
283

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.4

USING ATTRIBUTES AND MERGING ALGORITHMS
FOR TRANSFORMING OCL EXPRESSIONS TO CODE

Andrius Armonas, Lina Nemuraitė
Kaunas University of Technology, Department of Information Systems

Studentų st. 50-308, LT-51368 Kaunas, Lithuania
e-mail: andrius@soften.ktu.lt, lina.nemuraite@ktu.lt

Abstract. In this paper, we examine OCL-to-code transformations, which are dedicated to modern model and
metamodel repositories facing with the requirements to perform search, validation and transformation of models that
are usually stored in external data storages, e.g. RDBMS. Diversity and fast changes of data storage technologies make
the development of such transformations a real challenge. This paper presents a method developed by the authors
enabling reuse of OCL transformations, their adaptation to various data storage environments and evolution by
applying attributes and graph merging algorithms.

Keywords: UML, OCL, model repository, code generation, transformation, attribute, merging.

1. Introduction1

As modelling became one of the essential aspects
of software development, the need for an efficient
teamwork environment for modelling arose. Such an
environment should be equipped with capabilities for
merging, synchronizing, reusing and evolution of
models and metamodels independently from any
specific problem domain. Such requirements are partly
met by Eclipse EMF, IBM Jazz and No Magic Cameo
platforms. These platforms use the OCL language to
implement queries and ensure well-formedness of mo-
dels, metamodels and their relationships. Being faced
with the requirements to perform search, validation
and transformation, models in such repositories are
usually stored in external data storages, e.g. RDBMS,
therefore OCL expressions need to be transformed to
the source code of the data storage. Practically, highly
different ordinary and advanced modelling tasks (as
e.g. [1–4]) are coping with necessity to have a solid
support for OCL. This paper examines the problem of
transformation of OCL to program code by reusing
existing transformations and facilitating evolution of
transformations by teams working with repositories of
models and metamodels. Variability and commonality
analysis principles [5, 6] were used during the deve-
lopment of the method.

The significance of the research presented in this
paper is influenced by an increasing demand for

1 The work is supported by Lithuanian State Science and Studies

Foundation according to High Technology Development Program
Project "VeTIS" (Reg.No. B-07042)

metamodel and model repositories as well as increa-
sing requirements for quality of data, stored in them,
and services, provided by them: frequent and efficient
searching, validation, transformation and synchroni-
zation of models. It is no longer sufficient only to pro-
vide these services – a need arises to adapt them to the
existing user infrastructure. If there were no possibi-
lity to adapt and reuse OCL transformations to source
code, the development of model repositories would
slow down. Majority of modelling tool vendors are
looking for faster ways to create new OCL trans-
formations for generation of code in various languages
by developing these transformations from existing
ones.

Businesses would benefit from using this method
as follows: it would improve design and support of
OCL transformations to source code; it would enable
reacting faster to changes in data storage software,
decrease amount of required routine software coding
work; provide an opportunity to reuse transformations
and facilitate their collaborative development, making
work of software analysts, designers and programmers
easier.

The remainder of this paper is structured as fol-
lows: in sections 2 and 3 we review the related work
in attribute grammars and graph merging algorithms;
section 4 presents the created method; section 5 is
devoted to method implementation and experiment; 6
– to its assessment. In section 7 we summarize the
results of research and draw conclusions.

A. Armonas, L. Nemuraitė

284

2. Attribute grammars
Attribute grammars simplify operation of interpre-

ters and compilers for such tasks as, for example,
semantic checking or transforming concrete syntax
trees (CST) to abstract syntax trees (AST). They have
been described several decades ago, however, quite a
substantial amount of papers are being published
refining them. There are attribute grammar modifica-
tions RAG [7–11], CAG [12–14], CRAG [15],
ReCRAG [16], HAG [17], as well as composite [18]
and conditional attribute grammars [19]. The method,
described in this paper, uses the RAG attribute gram-
mar. However, other modifications also are applicable.

Attribute grammars facilitate development of com-
pilers and interpreters but they also decrease perfor-
mance of these tools. For example, using ReCRAG
grammars in Java compilers reduces their performance
four times, even though language specification itself is
two times smaller [16]. On the other hand, it is
impossible to avoid using of these methods in large,
continuous projects as they reduce amount of errors,
make management of human resources more efficient,
and cut down the time needed for analysis, implemen-
tation and support.

3. Difference and merging algorithms
For facilitating reuse of attributes, created in pre-

vious transformations, the following graph merging
algorithms were analyzed: Alanen and Porres [20];
Zündorf, Wadsack and Rockel [21]; Sudarshan et al.
[22]; Wang, DeWitt and Cai [23]; Cicchetti et al. [24–
26]; Bartelt [27]; Kelter, Wehren and Niere [28]; Ohst,
Welle and Kelter [29]; Eclipse EMF Compare tool. A
more detailed analysis of similar algorithms is
available in [30].

Analyzed algorithms can be classified into two
categories by how they identify elements: algorithms
that identify elements heuristically and algorithms that
rely on uniquely identified elements. It was found in
this research that none of these algorithms combine
those two approaches and this can be considered as a
deficiency, because in such languages as UML part of
elements have to be compared by using unique identi-
fiers and the other part should be compared heuris-
tically.

It is important to note that the analyzed algorithms
except one do not have dependency and conflict con-
cepts. This means that the algorithms are only capable
of bulk change copying to one of the contributor
graphs, i.e. partial copying is impossible.

None of the analyzed algorithms evaluate previous
merges. They calculate differences between two ver-
sions of a graph and try copying those changes to the
graph that was derived from their common ancestor.
Model merging difference from code merging here is
that it is possible to get incomplete and incorrect mo-
dels as there are many more dependencies and seman-
tics when merging models instead of code. The afore-
mentioned deficiencies are resolved in the method
proposed in this paper. Our method uses merging

algorithms to allow collaborative work over OCL-to-
code transformations as well as reusability of those
transformations.

4. Applying attributes and graph merging
algorithms for transforming OCL
expressions to code
This section describes a method for transforming

OCL expressions to code using attributes and graph
merging algorithms.

4.1. Method overview
A high-level use case diagram, depicted in Fi-

gure 1, shows how the created method is applied in
two levels: in the overall software development pro-
cess, which uses model repositories, and in the colla-
borative development of OCL-to-code transformations
thus extending both software and transformation
development domains.

Models are validated [31], transformed [32] or ele-
ment search is performed in models throughout the
whole software development process (see all use cases
included into the Model software use case). Also, in
the collaborative environment, models are exchanged
between the local and remote repositories. The OCL
language is used for validating, transforming, and
searching data in models. When performing these acti-
vities in model repositories, OCL expressions are
transformed to expressions of the underlying data
storage environment and then are executed in it for
returning the actual results to the software designer.
The created method implements such a transformation
that is represented by use case Transform OCL to code
using attributes in Figure 1. OCL-to-code transforma-
tions are performed in the remote (central) model
repository.

Software designer performance (in terms of his/her
daily tasks) is directly influenced by the performance
and quality of OCL-to-code transformations. In other
words, software development activities depend on
transformation development activities. The created
method enables collaborative development of OCL-to-
code transformations by allowing creation, modifying,
and reusability of attribute sets (see the Develop attri-
bute sets for transformations use case).

An overview activity diagram, representing the
created method for generating code from OCL using
attributes, is depicted in Figure 2. As stated earlier,
software designers validate, transform, and search for
elements in models by using the OCL language,
whose expressions are specified in domain-specific
models, created using domain-specific modelling lan-
guages (DSML) (e.g. [33]) . Inputs of the created
method consist of the DSML model and OCL expres-
sions specified for it. Metamodels and models for
which OCL expressions are specified are both
considered as DSML models. The method produces
code, adapted for a specific data storage environment,
performing data retrieval commands specified in the
OCL expression for which the code is generated.

Using Attributes and Merging Algorithms for Transforming OCL Expressions to Code

285

Figure 1. Method (represented by greyed use cases) usage in software and transformation development domains

Inputs of the method consist of the DSML model
and OCL constraints specified for that model (see
Figure 2). When transforming OCL to code, each OCL
expression is transformed to the concrete syntax tree
(CST), which is then transformed to abstract syntax
tree (AST). Abstract syntax tree is augmented with
references to elements of the DSML model. In this
phase of the transformation, the method presented in
this paper augments the AST tree with attributes and
values for each attribute (attribute evaluation rules are
employed for this purpose). Attribute evaluation is
represented by the element AST tree with evaluated
attributes in the diagram. Attribute specifications for
the specific language for which the code is being
generated are fetched from the remote (central) attri-
bute repository. Attributes are created and adapted for
specific data storage environments by transformation
or modelling tool developers, not end-user system
developers. The created method uses AST trees aug-
mented with attributes to generate code that fully ex-
ploits capabilities of a specific data storage environ-
ment (this is represented by the element Transform
OCL to code using attributes in Figure 2). The created
method produces code running in the specific data
storage environment.

As stated earlier, attributes are created and adapted
for specific data storage environments by transfor-
mation and modelling tool developers. The created
method specifies not only attribute usage for code
generation but also describes principles for collabo-
rative development (evolution) of attributes. Figure 3
depicts an overview of attribute creation and develop-
ment process. When performing the actual OCL
transformation, attributes are fetched from the remote

(central) attribute repository. This repository stores
committed attribute sets (i.e. attribute graphs). New
attribute sets can be created by reusing parts of exis-
ting attribute sets. Transformation developers store
intermediate versions of attribute sets in their local
attribute repositories. Attribute sets between central
and local repositories are synchronized by using bran-
ching and the created merging algorithm. This algo-
rithm is also used for synchronizing changes between
branches in the central repository.

Figure 2. Overview of code generation using attributes

The structure of the central attribute repository is
depicted in Figure 4. Attribute sets are described as
graphs whose nodes are attributes and links between
them – relationships between attributes. Every attri-
bute graph is used for generating code for a specific

A. Armonas, L. Nemuraitė

286

data storage environment. Central attribute repository
stores sets of attribute graphs, tracks attribute graph

changes, graph branching and merging actions by
versioning them.

Figure 3. Overview of attribute creation and evolution process

Graph G and its branches

Gi Gi+1 ... Gn-1 Gn

Branching

Gn+1Gi-1

G’i ... G’m G’m+1 ... G’m+l

Gn+2 ... Gk-1 Gk

2/3-way
merging

2/3-way
merging

G’m+l+1 ... G’p

4-way
merging

4-way
merging

Graph H
and its
branch-
es

Graph Z
and its
branch-
es

...

Figure 4. Overview of central attribute repository structure and related operations

Figure 4 shows attribute sets and their evolutions
using elements Graph G and its branches, Graph H
and its branches, and Graph Z and its branches. For
example, element Graph G and its branches depicts
attribute set G and its evolution (branching from ver-
sion Gi of the graph G creates graph G’i).

4.2. Using attributes in OCL AST trees

One of the best-known tools for generating code
from OCL is Dresden OCL2 Toolkit. In this paper, we
call transformations of this tool as standard transfor-
mations. The standard way of generating code from
OCL expressions is insufficient, because it attempts to
directly map single OCL constructs to target language
constructs. This means that if source and target lan-
guages are not similar, i.e. if constructs from source
language cannot be directly covered by constructs or
groups of constructs from the target language, the
standard way does not allow mapping from one lan-
guage into other in all cases (or does this inefficient-
ly). For being able to map complex constructs (sub-
trees) of the source language into target language
constructs, it is necessary to have context information
in OCL AST tree nodes enabling to generate code for

the whole OCL AST sub-tree at once and ignore inter-
nal nodes in the following traversals.

In the created method, context information is
expressed by attributes and generated code is adapted
to concrete data storage platform by computing values
of these attributes. Each OCL metamodel element can
have one or more attributes defined. Values are
assigned to attributes by computing attribute evalua-
tion rules.

Attribute metamodel is depicted in Figure 5. For
traversing AST trees, derivatives of the Visitor pattern
are used. In the proposed method, an algorithm deve-
loped by Neff [34], called Bivisit, is used. This algo-
rithm evaluates attributes on demand. It is presented in
Figure 6 by an activity diagram where parameter of
the algorithm is an OCL expression (activity para-
meter node e) whose AST tree is being traversed. This
expression is of a certain type, e.g. it can be a com-
parison operation, expressed as an instance of a class
OperationCallExp in OCL. Before generating the
actual code for this particular node, its AST subtree is
traversed: for each child node, the Bivisit algorithm is
called. Only after all nodes have been visited, code is
generated for each of them. If the node being visited
has inherited attributes, their evaluation is performed
upon entering the node.

Using Attributes and Merging Algorithms for Transforming OCL Expressions to Code

287

Figure 5. Attribute metamodel

Figure 6. Algorithm for evaluating attributes in OCL AST tree

4.3. Generating code from OCL expressions using
attributes

In previous sections it was described how attri-
butes can be used to discover sub-trees of OCL AST
trees. Having attribute set, identifying a certain OCL
AST sub-tree, it is possible to generate code for this
sub-tree. This allows adapting code to a specific data
storage language and exploiting all its capabilities.

A metamodel for code generation from OCL
expressions is depicted in Figure 7. AST tree (class
ASTTree) consists of OCL metamodel elements (sub-
classes of the OclExpression class, which are instan-
ces of the OclExp class). For some of them attributes

are defined (class Attribute, playing defAttr role). AST
sub-trees (class ASTSubtree) consist of at least one
OCL metamodel element (role node). A sub-tree can
be identified by a group of attributes (class Attribute,
playing identAttr role). Each sub-tree is associated
with a template of a certain language (class Pattern).
Each pattern has arguments. After filling-in arguments
with values, the actual code is generated.

The algorithm for code generation from OCL AST
trees is depicted in Figure 8. The algorithm does not
generate the code instantly for each node if the code
for that node has been already generated when
generating code for the whole sub-tree.

A. Armonas, L. Nemuraitė

288

Figure 7. A metamodel for code generation from OCL

Figure 8. Algorithm for code generation from OCL AST

using attributes

4.4. Using graph merging algorithms for
transformation evolution and reuse

In this sub-section, principles of collaborative
work over attribute sets and method for reusing
transformations by reusing attributes is presented.
Also, graph merging algorithm is presented upon
which collaborative development of attributes is
based.

4.4.1. Transformation development cycle
When working with attributes in a team, they are

stored in a central repository (Figure 9). If a developer
of a transformation decides to change attributes,
he/she has to fetch them into the local private
repository. This action is called branching as it creates
a branch from an attribute set in a central repository.
After modifying attributes, the developer commits
changes to the central repository. This action requires
attribute set merging, because two sets have to be
merged: the one from the local repository with the one
from the central repository. The developer may update
its local repository with new changes from the central
repository. This action also requires merging.

Attributes can be reused, i.e. attribute sets can use
other attribute sets for context evaluation (Figure 10).
The figure presents attribute sets A1, A2, A3 and A4.
Reusable subsets of attribute sets are depicted as inter-
nal rectangles. Arrows show reused attribute sets, e.g.

sets A1 and A3 use subset A4‘ of attribute set A4. This
concept is elaborated in section 4.4.3.

Local
attribute

repository

Central
attribute

repository

Branching

Merging (commit)

Merging (update)

Branching

Merging
Figure 9. Attribute branching and merging schema

A 2'
A4'

A4'

A3'’
A3'’

A2'
A4'

A3'A3'

A3'

A1 A2 A3

A4

Figure 10. Attribute reusability

4.4.2. Graph merging algorithm
In this section, a method of the higher level of

abstraction is presented, which does not only allow
merging attribute sets, but also merges any models,
that have elements and relationships between them.
The presented method evaluates previous merges
which is what existing methods do not do.

4.4.2.1. Merging algorithm types

We classify merging algorithms by the number of
used data sources: 2-way, 3-way, and 4-way merging
algorithms. Graphs are merged in two stages: changes
(i.e. differences) between graphs are discovered and
then they are copied into one of the compared graphs.
Usually graphs residing in central and local
repositories are compared.

The simplest way to merge graphs is to use 2-way
merge. It uses two graphs: one from which changes
are copied and one into which changes are copied.
Changes are detected by comparing these two graphs.
This method is unreliable because two graphs that
have evolved in parallel are compared, thus it is im-
possible to say whether an element was deleted or
created.

3-way merging algorithm resolves the unreliability
problem found in the 2-way merging algorithm. In this
algorithm, changes are detected between evolved
graphs and their common ancestor, thus 3 data sources
are used: two contributors and one common parent.

In this research, one of the biggest deficiencies of
graph merging algorithms was identified that previous
merges are not respected, and a 4-way merge algo-
rithm was created, which evaluates previous merges,
as shown in Figure 11. In this algorithm, branched
graph is compared with a version of a branched graph,
from which changes were copied last time to the same
target contributor (graph G‘m+l is compared to G‘m).

Using Attributes and Merging Algorithms for Transforming OCL Expressions to Code

289

Target graph is compared with the first target graph
version that was created after the last merge into the
same target from the same-branched graph. In other

words, in our method it is discovered how graphs
evolved from the last merge of the same direction.

Gi Gi+1 ... Gn-1 Gn

Branching

Gn+1

Result

2/3-way Merge

Common
Ancestor

Gi-1

G’i ... G’m G’m+1 ... G’m+l

... Gk-1 Gk Gk+1

Result

4-way Merge

Branch Ancestor

Target Ancestor
Merging

Merging

Figure 11. Schema of 4-way merge algorithm

4.4.2.2.Basic concepts of merging algorithms

The graph merging algorithm suits not only for
attribute sets, but also for any models, that have ele-
ments and relationships. It can merge graphs whose
metamodels conform to the one depicted in Figure 12.
This metametamodel describes such metamodels, that
have metaelements (class Element) having metapro-
perties (class Property). A metaproperty can be a pri-
mitive (class PropertyTypedByPrimitives) or a refe-
rence to other metaelements (class PropertyTypedBy-
Elements). Metaproperties can store many values
whose order may be significant. If an element sub-
classes another element, the general property stores a
reference to a more general element. The isAbstract
attribute specifies whether metalement is abstract.

Figure 12. Graph merging metametamodel

4.4.2.3. Combined identification of elements

In existing merging algorithms elements are iden-
tified by using unique identification numbers or by
analyzing relationships to other elements. In the crea-
ted method, the two methods are combined into a
single one. Let’s define element identity function

 α(x, y),

where x is an element of the graph G; y – an element
of the graph G‘; α – function that returns values from
0 to 1, where 1 means that elements are the same, and
0 – that they are not the same.

If compared elements x and y have unique iden-
tifiers, then function α returns 1 or 0, because element

identity can be discovered by comparing their iden-
tification numbers:

 if δ(x) = δ(y), then α(x, y) = 1;
 if δ(x) ≠ δ(y), then α(x, y) = 0,

where δ is a function that returns a unique identifier of
an element.

Elements may not have unique identifiers. If
δ(x) = Ø or δ(y) = Ø, then identify functions, retur-
ning values from 0 to 1, have to be defined for these
elements, i.e. ∃ fx, fy ∈ Φ, where fx and fy are identity
functions for x and y elements; Φ is a set of identity
functions. Then we can define element identity func-
tion α(x, y):

 if fx = f y, then α(x, y) = fx = fy,
 if fx ≠ f y, then α(x, y) = 0.

Identity functions encode heuristic methods of
identification, e.g. they compare elements by their
names, properties, and relationships to other elements.
If most of them are the same (e.g. 80%), or elements
are of the same type, we can state that these elements
are probably identical. In such a case identity func-
tions return equal values near to 1 (e.g. 0.8) and fx = fy.
Thus fx and fy can be used for identifying whether
elements are identical or not.

4.4.2.4. Graph changes
A difference of two graphs is a set of elements

describing how one graph differs from another graph.
In the created method, elements of such a set are
called changes. Sets of differences will be called
graph differences. Graph difference is such a graph
whose nodes are changes and relationships between
nodes are their dependencies or conflicts.

Changes can be classified as additions, removals,
attribute modifications, and attribute value order
changes. Changes can depend on each other and conf-
lict with each other. Each change can be accepted for
copying into the graph or rejected. If to summarize, in
the proposed method changes have the following
properties:

• type (addition, removal, modification, order
change);

A. Armonas, L. Nemuraitė

290

• state (accepted or rejected);
• a reference to the changed element;
• references to changes, on which a change de-

pends on and vice versa;
• references to conflicting changes.

A change can be selected to be copied into another
graph or not. This is expressed as a change state which
can be Accepted or Rejected.

When accepting one change for copying into the
graph, it is sometimes needed to accept other changes
too. In such a case one change depends on another. An
example could be creation of a reference to a newly
created element: element creation has to be accepted
when accepting reference creation. Dependencies
allow partial copying of changes to the graph, which is
different from existing algorithms allowing copying
all or no changes.

Conflicting changes are such changes that cannot
be copied together into the graph. Conflicts occur in
two different graph differences.

4.4.2.5. Rules for accepting and rejecting changes

In this section, we will use graphs G’ and G’’,
which evolved from their common ancestor graph G.
Let’s denote the difference of graphs G’, G as SG’,
and the difference of graphs G’’ and G as SG’’. The
main idea behind the proposed merging algorithm is
that when graphs G’ and G’’ are merged into graph
MG, it is built from graph G by using differences SG’
and SG’’. When the graph MG is created from the
graph G, all changes that are in Accepted state, are
copied into graph MG.

If change A depends on change B, then if A
changes its state to Accepted, B also changes its state
to Accepted. If change A depends on change B and
change B changes its state to Rejected, change A also
changes its state to Rejected. If change A conflicts
with change B and change A changes its state to
Accepted, change B changes its state to Rejected.

The merging method described in this paper differs
from existing algorithms in that it does not modify
change sets according to each other. Instead, it
evaluates two difference sets and sets change states
accordingly.

4.4.3. Reusing transformation parts

The created method introduces the concept of a
module. A module is a reusable subset of an attribute
set. A metamodel for modules is depicted in Figure 13.

Figure 13. Module metamodel

A module makes one part of an attribute set (class
AttributeSet) reusable (role publishedAttr). A module
has at least one attribute. Attribute sets (class
AttributeSet) may use other attribute sets, which form
modules. If an attribute set uses a module (role
usedModule), then all attributes from this module
become accessible to the using attribute set (role
usedAttr).

5. Method implementation and experiment

An experimental study consisting of two parts was
carried out.

In the first part of the experiment it was verified
whether the method is capable of adapting code
generation from OCL expressions to code to a specific
data storage platform. Eclipse EMF 3.4 with Dresden
OCL2 Toolkit 2.0 plugin was chosen as an
implementation platform, and Sun MySQL DBMS
was chosen as a data storage platform.

For this purpose an attribute set was specified for
transforming nested OCL conditional statements to
non-nested SQL conditionals. A set of rules for such a
mapping and a set of SQL templates for generating
non-nested SQL conditionals were specified. The
plugin for SQL code generation was developed on top
of Eclipse platform and Dresden OCL2 Toolkit. A
simplified UML state machine metamodel fragment
with invariant containing nested OCL conditional
statements was selected as a representative example
and was transformed to relational schema of the
chosen data storage platform (Sun MySQL DBMS).
By comparing the code generated using attributes and
without attributes, we have stated that the method
works as expected allowing evaluation of the context
and generation of a code adapted to a specific data
storage platform. Also, the experiment has shown that
the code, generated from nested conditionals without
attributes (i.e. using standard transformation) cannot
run on Oracle 10g and Microsoft SQL Server 2008
servers; it requires adaptation.

The objective of the second part of experiment was
to ensure that the proposed graph merging algorithm
can be applied for attribute set merging. The merging
algorithm was implemented in one of the leading
UML CASE tools MagicDraw 15.5 (later improved in
versions 16.0 and 16.5). It allows merging UML and
DSML models and is already used in commercial
organizations. As a part of the experiment, the
attribute metamodel was described as a domain-
specific modelling language, attribute sets were
expressed as DSML models. The experiment showed
that changes can be copied between graphs, changes
and conflicts are discovered properly, the merged
graph is consistent and preserves all changes the user
decided to accept.

Using Attributes and Merging Algorithms for Transforming OCL Expressions to Code

291

6. Method assessment

Assessment of the generated code has shown that
the concrete tested code was executed approximately
33% faster than the code generated without attributes.
This assessment was done for a concrete situation and
code. However, the code that is adapted to a specific
platform will always run faster than code that was not
adapted to it and attributes facilitate adapting the code
to specific platforms and allow generating code that
uses resources more efficiently.

Comparison of the created graph merging algo-
rithm to other graph merging algorithms showed that

it allows a better discovery of changes and a more
flexible merging process. The algorithm discovers
more change types, their dependencies and conflicts,
and allows partial copying changes to the graph; it
also allows easier and faster change analysis and mer-
ging by using 4-way merge. The created graph mer-
ging algorithm complies with 14 of the 17 criteria that
are applied to merging algorithms that were analyzed
in this research (Table 1). The rest 3 criteria are only
partially satisfied as the algorithm is adopted for work
in metamodel and model repository environment and
has differences from code merging algorithms.

Table 1. Graph merging algorithm assessment

Algorithm

Criterion

Th
e

cr
ea

te
d

al
go

rit
hm

(M

ag
ic

D
ra

w

U
M

L)

Si
D

iff

EM
F

C
om

pa
re

A.
 C

ic
ch

et
ti

M
. A

la
ne

n
an

d
I.

Po
rr

es

C
. B

ar
te

lt

Element identification by using unique
identifiers + +/– +/– – + +

Element identification by its properties and
relationships to other elements + + + + – –

Combined element identification + – – – – –
Model-based + – + + +/– +
Minimalistic + +/– +/– + + –
Self-contained +/– +/– +/– + + +
Transformative +/– +/– +/– + + +/–
Invertible +/– +/– +/– + + +/–
Metamodel independent + +/– + + + +
Attribute value order is significant + + + + + –
Attribute value order is insignificant + – + – + –
Attribute value order is significant or
insignificant + – + – + –

Supports dependencies + – – – +/– –
Supports conflicts + – – + +/– +/–
Supports derived changes + – – – – –
Partial change copying + – – +/– – –
Evaluates previous merges + – – – – –

Complies fully with: 14 2 6 9 9 4
Complies fully or partially with: 17 8 12 10 12 7

7. Conclusions

As a result of creating and evaluating the method
for transforming OCL to code using attributes and
graph merging algorithms, we can draw the following
conclusions:
1. Analysis of existing code generation from OCL

methods has shown that they are insufficient for
applying them in metamodel and model reposi-
tories in which OCL transformations to code have
to be adapted to concrete data storage languages
and developed by developer teams.

2. Analysis of attribute grammars has shown that
attributes can be used in OCL-to-code transfor-
mations thus adapting such transformations to
generate code for specific data storage languages
and platforms. Attributes enable mapping of OCL

construct groups to target language code thus
exploiting all its capabilities.

3. The created graph merging algorithm and module
system enables collaborative transformation deve-
lopment: attribute sets can be compared, reused,
and merged. The created merging algorithm differs
from the analyzed algorithms in that it allows com-
bined element identification and partial copying of
changes, discovers dependencies and conflicts, and
evaluates previous merges. These features allow
decomposing transformations into several parts,
developing those parts separately and then merging
results into a single transformation.

4. Method implementation in Eclipse platform and
MagicDraw UML tool has shown that the method
can be used in CASE tools. The merging algorithm
implemented in MagicDraw UML is already used
in commercial organizations.

A. Armonas, L. Nemuraitė

292

5. An experiment was conducted during which SQL
code was generated for one of the most popular
open-source DBMS MySQL. The experiment has
shown that attributes allow adapting code to the
specific data storage platform and the code itself
runs faster than the code generated without using
attributes. The experiment has also shown that the
code, generated from nested conditionals without
attributes (i.e. code generated using standard trans-
formation) cannot run on Oracle 10g and Micro-
soft SQL Server 2008 servers without adaptation.

6. The attribute set merging experiment, which was
performed in MagicDraw UML tool by specifying
attribute sets as domain-specific language models,
has shown that the created merging algorithm
works properly and can be used in teamwork for
merging and reusing attribute sets.

7. The method can be developed further by creating a
specialized attribute repository and evolving OCL-
SQL transformations for model element searching,
transformation, validation and other tasks that are
relevant for collaborative model development
using metamodel and model repositories.

References
 [1] S. Gudas, A. Lopata. Meta-Model Based Develop-

ment of Use Case Model for Business Function. Infor-
mation Technology and Control, Vol. 36(3), 2007,
302–309.

 [2] O. Vasilecas, D. Bugaite. Applying the Meta-Model
Based Approach to the Transformation of Ontology
Axioms into Rule Model. Information Technology and
Control, Vol. 36(1A), 2007, 122–125.

 [3] L. Ceponiene, L. Nemuraite, G. Vedrickas. Separa-
tion of Event and Constraint Rules in UML&OCL
Models of Service Oriented Information Systems. In-
formation Technology and Control, Vol. 38(1), 2009,
29–37.

 [4] S. Packevičius, A. Usaniov, E. Bareiša. The Use of
Model Constraints as Imprecise Software Test Orac-
les. Information Technology and Control, Vol. 36(2),
2007, 246–252.

 [5] V. Štuikys, R. Damaševičius. Towards Knowledge-
Based Generative Learning Objects. Information
Technology and Control, Vol. 36(2), 2007, 202–212.

 [6] J. Coplien, D. Hoffman, D. Weiss. Commonality and
Variability in Software Engineering. IEEE Software,
Vol. 15(6), November 1998, 37–45.

 [7] G. Hedin. Reference Attributed Grammars. Informa-
tica (Slovenia), Vol. 24(3), 2000, 301–317.

 [8] A. Poetzsch-Heffter. Prototyping realistic program-
ming languages based on formal specifications. Acta
Informatica, Vol. 34(10), 1997, 737–772.

 [9] J. T. Boyland. Descriptional Composition of Compi-
ler Components: Ph.D. thesis. University of Califor-
nia, Berkeley, California, 1996.

[10] G. Hedin. An overview of Door Attribute Grammars.
In Proceedings of the 5th international Conference on
Compiler Construction, April 7-9, 1994, Edinburgh,
UK. London: Springer-Verlag, 1994, 31–51.

[11] J. T. Boyland. Remote attribute grammars. Journal of
the ACM (JACM), Vol. 52(4), 2005, 627–687.

[12] R. Farrow. Automatic generation of fixed-point-fin-
ding evaluators for circular, but well-defined, attribute
grammars. In Proceedings of the SIGPLAN´86 Sympo-
sium on Compiler Construction, June 25-27, 1986,
Palo Alto, California. ACM, 1986, 85–98.

[13] L. G. Jones. Efficient evaluation of circular attribute
grammars. ACM Transactions on Programming Lan-
guages and Systems, Vol. 12(3), 1990, 429–462.

[14] A. Sasaki, M. Sassa. Circular Attribute Grammars
with Remote Attribute References and their Evalua-
tors. New Generation Computing, Vol. 22(1), 2004,
37–60.

[15] E. Magnusson, G. Hedin. Circular reference attribu-
ted grammars – their evaluation and applications.
Science of Computer Programming, Vol. 68(1), 2007,
21–37.

[16] T. Ekman, G. Hedin. Rewritable Reference Attribu-
ted Grammars. In Proceedings of 18th European Con-
ference on Object-Oriented Programming (ECOOP
2004), June 14-18, 2004, Oslo, Norway. Springer
Verlag, 2004, 144–169.

[17] H. H. Vogt, S. D. Swierstra, M. F. Kuiper. Higher
order attribute grammars. In Proceedings of ACM
SIGPLAN 1989 Conference on Programming lan-
guage design and implementation, 1989, Portland,
Oregon, United States. ACM, 1989, 131–145.

[18] R. Farrow, T. J. Marlowe, D. M. Yellin. Compos-
able attribute grammars: support for modularity in
translator design and implementation. In Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 1992, Albu-
querque, New Mexico, United States. ACM, 1992,
223–234.

[19] J. T. Boyland. Conditional attribute grammars. ACM
Transactions on Programming Languages and Sys-
tems (TOPLAS), Vol. 18(1), 1996, 73–108.

[20] M. Alanen, I. Porres. Difference and Union of Mo-
dels. In Proceedings of the Unified Modeling Lan-
guage, Modeling Languages and Applications, 6th
International Conference, October 20-24, 2003, San
Francisco, CA, USA. Springer, 2003, 2–17.

[21] A. Zündorf, J. P. Wadsack, I. Rockel. Merging
Graph-Like Object Structures. In Proceedings of the
Tenth International Workshop on Software Configu-
ration Management, May 12-19, 2001, Toronto,
Canada. IEEE Computer Society, 2001.

[22] S. Sudarshan, A. R. Chawathe, H. Garcia-Molina,
J. Widom. Change Detection in Hierarchically Struc-
tured Information. In Proceedings of the 1996 ACM
SIGMOD international Conference on Management of
Data, June 4-6, 1996, Montreal, Quebec, Canada.
New York: ACM, 1996, 493–504.

[23] Y. Wang, D. J. DeWitt, J. Cai. X-Diff: An Effective
Change Detection Algorithm for XML Documents. In
Proceedings of the 19th International Conference on
Data Engineering (ICDE'03), March 5-8, 2003, Ban-
galore, India. IEEE Computer Society, 2003, 519–530.

[24] A. Cicchetti, D. Di Ruscio, A. A. Pierantonio. Meta-
model Independent Approach to Difference Represen-
tation. Journal of Object Technology, Vol. 6(9), 2007,
165–185.

Using Attributes and Merging Algorithms for Transforming OCL Expressions to Code

293

[25] A. Cicchetti, D. Di Ruscio, R. Eramo, A. Pieranto-
nio. Automating Co-evolution in Model-Driven Engi-
neering. In Proceedings of the 2008 12th international
IEEE Enterprise Distributed Object Computing Confe-
rence – Volume 00, September 15-19, 2008, Washing-
ton, DC, USA. IEEE Computer Society, 2008, 222–
231.

[26] A. Cicchetti, D. Di Ruscio, A. Pierantonio. Mana-
ging Model Conflicts in Distributed Development. In
Proceedings of the 11th international Conference on
Model Driven Engineering Languages and Systems,
September 28 – October 03, 2008, Toulouse, France.
Springer-Verlag, 2008, 311–325.

[27] C. Bartelt. Consistence preserving model merge in
collaborative development processes. In Proceedings
of the 2008 international Workshop on Comparison
and Versioning of Software Models, May 17, 2008,
Leipzig, Germany. New York: ACM, 2008, 13-18.

[28] U. Kelter, J. Wehren, J. Niere. A Generic Difference
Algorithm for UML Models. Software Engineering
2005, LNI Vol. 64, 2005, 105–116.

[29] D. Ohst, M. Welle, U. Kelter. Differences between
versions of UML diagrams. In Proceedings of the 9th
European Software Engineering Conference Held
Jointly with 11th ACM SIGSOFT international Sympo-
sium on Foundations of Software Engineering, Sep-
tember 1-5, 2003, Helsinki, Finland. New York: ACM,
2003, 227–236.

[30] P. Selonen. A Review of UML Model Comparison
Approaches. In Proceedings of the 5th Nordic Work-
shop on Model Driven Engineering, August 27-29,
2007, Ronneby, Sweden. Blekinge Tekniska Högskola,
2007, 43–51.

[31] E. Pakalnickiene, L.Nemuraite. Checking of Concep-
tual Models with Integrity Constraints. Information
Technology and Control, Vol. 36(3), 2007, 285–294.

[32] K. Czarnecki, S. Helsen. Classification of Model
Transformation Approaches. In J. Bettin, G. Van E.
Boas, A. Agrawal, E. Willink, J. Bezivin (eds.) Procee-
dings of the 2nd OOPSLA workshop on Generative
Techniques in the Context of Model-driven Architec-
ture, October 2003. ACM Press, 2003, 1–17.

[33] D. Šilingas, R. Butleris. Towards Implementing a
Framework for Modeling Software Requirements in
MagicDraw UML. Information Technology and Cont-
rol, Vol. 38(2), 2009, 153–164.

[34] N. Neff. Attribute Based Compiler Implemented
Using Visitor Pattern. In Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, March 3-7, 2004, Norfolk, Virginia, USA.
ACM, 2004, 130–134.

Received July 2009.

