511780 0.825 /0 1.540/ 0 0.800/ 0 1.557/ 0 0.860/ 0 0.465/ 0 0.451/ 0 1200
tai100a 21052466 0.797 /0 1.472/ 0 0.804/ 0 1.403/ 0 0.955/ 0 0.490/ 0 0.476/ 0 4000

† number of successful runs (out of 10); ‡ average CPU time per run (in seconds)

Table 5. Results of the comparison of the algorithms on the real-life like QAP instances

δ /cbks
†

Instance BKV
RTS FANT GTS HGLSA GGA EHGA PSO-GA

Time‡

tai20b 122455319 0.000/10 0.111/ 7 0.048/ 9 0.177/ 5 0.000/10 0.000/10 0.000/10 0.02
tai25b 344355646 0.066/ 7 0.015/ 8 0.000/10 0.024/ 7 0.008/ 8 0.003/ 9 0.000/10 0.1
tai30b 637117113 0.407/ 2 0.044/ 7 0.017/ 8 0.509/ 1 0.155/ 5 0.000/10 0.000/10 0.3
tai35b 283315445 0.264/ 4 0.211/ 1 0.156/ 3 0.337/ 0 0.124/ 4 0.004/ 9 0.000/10 0.6
tai40b 637250948 0.208/ 5 0.018/ 7 0.000/10 0.651/ 0 0.010/ 5 0.000/10 0.000/10 1.3
tai50b 458821517 0.271/ 0 0.245/ 0 0.049/ 6 1.003/ 0 0.123/ 3 0.000/10 0.000/10 4.1
tai60b 608215054 0.334/ 0 0.258/ 1 0.039/ 5 0.882/ 0 0.135/ 2 0.001/ 9 0.000/10 6.8
tai80b 818415043 0.299/ 0 0.396/ 0 0.444/ 2 0.971/ 0 0.240/ 2 0.004/ 8 0.000/10 40
tai100b 1185996137 0.240/ 0 0.147/ 0 0.149/ 1 0.760/ 0 0.254/ 0 0.005/ 9 0.000/10 120
tai150b 498896643 0.394/ 0 0.538/ 0 0.409/ 0 0.550/ 0 0.343/ 0 0.048/ 3 0.045/ 3 700

† number of successful runs (out of 10); ‡ average CPU time per run (in seconds)

We also used the other performance criterion, the
average relative deviation (δ) of the solutions from
the best known (pseudo-optimal) solution (BKS). It is
defined by the formula %][) (100 ◊◊−= zzzδ ,
where z is the average objective function value over
R runs of the algorithm and ◊z denotes the best
known value (BKV) of the objective function (we
used R = 10; BKVs are from QAPLIB). We have
compared our fine-tuned genetic algorithm with other
heuristic algorithms. The algorithms used in the

comparison are as follows: robust tabu search (RTS)
[27], fast ant system (FANT) [28], genetic-tabu search
(GTS) [6], hybrid genetic-local search algorithm
(HGLSA) [11], greedy genetic algorithm (GGA) [1],
fast hybrid genetic algorithm (FHGA) [14], enhanced
hybrid genetic algorithm (manually tuned) (EHGA)
[22], and the current hybrid genetic algorithm tuned
with the particle swarm optimization (PSO-GA). Note
that in these experiments, GA is run alone (with
already optimized configuration of the control para-
meters). The results of the comparison of different

A. Misevičius, D. Rubliauskas, V. Barkauskas

330

algorithms are shown in Tables 4 and 5. (All algo-
rithms consume roughly the same amount of CPU
time (denoted as "Time").)

Finally, we have conducted some additional expe-
riments in an attempt to find out how quickly the
tuned genetic algorithm converges to the best known
solutions. The experimentation was designed as fol-
lows. Let K be the pre-defined number of runs (single
applications of the algorithm to a given instance). The
parameters of GA are set to optimized values pre-
viously obtained by PSO. At every run, the tuned ge-
netic algorithm alone starts from a new random popu-
lation. The current run is interrupted as soon as BKS is
found. The next run is then started, and so on. The

overall process stops when K runs have been per-
formed. This is repeated for each instance.

The results of these experiments are presented in
Tables 6 and 7. We were not successful in finding the
best known solutions for the random instances tai80a
and tai100a (instead, we have achieved super-quality
target values of 13518124 and 21058106, which are
only 0.047% and 0.027% above the best known
values). Meanwhile, we have obtained very encoura-
ging results for the real-life instances. For all of these
instances, we have found the best known solutions
(which all seem to be also the optimal solutions) in
pretty reasonable computation times (see Table 7).

Table 6. Run time performance for the random QAP instances

Instance # of runs # of BKSs Timebks Instance # of runs # of BKSs Timebks

tai20a 30 30 0.2 s tai40a 10 10 ~2800 s
tai25a 20 20 0.8 s tai50a 5 5 ~5 h
tai30a 10 10 1.5 s tai60a 5 5 ~20 h
tai35a 10 10 8.0 s tai80a, tai100a not available

Note. Timebks denotes the average CPU time (per one run) needed to find the best known
solution provided that all runs succeeded in finding the best known solution.

Table 7. Run time performance for the real-life like QAP instances

Instance # of runs # of BKSs Timebks Instance # of runs # of BKSs Timebks

tai20b 50 50 0.01 s tai50b 10 10 3 s
tai25b 50 50 0.03 s tai60b 10 10 4 s
tai30b 30 30 0.15 s tai80b 10 10 28 s
tai35b 20 20 0.30 s tai100b 10 10 75 s
tai40b 10 10 0.40 s tai150b 5 5 2900 s

Note. Timebks denotes the average CPU time (per one run) needed to find the best known
solution provided that all runs succeeded in finding the best known solution.

3. Concluding remarks

In this paper, we have proposed a parameter-free
like genetic algorithm, which can be used by an end-
user without the need of becoming an expert in heu-
ristic optimization algorithms. In particular, the hybrid
genetic algorithm is used in conjunction with a par-
ticle swarm optimization for solving the quadratic
assignment problem.

Our approach was tested on the random and real-
life like QAP instances from the library of the QAP
instances QAPLIB. The experiments demonstrate that
a lot of computation time can be saved by finding suit-
able control parameter settings. The results obtained
from the experiments also show the encouraging per-
formance of PSO-based genetic algorithm and its
superiority to other algorithms used in the experimen-
tation. This is especially seen on the real-life like QAP
instances.

We think that the proposed combined swarm opti-
mization-genetic-tabu search algorithm is one more

step towards self-adaptive, self-controlling, and pos-
sibly self-organizing (self-creative) algorithms and
systems. The further investigations in this promising
area would be worthwhile.
References
 [1] R.K. Ahuja, J.B. Orlin, A. Tiwari. A greedy genetic

algorithm for the quadratic assignment problem. Com-
puters & Operations Research, 2000, Vol.27,
917−934.

 [2] R.M. Aiex, M.G.C. Resende, C.C. Ribeiro. Probabi-
lity distribution of solution time in GRASP: An expe-
rimental investigation. Journal of Heuristics, 2002,
Vol.8, 343−373.

 [3] R.E. Burkard, S. Karisch, F. Rendl. QAPLIB – a
quadratic assignment problem library. Journal of
Global Optimization, 1997, Vol.10, 391−403.
http://www.seas.upenn.edu/qaplib, cited 14 June 2008.

 [4] T. Drezner, Z. Drezner. Gender specific genetic
algorithms. INFOR (Information Systems and Opera-
tions Research), 2006, Vol.44, 117−128.

Some Further Experiments with the Genetic Algorithm for the Quadratic Assignment Problem

331

 [5] Z. Drezner. A new genetic algorithm for the quadratic
assignment problem. INFORMS Journal on Compu-
ting, 2003, Vol.15, 320−330.

 [6] C. Fleurent, J.A. Ferland. Genetic hybrids for the
quadratic assignment problem. In P.M.Pardalos, H.
Wolkowicz (eds.), Quadratic Assignment and Related
Problems. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol.16, AMS,
Providence, 1994, 173−188.

 [7] D.E. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley,
Reading, 1989.

 [8] J.H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

 [9] J. Kennedy, R. Eberhart. Particle swarm optimiza-
tion. Proceedings of the 4th IEEE International
Conference on Neural Networks, Perth, Australia,
1995, 1942−1948.

[10] T. Koopmans, M. Beckmann. Assignment problems
and the location of economic activities. Econometrica,
1957, Vol.25, 53−76.

[11] M.H. Lim, Y. Yuan, S. Omatu. Efficient genetic al-
gorithms using simple genes exchange local search
policy for the quadratic assignment problem. Compu-
tational Optimization and Applications, 2000, Vol.15,
249−268.

[12] P. Merz, B. Freisleben. Fitness landscape analysis
and memetic algorithms for the quadratic assignment
problem. IEEE Transactions on Evolutionary Compu-
tation, 2000, Vol.4, 337−352.

[13] A. Misevicius. An improved hybrid genetic algorithm:
new results for the quadratic assignment problem.
Knowledge-Based Systems, 2004, Vol.17, 65−73.

[14] A. Misevicius. A fast hybrid genetic algorithm for the
quadratic assignment problem. In M.Keijzer et al.
(eds.), Proceedings of Genetic and Evolutionary Com-
putation Conference (GECCO-2006), ACM Press,
New York, 2006, 1257−1264.

[15] A. Misevičius. An entropy-based genetic algorithm. In
L. Sakalauskas, G.W. Weber, E.K. Zavadskas (eds.),
Proceedings of the 20th International Conference,
EURO Mini Conference "Continuous Optimization
and Knowledge-Based Technologies" (EurOPT '2008),
Institute of Mathematics and Informatics/VGTU Publi-
shing House "Technika", Vilnius, 2008, 7−12.

[16] A. Misevičius. An implementation of the iterated tabu
search algorithm for the quadratic assignment prob-
lem. Working Paper, Kaunas University of Technolo-
gy, Kaunas, Lithuania, 2008 (under review).

[17] A. Misevicius. Restart-based genetic algorithm for the
quadratic assignment problem. In M. Bramer, F. Coe-
nen, M. Petridis (eds.), Research and Development in
Intelligent Systems, Proceedings of AI-2008, the
Twenty-eighth SGAI International Conference on In-
novative Techniques and Applications of Artificial
Intelligence, Springer, London, 2008, 91−104.

[18] A. Misevičius. Genetic algorithm with invasions for
the quadratic assignment problem. In A. Targamadzė,
R. Butleris, R. Butkienė (eds.), Proceedings of the 15th
International Conference on Information and Software

Technologies, IT-2009, Technologija, Kaunas, 2009,
17−22.

[19] A. Misevičius, A. Lenkevičius, D. Rubliauskas. Ite-
rated tabu search: an improvement to standard tabu
search. Information Technology and Control, 2006,
Vol.35, No.3, 187−197.

[20] A. Misevičius, A. Ostreika. Defining tabu tenure for
the quadratic assignment problem. Information Tech-
nology and Control, 2007, Vol.36, No.4, 341−347.

[21] A. Misevičius, D. Rubliauskas. Enhanced improve-
ment of individuals in genetic algorithms. Information
Technology and Control, 2008, Vol.37, No.3,
179−186.

[22] A. Misevičius, D. Rubliauskas. Testing of hybrid ge-
netic algorithms for structured quadratic assignment
problems. Informatica, 2009, Vol.20, 255−272.

[23] L. Nolle. On a control parameter free optimization al-
gorithm. In M. Bramer, F. Coenen, M. Petridis (eds.),
Research and Development in Intelligent Systems
XXV, Proceedings of AI-2008, the Twenty-eighth
SGAI International Conference on Innovative Techni-
ques and Applications of Artificial Intelligence, Sprin-
ger, London, 2008, 119−130.

[24] C.R. Reeves, J.E. Rowe. Genetic Algorithms: Prin-
ciples and Perspectives. Kluwer, Norwell, 2001.

[25] J.M. Rodriguez, F.C. Macphee, D.J. Bonham, V.C.
Bhavsar. Solving the quadratic assignment and dyna-
mic plant layout problems using a new hybrid meta-
heuristic approach. In M.R. Eskicioglu (ed.), Procee-
dings of the 18th Annual International Symposium on
High Performance Computing Systems and Applica-
tions (HPCS), Department of Computer Science, Win-
nipeg, 2004, 9−16.

[26] S.N. Sivanandam, S.N. Deepa. Introduction to Gene-
tic Algorithms. Springer, Berlin-Heidelberg-New
York, 2008.

[27] E. Taillard. Robust taboo search for the QAP. Paral-
lel Computing, 1991, Vol.17, 443−455.

[28] E. Taillard. FANT: fast ant system. Tech. Report
IDSIA-46-98, Lugano, Switzerland, 1998.

[29] D.M. Tate, A.E. Smith. A genetic approach to the
quadratic assignment problem. Computers & Opera-
tions Research, 1995, Vol.1, 73−83.

[30] M. Vázquez, L.D. Whitley. A hybrid genetic algo-
rithm for the quadratic assignment problem. In L.D.
Whitley, D.E. Goldberg, E. Cantú-Paz et al. (eds.),
Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO'00), Morgan Kaufmann,
San Francisco, 2000, 135−142.

[31] Y. Wu, P. Ji. Solving the quadratic assignment prob-
lems by a genetic algorithm with a new replacement
strategy. Proceedings of World Academy of Science,
Engineering and Technology, 2007, Vol.24, 310−314.

Received June 2009.

A. Misevičius, D. Rubliauskas, V. Barkauskas

332

Appendix

function GeneticAlgorithm;
// input: n − problem size, A,B − matrices,
// Ngen − # of generations, PS − population size, Noffspr − # of offspring per generation, Q − # of improving iterations, W − depth of the search,
// σ − selection factor, ρ − mutation rate, γ − population improvement factor, ET − entropy threshold
// ω − periodic recreation frequency factor
// flags: invasion_variant, elitism, gender, restart_variant
// output: π∗ − best solution found
begin
 create initial population P ⊂ Π (| P | = PS) in two steps:
 (1) generate members of P in a random way;
 (2) optimize each member of P by using the improving algorithm;
)(ππ

π
z

P∈
=∗ argmin: ; // π∗ denotes the best so far solution

 for i := 1 to Ngen do begin // main cycle
 sort the members of P according to the ascending order of the values of the objective function;
 P• := ∅;
 for j := 1 to Noffspr do begin // creation of the offspring
 select parents π′, π′′ ∈ P; if flag gender is on, then the parents must be of opposite gender;
 if invasion_variant = 1 or invasion_variant = 3 then
 apply the improving algorithm to one parent randomly chosen from π′ and π′′;
 apply crossover to π′ and π′′, get the offspring π′′′;
 optimize the offspring π′′′ by using the improving algorithm;
 if invasion_variant = 2 or invasion_variant = 3 then
 if z(π′′′) ≥ z(argmax{z(π′), z(π′′)}) then apply the improving algorithm to π′′′;
 P• := P• ∪ {π′′′};
 if z(π′′′) < z(π∗) then π∗ := π′′′ // saving the best so far solution
 endfor;
 if elitism = TRUE
 then remove Noffspr worst individuals from P ∪ P•, get new population P such that | P | = PS
 else remove Noffspr random individuals from P ∪ P•, get new population P such that | P | = PS;
 if entropy of population P is below τ then begin // restart
 if restart_variant = 1 then begin
 replace one of the members of population (except the best one) by a randomly
 generated solution;
 apply random mutation to all members of P, except the randomly generated solution
 and the best solution;
 endif;
 if restart_variant = 2 then apply random mutation to all members of P, except the best one;
 recreate each member of P by using the improving algorithm;
 if))((π

π
zz

P∈
argmin < z(π∗) then π∗ :=)(π

π
z

P∈
argmin

 endif;
 if invasion_variant = 4 then if i mod ω = 0 then recreate each member of P by using the improving algorithm
 endfor;
 return π∗
end.

Notes. 1. The genetic algorithm consists, in general, of the selection, crossover, improvement/mutation and replacement operations,
which are applied iteratively until a given number of generations are fulfilled. 2. For the QAP, the assignments (permutations)
p1 = (p1(1), p1(2), ..., p1(n)), p2 = (p2(1), p2(2), ..., p2(n)), … may be thought of as chromosomes of the individuals; then, the single
element pi(j) corresponds to a gene occupying the jth locus of the ith chromosome. The values of the objective function z are associated
with the fitness of individuals. 3. The invasion type is defined by the parameter (flag) "invasion_variant". The following are the values
of "invasion_variant": 1 − parent reinforcement; 2 − reinforced improvement of offspring; 3 − combined reinforced improvement of
offspring; 4 − periodic recreation. 4. The initial burst and/or restart invasions are automatically activated if γ > 1 and/or ET > 0. 5. The
parameter ω is fixed at value equal to 10.

Figure A1. High-level pseudo-code of the genetic algorithm for the QAP

