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Abstract. In this paper, some further experiments with the genetic algorithm (GA) for the quadratic assignment 
problem (QAP) are described. We propose to use a particle-swarm-optimization-based approach for tuning the values 
of the parameters of the genetic algorithm for solving the QAP. The resulting combined self-adaptive swarm optimi-
zation-genetic algorithm enables to efficiently auto-configure the control parameters for GA — which leads to 
excellent quality solutions, especially for the real-life like (structured) QAP instances. 
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Introduction 

The quadratic assignment problem (QAP) [10] is 
formulated as follows. Given two matrices A = (aij)n×n, 
B = (bkl)n×n, and the set Π of all possible permutations 
of the integers from 1 to n, find a permutation 
π = (π(1), π(2), ..., π(n)) ∈ Π that minimizes the fol-
lowing function: 

∑∑
= =

=
n

i

n

j
jiijbaz

1 1
)()()( πππ . (1) 

The quadratic assignment problem is a typical 
combinatorial optimization problem, where solutions 
are represented by permutations and the objective 
function is defined according to the above formula. 
The QAP is also a good testing platform for different 
intelligent optimization techniques. 

Due to its quadratic nature, this problem appears to 
be one of the most difficult problems in the class of 
combinatorial optimization. Since there are no effi-
cient (polynomial time) exact algorithms for the QAP, 
the attention of researchers is concentrated on desig-
ning heuristic methods. Genetic algorithms (GAs) are 
one of the examples of such methods [1, 5, 11, 12, 13, 
22, 25, 30, 31]. In this work, we propose the hybrid 
genetic-tabu search algorithm to be used in conjunc-
tion with a particle-swarm-optimization-based algo-
rithm. Swarm optimization algorithm efficiently finds 
a good configuration of the values of the control para-
meters and the tuned genetic algorithm quickly and 

productively searches for high-quality solutions of the 
QAP. 

The remaining part of this paper is structured as 
follows. In Section 1, an approach of combining par-
ticle swarm optimization and genetic algorithm is 
outlined. The results of the computational experiments 
with the proposed approach on the random and real-
life like QAP instances taken from the QAP library 
QAPLIB are presented in Section 2. Section 3 comp-
letes the paper with concluding remarks. 

1. The approach 

Genetic algorithms are among the most powerful 
tools in various areas of computer science, including 
optimization. The basic concepts of GAs were develo-
ped as far back as the 1970s [8], however the investi-
gations in this field still are continued in both theoreti-
cal and experimental studies. GAs are nature-inspired 
population-based algorithms, where determinism (de-
terministic recombination of parents' genetic code) is 
in harmony with randomness (random mutations ap-
plied to individuals' genetic information). One of the 
main important features of GAs is the flexibility and 
the conceptual richness of the paradigm. Many modi-
fications and extensions of the canonical GA scheme 
are possible, among them: hybridization (combining 
genetic and local/heuristic search), various parents' se-
lection, recombination variations, different population 
replacement variants, using parallel populations, in-
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corporating a new sort of operations, and so on (see, 
for example, [7, 24, 26] for thorough description of 
the genetic algorithms). 

The main philosophy of our approach is in propo-
sing a parameter-free like (self-tuning) genetic algo-
rithm without the need for tuning the algorithm to 
match an optimization problem at hand. In particular, 
we propose a particle swarm optimization (PSO) 
based algorithm to be used in conjunction with the 
hybrid genetic-tabu search algorithm for the solution 
of the QAP. More precisely, the swarm optimization 
algorithm effectively finds a good configuration of the 
values of the control parameters for the genetic algo-
rithm. Then, the fine-tuned genetic algorithm – which 
itself can be viewed as a black-box function for the 
particle swarm optimizer – successfully searches for 
excellent quality solutions of the QAP. Over many 
iterations, the swarm optimization procedure generates 
more and more tuned configuration of the control 
parameters for GA. This, in turn, increases the perfor-
mance of the genetic search. In addition, there is no 
need in human intervention, i.e. "manual repairing" of 

the values of the parameters — which would be very 
exhausting and require a huge amount of time. The 
only exception is choosing the total number of genera-
tions of GA and setting the ranges (limits) for varying 
the values of the parameters. The overall global opti-
mization process is continued in an iterative way until 
the iteration number reaches a predetermined maxi-
mum available number of global iterations. 

1. 1. Swarm optimization 

There is some quite tight analogy between swarm 
optimization [9] and genetic algorithms. Indeed, a 
swarm of particles may be thought of as a population 
of individuals, and moving the swarm in a space might 
be associated with evolution of population in time. 
Our PSO algorithm was designed in such a way that 
every particle corresponds to a certain configuration of 
the control parameters for GA. In particular, we expe-
rimented with the fixed number of tunable parameters, 
NTP, which is equal, in our case, to 12 (see Tables 1 
and 2).  

 Table 2. Structure 
Table 1. Control parameters for the genetic algorithm of particle 

 Parameter Domain (ranges) Type   p 
1 Population size (PS) [2, n] discrete   p(  1) 
2 Number of offspring per generation (Noffspr) [1, n/2] discrete   p(  2) 
3 Number of improving iterations (Q) [1, 10] discrete   p(  3) 
4 Depth of the search (W) [0.1n, 10n] discrete   p(  4) 
5 Selection factor (σ) [1, 2] continuous  p(  5) 
6 Mutation rate (ρ) [0.01, 0.99] continuous  p(  6) 
7 Population improvement factor (γ) [1, 10] discrete   p(  7) 
8 Entropy (variability) threshold (ET) [0, 1] continuous  p(  8) 
9 Variant of invasion {1, 2, 3, 4} discrete   p(  9) 

10 Elitism flag {FALSE, TRUE} boolean  p(10) 
11 Gender flag {FALSE, TRUE} boolean  p(11) 
12 Restart variant {1, 2} discrete   p(12) 

 
Every particle thus "consists" of NTP coordinates 

(components), where each coordinate is associated 
with the single parameter. For the convenience, the 
values of the coordinates p(i) (i = 1, 2, …, NTP) are 
all from the unite interval [0, 1], so that the particle p 
may be viewed as being contained in a hypothetical 
NTP-dimensional unite hypercube [0, 1]NTP. The 
values of p(i) (i = 1, 2, …, NTP) are optimized by 
using a modified version of the swarm optimization 
based self-adaptive algorithm, as described in [23]. 
The pseudo-code of this version of the algorithm is 
shown in Figure 1. In the experiments, we set the 
swarm size to be equal to 5 and the number of global 
iterations to be equal to 20. 

The current configuration of the parameters for the 
genetic algorithm is obtained by using the following 
formula: ( ) ( ) ( )( ( )lower upperparam i range i p i range i= +  
– ( ))lowerrange i ; where i = 1, 2, …, NTP; param(i) 

denotes the actual value of the ith parameter, p(i) is 
the scalar value for the ith coordinate of particle p, 

)(irangelower , )(irangeupper  denote the lower and 
upper limits for the range of the values of the ith 
parameter, respectively. (For example, PS = param(1) 
= np(1) + 2(1 − p(1)), provided that the minimum and 
maximum available sizes of the population are equal 
to 2 and n, respectively.) In case of discrete (integer) 
parameters, we simply round up values of p(i) to the 
closest integer number. In case of boolean values 
(FALSE, TRUE), we associate 0 with FALSE and 1 with 
TRUE. 

The lower and upper limits for the parameters 
(see Table 1) are defined once before running the algo-
rithm. 
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procedure SwarmOptimizationAlgorithm; 
// input: Glob_Iter_N − number of global iterations, SS − swarm size (number of particles) 
// output: best parameter configuration found, best QAP solution found 
begin 

  generate initial swarm S in a random way (| S | = SS); 
  for iteration_number := 1 to Glob_Iter_N do // main cycle 
    for every particle p from S do begin 
      randomly select p~ ∈ S such that p~ ≠ p; 
      for every coordinate i of particle p do begin 
        Δ := | p(i) − p~(i) |; 
        generate random value ξ ∈ [−Δ, Δ]; 
        p′(i):= { }{ }1,)(min,0max ξ+ip  

      endfor; 

      if z(GeneticAlgorithm using p′) < z(GeneticAlgorithm using p) then p := p′; 
      // p, p′ are to be converted to corresponding configurations of the control parameters 
      // before using GeneticAlgorithm 
  endfor; 
  return best found parameter configuration and QAP solution 
end. 

Figure 1. High-level pseudo-code of the swarm optimization algorithm 

1. 2. Genetic algorithm 

The genetic algorithm used in this work is a slight 
extension of the algorithms described in [15,17,21]. In 
fact, it is a hybrid genetic-tabu search algorithm with 
so-called invasions and some other extensions (like 
gender modification). As a local search algorithm (im-
proving algorithm), we use the fast version of iterated 
tabu search (ITS) [16,19,20], which consists of en-
hanced tabu search algorithm and special mutation 
procedure. As the solutions already undergo mutations 
within the ITS algorithm, there is no need in mutations 
within GA itself (except the restart invasion (see 
below)). The number of improving iterations, depth of 
the search, and mutation rate are the tunable 
parameters of ITS (the tabu list size is between 0.1n 
and 0.5n, where n is the problem size). Concerning 
invasions, they can be seen as a specific sort of 
conceptual operations – some artificial transforma-
tions of individuals (or groups of individuals), which 
may be of both "constructive" or "destructive" nature, 
for example, "initial burst" ("pre-improvement"), 
parent reinforcement, reinforced improvement of off-
spring, combined parent-offspring improvement, pe-
riodic recreation, restart invasion (see also [18]). 

Every time, the genetic algorithm starts with the 
current configuration of the control parameters actual-
ly produced by the swarm optimization procedure. 
Each time, GA is initiated by creation of a new fixed-
size initial population. If the "initial burst" is on, the 
improving algorithm is applied for every solution of 
the starting population to obtain higher quality popula-
tion. In addition, we increase the number of improving 
iterations (the number of iterations of the ITS algo-
rithm) by a factor of γ (improvement factor). (At the 

same time, the number of generations of GA should be 
correspondingly decreased.) 

For the parents selection, rank based selection rule 
[29] is applied. In case of reinforcement, one random-
ly selected parent undergoes the additional improve-
ment. Also, if the parameter "Gender" is on, then the 
parents are "forced" to be of opposite sex. (All one needs 
in this particular case is the additional bit per in-
dividual identifying the gender – male or female. In 
this case, it may be convenient (but not necessary) that 
the number of the population members is even and the 
number of males is equal to the number of females 
[4].) The offspring are produced by cohesive crossover 
proposed by Drezner [5]. Noffspr children are produced 
at each generation. Every produced offspring is 
improved by the ITS algorithm. After improving, it is 
checked if the new obtained offspring is better than its 
parents: if this is not the case, the offspring is additio-
nally reinforced (this is done by simply increasing the 
number of improving iterations); otherwise, the algo-
rithm continues in an ordinary way. (By using the 
reinforced improvement of parents and/or offspring, 
the number of generations should be accordingly de-
creased to prevent the significant increase in run time.) 

After this, the replacement of the population takes 
place to determine which individuals survive to the 
next generation. There are two strategies: "μ + λ" 
(elitism) and "μ, λ" (no elitism) (here, μ denotes the 
population size (PS) and λ is the number of newly 
created individuals (Noffspr)). In the first case, the new 
offspring replace the corresponding number of the 
worst individuals of the old population. In the second 
case, the new individuals (children) simply replace 
their predecessors (parents) (the fitness of the children 
is not taken into consideration). 
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Then, the genetic variability test [15] is performed 
before moving to the next generation. In particular, we 
test if the entropy of the population is less than the 
pre-defined threshold, ET. If it is, then restart invasion 
is activated; otherwise, the algorithm continues with 
the current population. During the first phase of 
invasion, we apply the mutation procedure with the 
increased mutation rate. Optionally, one randomly 
chosen individual undergoes mutation with maximally 
available strength, which means that all the genes 
change their loci in the chromosome. Mutations are 
applied to all individuals but the best. During the 
second phase of invasion, the improving algorithm is 
used for all mutated members to keep high quality 
population. 

In addition, the periodic recreation of individuals 
takes place every ω generations, where ω is the 
parameter for controlling the frequency of recreation. 

The overall process is continued until the pre-
defined number of generations, Ngen, have been per-
formed. 

The high level pseudo-code of the genetic algo-
rithm is presented in Appendix (Figure A1). 

2. Results of computational experiments 

We have examined our genetic algorithm on the 
benchmark problems taken from the quadratic assign-

ment problem library – QAPLIB [3]. The experiments 
were performed on a personal computer with an Intel 
Pentium IV 3 GHz single-core processor. The following 
types of the QAP instances were tested: 
a)  uniform random instances (these instances are ran-

domly generated according to a uniform distribu-
tion; in QAPLIB, they are denoted by tai20a, 
tai25a, tai30a, tai35a, tai40a, tai50a, tai60a, tai80a, 
and tai100a); 

b)  real-life like instances (they are designed to re-
semble real world problems (the distribution of the 
data is not uniform); these instances are denoted 
by tai20b, tai25b, tai30b, tai35b, tai40b, tai50b, 
tai60b, tai80b, tai100b, and tai150b). 
In order to compare the efficiency of the algo-

rithms, we use time-to-target plots [2]. In this case, for 
any given "target" solution value and the time to 
obtain this value, the time-to-target plot represents the 
probability that the target value will be obtained. So, 
for a given target value, the run time of the algorithm 
to achieve this value (or lower) is recorded. This is 
repeated multiple times and the recorded times are 
then sorted. With the ith shortest time, a probability 

m
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5.0−
=  (i = 1, 2, …) is associated. Here, m is the 

number of trials (we used m = 30). 
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Figure 2. Probabilities of obtaining target values of 3150000 (a) and 637250948 (b) versus time for the instances 

tai40a (a) and tai40b (b) 

In Figure 2, we present the time-to-target plots for 
our genetic algorithm (GA) tuned with the self-adap-
tive particle swarm optimization and the robust tabu 
search (RTS) algorithm by Taillard [27]. The instances 
examined are tai40a and tai40b and the target values 
are 3150000 and 637250948, respectively. The first 
value is about 0.3% above the best known value for 
the instance tai40a – which is equal to 3139370 (see 
QAPLIB [3]). The second target value is exactly equal 
to the best known value (BKV) for the instance tai40b. 
Such target values were chosen taking into account the 
results of early preliminary experimentation. During 
this experimentation, it was detected that the best 
known (pseudo-optimal) solutions are found quite 
easily for the real-life like instances (like tai40b); 
whereas, for the random instances (like tai40a), the 
time needed to find the best known solutions was 

drastically long (so far, we were unable to obtain the 
best known solutions for the instances tai80a and 
tai100a during our experiments). So, we used to expe-
riment with slightly larger target values for the random 
instances. 

As Figure 2 illustrates, the performance of the 
genetic algorithm tuned with the particle swarm 
optimization is clearly better than the one of the tabu 
search. We observed similar type of behaviour also for 
all other random and real-life like instances. 

Formally, the performance improvement factor, 
PIF, of the genetic algorithm (GA) to the robust tabu 
search (RTS) algorithm may be defined by the formula 

)(
)(

5.0

5.0

GAt
RTSt

PIF = ; where t0.5 denotes the time needed 

to obtain the given target value with probability equal 
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to 0.5. For example, the performance improvement 
factor is approximately equal to 3.3 and 9.7 for the 
instances tai40a and tai40b, respectively. The appro-

ximate values of the performance improvement factor 
for other QAP instances are shown in Table 3. 

Table 3. Performance improvement for the random and real-life like QAP instances 

Instance BKV Target 
value PIF Instance BKV Target  

value PIF 

tai20a 703482 703482 1.7 tai20b 122455319 122455319 2.5 
tai25a 1167256 1169000 2.3 tai25b 344355646 344355646 3.2 
tai30a 1818146 1822000 2.4 tai30b 637117113 637117113 3.5 
tai35a 2422002 2430000 3.5 tai35b 283315445 283315445 5.8 
tai40a 3139370 3150000 3.3 tai40b 637250948 637250948 9.7 
tai50a 4938796 4970000 5.1 tai50b 458821517 458821517 10.0 

Table 4. Results of the comparison of the algorithms on the random QAP instances 

δ /cbks
† 

Instance BKV 
RTS FANT GTS HGLSA GGA FHGA PSO-GA 

Time‡ 

tai20a 703482 0.077/  6 0.991/  1 0.410/  2 1.371/  0 0.356/  1 0.000/10 0.000/10 0.4 
tai25a 1167256 0.150/  6 1.358/  2 0.399/  2 1.544/  0 0.428/  2 0.002/  9 0.000/10 1.3 
tai30a 1818146 0.081  /5 1.121/  1 0.378/  3 1.569/  0 0.383/  1 0.000/10 0.000/10 3.2 
tai35a 2422002 0.193  /3 1.288/  0 0.646/  0 1.698/  0 0.642/  0 0.003/  9 0.001/  9 9.8 
tai40a 3139370 0.465  /0 1.556/  0 0.677/  0 1.956/  0 0.707/  0 0.211/  1 0.197/  2 23 
tai50a 4938796 0.793  /0 1.769/  0 0.872/  0 2.090/  0 0.974/  0 0.323/  2 0.346/  1 110 
tai60a 7205962 0.844  /0 1.795/  0 1.019/  0 1.982/  0 1.112/  0 0.354/  1 0.352/  1 240 
tai80a 13511780 0.825  /0 1.540/  0 0.800/  0 1.557/  0 0.860/  0 0.465/  0 0.451/  0 1200 
tai100a 21052466 0.797  /0 1.472/  0 0.804/  0 1.403/  0 0.955/  0 0.490/  0 0.476/  0 4000 

† number of successful runs (out of 10); ‡ average CPU time per run (in seconds) 

Table 5. Results of the comparison of the algorithms on the real-life like QAP instances 

δ /cbks
† 

Instance BKV 
RTS FANT GTS HGLSA GGA EHGA PSO-GA 

Time‡ 

tai20b 122455319 0.000/10 0.111/  7 0.048/  9 0.177/  5 0.000/10 0.000/10 0.000/10         0.02 
tai25b 344355646 0.066/  7 0.015/  8 0.000/10 0.024/  7 0.008/  8 0.003/  9 0.000/10 0.1 
tai30b 637117113 0.407/  2 0.044/  7 0.017/  8 0.509/  1 0.155/  5 0.000/10 0.000/10 0.3 
tai35b 283315445 0.264/  4 0.211/  1 0.156/  3 0.337/  0 0.124/  4 0.004/  9 0.000/10 0.6 
tai40b 637250948 0.208/  5 0.018/  7 0.000/10 0.651/  0 0.010/  5 0.000/10 0.000/10 1.3 
tai50b 458821517 0.271/  0 0.245/  0 0.049/  6 1.003/  0 0.123/  3 0.000/10 0.000/10 4.1 
tai60b 608215054 0.334/  0 0.258/  1 0.039/  5 0.882/  0 0.135/  2 0.001/  9 0.000/10 6.8 
tai80b 818415043 0.299/  0 0.396/  0 0.444/  2 0.971/  0 0.240/  2 0.004/  8 0.000/10 40 
tai100b 1185996137 0.240/  0 0.147/  0 0.149/  1 0.760/  0 0.254/  0 0.005/  9 0.000/10 120 
tai150b 498896643 0.394/  0 0.538/  0 0.409/  0 0.550/  0 0.343/  0 0.048/  3 0.045/  3 700 

† number of successful runs (out of 10); ‡ average CPU time per run (in seconds) 

We also used the other performance criterion, the 
average relative deviation (δ ) of the solutions from 
the best known (pseudo-optimal) solution (BKS). It is 
defined by the formula %][ ) (100 ◊◊−= zzzδ , 
where z  is the average objective function value over 
R runs of the algorithm and ◊z  denotes the best 
known value (BKV) of the objective function (we 
used R = 10; BKVs are from QAPLIB). We have 
compared our fine-tuned genetic algorithm with other 
heuristic algorithms. The algorithms used in the 

comparison are as follows: robust tabu search (RTS) 
[27], fast ant system (FANT) [28], genetic-tabu search 
(GTS) [6], hybrid genetic-local search algorithm 
(HGLSA) [11], greedy genetic algorithm (GGA) [1], 
fast hybrid genetic algorithm (FHGA) [14], enhanced 
hybrid genetic algorithm (manually tuned) (EHGA) 
[22], and the current hybrid genetic algorithm tuned 
with the particle swarm optimization (PSO-GA). Note 
that in these experiments, GA is run alone (with 
already optimized configuration of the control para-
meters). The results of the comparison of different 
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algorithms are shown in Tables 4 and 5. (All algo-
rithms consume roughly the same amount of CPU 
time (denoted as "Time").) 

Finally, we have conducted some additional expe-
riments in an attempt to find out how quickly the 
tuned genetic algorithm converges to the best known 
solutions. The experimentation was designed as fol-
lows. Let K be the pre-defined number of runs (single 
applications of the algorithm to a given instance). The 
parameters of GA are set to optimized values pre-
viously obtained by PSO. At every run, the tuned ge-
netic algorithm alone starts from a new random popu-
lation. The current run is interrupted as soon as BKS is 
found. The next run is then started, and so on. The 

overall process stops when K runs have been per-
formed. This is repeated for each instance. 

The results of these experiments are presented in 
Tables 6 and 7. We were not successful in finding the 
best known solutions for the random instances tai80a 
and tai100a (instead, we have achieved super-quality 
target values of 13518124 and 21058106, which are 
only 0.047% and 0.027% above the best known 
values). Meanwhile, we have obtained very encoura-
ging results for the real-life instances. For all of these 
instances, we have found the best known solutions 
(which all seem to be also the optimal solutions) in 
pretty reasonable computation times (see Table 7). 

Table 6. Run time performance for the random QAP instances 

Instance # of runs # of BKSs Timebks Instance # of runs # of BKSs Timebks 

tai20a 30 30 0.2 s tai40a 10 10 ~2800 s 
tai25a 20 20 0.8 s tai50a 5 5 ~5 h 
tai30a 10 10 1.5 s tai60a 5 5 ~20 h 
tai35a 10 10 8.0 s tai80a, tai100a   not available 

Note. Timebks denotes the average CPU time (per one run) needed to find the best known 
solution provided that all runs succeeded in finding the best known solution. 

Table 7. Run time performance for the real-life like QAP instances 

Instance # of runs # of BKSs Timebks Instance # of runs # of BKSs Timebks 

tai20b 50 50 0.01 s tai50b 10 10 3 s 
tai25b 50 50 0.03 s tai60b 10 10 4 s 
tai30b 30 30 0.15 s tai80b 10 10 28 s 
tai35b 20 20 0.30 s tai100b 10 10 75 s 
tai40b 10 10 0.40 s tai150b 5 5 2900 s 

Note. Timebks denotes the average CPU time (per one run) needed to find the best known 
solution provided that all runs succeeded in finding the best known solution. 

3. Concluding remarks 

In this paper, we have proposed a parameter-free 
like genetic algorithm, which can be used by an end-
user without the need of becoming an expert in heu-
ristic optimization algorithms. In particular, the hybrid 
genetic algorithm is used in conjunction with a par-
ticle swarm optimization for solving the quadratic 
assignment problem. 

Our approach was tested on the random and real-
life like QAP instances from the library of the QAP 
instances QAPLIB. The experiments demonstrate that 
a lot of computation time can be saved by finding suit-
able control parameter settings. The results obtained 
from the experiments also show the encouraging per-
formance of PSO-based genetic algorithm and its 
superiority to other algorithms used in the experimen-
tation. This is especially seen on the real-life like QAP 
instances. 

We think that the proposed combined swarm opti-
mization-genetic-tabu search algorithm is one more 

step towards self-adaptive, self-controlling, and pos-
sibly self-organizing (self-creative) algorithms and 
systems. The further investigations in this promising 
area would be worthwhile. 
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Appendix 

function GeneticAlgorithm; 
// input: n − problem size, A,B − matrices, 
//          Ngen − # of generations, PS − population size, Noffspr − # of offspring per generation, Q − # of improving iterations, W − depth of the search, 
//          σ − selection factor, ρ  − mutation rate, γ − population improvement factor, ET − entropy threshold 
//          ω − periodic recreation frequency factor 
//          flags: invasion_variant, elitism, gender, restart_variant 
// output: π∗ − best solution found 
begin 
  create initial population P ⊂ Π (| P | = PS) in two steps: 
   (1) generate members of P in a random way; 
   (2) optimize each member of P by using the improving algorithm; 
   )(ππ

π
z

P∈
=∗ argmin: ; // π∗ denotes the best so far solution 

  for i := 1 to Ngen do begin // main cycle 
    sort the members of P according to the ascending order of the values of the objective function; 
    P• := ∅; 
    for j := 1 to Noffspr do begin // creation of the offspring 
      select parents π′, π′′ ∈ P; if flag gender is on, then the parents must be of opposite gender; 
      if invasion_variant = 1 or invasion_variant = 3 then 
         apply the improving algorithm to one parent randomly chosen from π′ and π′′; 
      apply crossover to π′ and π′′, get the offspring π′′′; 
      optimize the offspring π′′′ by using the improving algorithm; 
      if invasion_variant = 2 or invasion_variant = 3 then 
         if z(π′′′) ≥ z(argmax{z(π′), z(π′′)}) then apply the improving algorithm to π′′′; 
      P• := P• ∪ {π′′′}; 
      if z(π′′′) < z(π∗) then π∗ := π′′′ // saving the best so far solution 
    endfor; 
    if elitism = TRUE 
 then remove Noffspr worst individuals from P ∪ P•, get new population P such that | P | = PS 
 else remove Noffspr random individuals from P ∪ P•, get new population P such that | P | = PS; 
    if entropy of population P is below τ then begin // restart 
       if restart_variant = 1 then begin 
          replace one of the members of population (except the best one) by a randomly 
          generated solution; 
          apply random mutation to all members of P, except the randomly generated solution 
          and the best solution; 
       endif; 
       if restart_variant = 2 then apply random mutation to all members of P, except the best one; 
       recreate each member of P by using the improving algorithm; 
       if ))(( π

π
zz

P∈
argmin < z(π∗) then π∗ := )(π

π
z

P∈
argmin  

    endif; 
    if invasion_variant = 4 then if i mod ω = 0 then recreate each member of P by using the improving algorithm 
  endfor; 
  return π∗ 
end. 

 

Notes. 1. The genetic algorithm consists, in general, of the selection, crossover, improvement/mutation and replacement operations, 
which are applied iteratively until a given number of generations are fulfilled. 2. For the QAP, the assignments (permutations) 
p1 = (p1(1), p1(2), ..., p1(n)), p2 = (p2(1), p2(2), ..., p2(n)), … may be thought of as chromosomes of the individuals; then, the single 
element pi(j) corresponds to a gene occupying the jth locus of the ith chromosome. The values of the objective function z are associated 
with the fitness of individuals. 3. The invasion type is defined by the parameter (flag) "invasion_variant". The following are the values 
of "invasion_variant": 1 − parent reinforcement; 2 − reinforced improvement of offspring; 3 − combined reinforced improvement of 
offspring; 4 − periodic recreation. 4. The initial burst and/or restart invasions are automatically activated if γ > 1 and/or ET > 0. 5. The 
parameter ω is fixed at value equal to 10. 

Figure A1. High-level pseudo-code of the genetic algorithm for the QAP 

 


