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Abstract. In this paper the moments of the maximum of a finite number of random values are analyzed. The
largest part of analysis is focused on extremes of dependent normal values. For the case of normal distribution, the
moments of the maximum of dependent values are expressed through the moments of independent values.
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1. Introduction

Suppose (X;,...,X,) is an n-dimensional normal
vector: (X,,... X, )~ N(wV,), where
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We form random variable
Z,=max(X,,.., X,).

We will focus on calculation of moments of this
random variable

EZ) = [ x"dF, (x).

Here F, (x)=P(X <x) is a probability distribu-
tion function.

There is a number of publications ([1], [2], [3],
[4]) for the case of normal vector (X,,...,.X,) with

independent componentsz,j:l,_n. In the case

X, ~N(0,1), the moments EZ,and EZ could be
expressed using only elementary functionsup ton =5
([5]). For X, ~ N(u,c), there are formulas ([4]) to

calculate £Z;* based on parameters x and o, . The
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case of dependent normal values (X, X,)~

N(my,my, 07,03, p) is analyzed in [5] and [6]. £Z,

and EZ? are presented by distribution parameters.
Expressions are proved by applying Z, moment
generating function. As a consequence, it was shown
that £Z’ cannot be expressed only by elementary

functions of parameters. This topic is discussed in our
earlier paper [7].

2. Statements and Proofs

In this section we will represent the moments of
the maximum of dependent normal values by the
moments of the maximum of independent normal
values. To achieve the result, the inclusion-exclusion
principle (sieve method) will be used.

Theorem 1. Suppose that (X,,...,X,)~ N(0,7,)
where

1 »p P
1
v, = P P , p>0
p p e l

and U, ~N(0,1), j=Ln.



Then

{ﬂ 2j (9 _ J(1— pY2 .
£zp = 3| & BImI (Ap) o
-E(max(U,,...,U,))" "
n>1 p=0.

Proof. The following is true:

Jj=0

D
X, =Y+l-p U,,
where Y ~ N(0, p) and is independent of U, i =
Ln.
Then

Z, Zy+ 1- pmax(U,,...U,)

and
m m—k
EZ) = Z(c;; EY*(1-p) 2 E(max(U,,...,U,))"" j
k=0
Using the fact:
0, fork=2i+1,
EY' = k

(k=11 p2, k=2i;
we conclude the proof of the theorem.
Corollary 1. Suppose that (X,,..., X, )~
N(u,V,) where

1 p p
1
v, =0’ P P , p>0
p p .o 1
and U, ~ N(0,1),i=1n.
Then

EZ: =Y Cilo™
r=0

sz s=r

.[i} c,(2j-1)up/(1-p) 7 -
-E(max(U,,...,U,) "
n>1 p>0.

j=0

This corollary is proved using Theorem 1 and the
fact that

EZ =Y Clu'o"

r=0

E(max(y,....Y,)) "

l p e p

1
where (Y,...Y,)~N(0,V;), V, = P P
p p 1
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