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Abstract. Convex classification error rate estimator is described as weighted combination of the low-biased 

estimator and the high-biased estimator. If the underlying data model is known, the coefficients (weights) can be 

optimized so that the bias and root-mean-square error of the estimator is minimized. However, in most situations, data 

model is unknown. In this paper we propose a new error estimation method, based on approximation of unbiased 

convex error rate estimator. Experiments with real world and synthetic data sets show that common error estimation 

methods, such as resubstitution, repeated 10-fold cross-validation, leave-one-out and random subsampling are 

outperformed (in terms of root-mean-square error) by the proposed method. 
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1. Introduction 

Classification error rate estimation is critical for 

hyperparameter selection [3, 5], feature selection [10] 

and combining classifiers [20]. This problem has been 

studied by many researchers and a number of error 

estimation methods have been proposed [6, 7, 8, 11, 

12, 18]. A large part of these techniques are so called 

error-counting methods. According to this approach, 

classification error is estimated as the ratio between 

misclassified data vectors and total number of data 

vectors. One way to make an error-counting estimator 

is to use a convex combination of the low-biased 

estimator and the high-biased estimator. First 

estimator of this type was proposed by Toussaint and 

Sharpe [19]. They suggested to choose the coefficients 

a and b so that the estimator 

)2()1( ˆˆˆ
NNN ba    (1) 

is unbiased estimator of true conditional probability of 

misclassification (conditional PMC). Here 
)1(ˆ

N  and 

)2(ˆ
N are error estimates, the coefficients a and b are 

nonnegative, 1ba  and N is the training set size. In 

the absence of either theoretical work or empirical 

results to guide in the selection of a  Toussaint took 

5.0a . The problem of coefficient selection was 

further investigated by McLachlan [14]. For the rule 

based on the Fisher linear discriminant function with 

zero cutoff point, McLachlan proposed to use 

theoretically derived coefficients. However, proposed 

coefficients were functions of the true model 

parameters. Different approach to coefficient selection 

was taken by Efron [7]. The coefficients 632.0a  

and 368.0b  were suggested by an argument based 

on the fact that in 0.632 bootstrap, expected number of 

distinct points from the original data set appearing in 

the training set is approximately 0.632N. However, it 

was demonstrated that 0.632 bootstrap fails to give 

good estimates when Bayes error is very high [17]. 

In this paper, we propose a new estimator of the 

error rate of the Euclidean distance classifier, based on 

approximation of unbiased convex error rate estimator. 

In order to demonstrate the effectiveness of the new 

method we compare it with other common error 

counting methods, such as 0.632 bootstrap, 10-fold 

cross-validation, resubstitution and random subsam-

pling. 
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This paper is organized as follows. Section 2 

describes common error counting estimators. 

Section 3 introduces the new error estimation method. 

Section 4 is devoted to experimental analysis. 

Section 5 contains concluding remarks. 

2. Error estimation 

2.1. Basic definitions 

Consider two category classification problem 

where class label }1,0{ , feature vector nRx

and a classifier is a function f : }1,0{nR . An indu-

ction algorithm builds a classifier from a set of N inde-

pendent observations )},(),...,,{( 11 NNND  xx  

drawn from some distribution T. Formally, it is a 

mapping g: }1,0{}}1,0{{  nNn RR . The 

performance of a classifier is measured by conditional 

probability of misclassification:  

)),((   xNN DgP . (2) 

This error is conditioned on one particular training 

set DN and induction algorithm g. If the underlying 

distribution is known, one can calculate conditional 

PMC exactly. However, in practice, this distribution is 

unknown and an error estimator N̂  is needed. 

2.2. Resubstitution 

Resubstitution error can be used as an estimate of 

conditional PMC. The resubstitution estimated error is 

defined as: 



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This estimator is optimistic (i.e. low-biased), 

especially for small data sets. 

2.3. Cross-validation 

In k-fold cross-validation, the data set is randomly 

partitioned into k subsets of approximately equal size. 

Each subset is used as a test set and the remaining k-1 

subsets are used as the training set. The cross-

validation error estimate is defined as: 

 
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where Di is the i-th fold of the data set DN,  k is the 

number of folds and N is the size of DN. Leave-one-

out estimator is a special case of k-fold cross-

validation with k equal to the size of the original data 

set. In stratified cross-validation, each of the k subsets 

contains approximately the same proportion of class 

labels as the original data. Kohavi recommends 

stratified 10-fold cross-validation as the best error 

estimation method [9]. However, cross-validation has 

large variance, especially for small sample data sets 

[2]. One way to reduce variance is to repeat cross-

validation procedure several times [2]. 

2.4. Holdout 

In holdout method, the data set is randomly split 

into two parts: one is used as the training set and the 

other as the test set. It is common to allocate two 

thirds of the data as the training set and the remaining 

one third as the test set [9]. The holdout estimate is 

pessimistic (i.e. high-biased) since only a portion of 

the initial data is used to train the classifier. The 

holdout estimate of the conditional PMC of a classifier 

is defined as: 






N

Di

iihN
H

N

hii

DDg
h

),(,1

)(
|),\(|

1
ˆ




x

x  (5) 

where Dh DN is the holdout set (the test set) of size 

h. In random subsampling, the holdout method is 

repeated r times and the estimated error is derived by 

averaging the runs [9]. 

2.5. Bootstrap 

Bootstrap sampling concept was introduced by 

Efron [6]. A bootstrap sample is formed by sampling 

N data points uniformly and with replacement from 

the original data set. On average it contains 0.632N of 

the original data. In 0.632 bootstrap method [7], an 

induction algorithm is trained on the bootstrap sample 

and the resubstitution error estimate 
)(ˆ R

N  is found. 

The rest of the data are used for classifier testing. The 

0.632 bootstrap estimated error is defined as 






r
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R
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B
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r
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where r is the number of bootstrap samples, 
)(ˆ R

N  is 

resubstitution error on the bootstrap data and N̂  is 

error estimate for bootstrap sample i. 

2.6. Performance of error estimators 

Commonly used performance measures of an error 

estimator N̂  are the bias, deviation variance and 

root-mean-square error (RMS) [2, 4, 17]: 

][]ˆ[]ˆ[ NNN EEBias    (7) 

),ˆ(2
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The most important performance measure is RMS, 

because it combines bias and the deviation variance 

into a single metric. 
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3. Proposed method 

3.1. Basic expressions  

Expected error of the Euclidean distance classifier 

is expressed as [15, 16] 
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and expected resubstitution error is given by 
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where   is a standard Gaussian cumulative 

distribution function, 

)()( 21
1

21 MMΣMM  T  is a Mahalanobis 

distance between two pattern classes, 1M  and 2M  are 

class mean vectors,  
1

Σ  is the inverse of the common 

covariance matrix, 
N

n
TM 2

4
1


 . 

3.2. Approximation of unbiased convex 

classification error rate estimator 

Unbiased convex error rate estimator can be 

expressed as: 

0][]ˆ[]ˆ[]ˆ[
)2()1(

 NNNN EEbEaBias  .(12) 

If estimator 
)1(ˆ

N  is repeated 2-fold cross-validation 

and estimator 
)2(ˆ

N  is repeated half sample resubstitu-

tion then ][]ˆ[ 5.0
)1(

NN EE   , ][]ˆ[ 5.0
)2( R

NN EE    and 

bias of  the convex error rate estimator can be written 

as:  

0][][][]ˆ[ 5.05.0  N
R

NNN EEbEaBias  .(13) 

From (13) and the fact that 1ba  we have 
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Now, suppose that the following preconditions are 

met:  

1. Classifier deals with two multivariate 

Gaussian pattern classes; 

2. the covariance matrix is the same for all 

classes; 

3. the covariance matrix is proportional to the 

identity matrix, i.e. ΙΣ
2 ; 

4. class prior probabilities are equal; 

5. the training set has the same number of 

patterns from each class; 

6. Mahalanobis distance is constant; 

7. the dimensionality n is fixed and very large; 

8. training set size N → ∞. 

Then from (10) and (11) we get that the 

coefficients are 

75.0
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Note that the derivation of coefficient values is 

based on the Taylor series expansion of ][ NE  , 

][ 5.0
R

NE   and ][ 5.0 NE  . The proposed convex error 

rate estimator (PCE) is defined as: 
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where r is the number of repetitions, 
)(ˆ CV

N  is 2-fold 

cross-validation error estimate,  and 
)(ˆ R

N  is the 

resubstitution error estimate. 

4. Simulation study 

4.1. Experimental setup 

Our experiments consist of two parts: synthetic 

experiments with Gaussian data and experiments with 

real world data sets. The error estimators studied are 

repeated 10-fold cross-validation, leave-one-out, 0.632 

bootstrap, random subsampling (h=N-0.7N), resubsti-

tution, proposed convex estimator and optimal 

unbiased estimator. To get a fair comparison, we made 

the number of classifiers built for each estimator 

equal, i.e. 320 (except resubstitution and leave-one-out 

estimators where the number of induced classifiers is 

fixed and cannot be changed). Therefore, in random 

subsampling and 0.632 bootstrap the number of runs 

(r) is set to 320, in proposed convex estimator and 

optimal unbiased estimator the number of runs is set 

to 160, in repeated 10-fold cross-validation the 

number of runs is set to 32. The coefficients of 

optimal unbiased estimator are computed using 

expressions (10), (11), (14), (15), and this estimator is 

used only in the case of Gaussian data with equal class 

prior probabilities. 

4.2. Synthetic data 

Our set of synthetic simulations is composed of 96 

experiments. In all cases, we use two-class Gaussian 

data model with common identity covariance matrix 

and class means located at Tmmm ),...,,(1 M and 

Tmmm ),...,,(2 M . The class prior probabilities 

are: 1) P1 = 0.5, P2 = 0.5; 2) P1 = 0.6, P2 = 0.4; 3) P1 = 

0.7, P2 = 0.3; 4) P1 = 0.8, P2 = 02. For each pair of P1 

and P2, we choose four values of m such that Bayes 
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error is from 0.05 to 0.20. In each of these sixteen 

cases, 10000 independent samples of size N=20, 

N=40, N=60, N=80, N=100, N=120 are generated (in 

all cases n=10). 

Fig. 1-12 display results of synthetic simulations 

(where P1=0.5, P2=0.5, n=10). The experiments show 

that resubstitution, repeated 10-fold cross-validation, 

leave-one-out and random subsampling are 

outperformed by the proposed convex estimator (in 

RMS sense). However, the situation with the convex 

estimators is different. When 20.0Bayes  and N=20, 

the best error estimation method is the proposed 

method, in all other cases all three convex estimators 

perform similarly. The experiments also show that 

repeated 10-fold cross-validation, leave-one-out and 

random subsampling are more variable than optimal 

unbiased estimator, proposed method, 0.632 bootstrap 

and resubstitution. Among the convex estimators 

considered, 0.632 bootstrap is least variable, whereas 

the proposed convex estimator is more variable, but it 

displays less bias. Additionally, resubstitution, random 

subsampling and 0.632 bootstrap are more biased than 

repeated 10-fold cross-validation, leave-one-out, pro-

posed estimator and optimal unbiased estimator. Also, 

when N=20, the proposed method is more biased than 

optimal unbiased estimator and when N > 20, both 

convex estimators perform almost identically. 
 

 

 

 

Figure 1. RMS results, εBayes = 0.05 

 

Figure 2. RMS results, εBayes = 0.1 

 

Figure 3. RMS results, εBayes = 0.15 

 

Figure 4. RMS results, εBayes = 0.2 

 

Figure 5. Variance results, εBayes = 0.05 

 

Figure 6. Variance results, εBayes = 0.1 
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Figure 7. Variance results, εBayes = 0.15 

 

Figure 8. Variance results, εBayes = 0.2 

 

Figure 9. Bias results (absolute values), εBayes = 0.05 

 

Figure 10. Bias results (absolute values), εBayes = 0.1 

 

Figure 11. Bias results (absolute values), εBayes = 0.15 

 

Figure 12. Bias results (absolute values), εBayes = 0.2 

 

Figure 13. Theoretical coefficients 

The RMS and variance results for P1 > 0.5 (not 

shown here explicitly) are similar to those for P1 = 

0.5. However, the situation with bias is slightly 

different. When P1 = 0.8, the proposed convex 

estimator is better than resubstitution and 0.632 

bootstrap, but worse than repeated 10-fold cross-

validation, leave-one-out and random subsampling. 

Analogical situation is when P1 = 0.6 or P1 = 0.7 and 

20.0Bayes . In the remaining cases, the bias of the 

proposed convex estimator is similar to the bias of 

leave-one-out. 
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Fig. 13 shows theoretical coefficients for different 

Bayes errors and sample sizes when P1 = 0.5, P2 = 0.5 

and n = 10. It is clear that in all cases theoretical 

coefficients converge to 0.75 as sample size increases. 

However, the rate of convergence for different Bayes 

error rates is different. Note that the coefficients are 

computed using expressions (10), (11) and (14). 

4.3. Real data 

The experiments are designed in the following 

way: the data set is randomly split into two sets and 

one set is used for both, classifier training and error 

estimation, while the other (much larger set) is used to 

approximate conditional PMC. This procedure is 

repeated 10000 times. Real world experiments were 

conducted using the following data sets: 

Pima Indian Diabetes data [1]. It consists of 768 

instances that are diabetes positive (268) or diabetes 

negative (500). The number of features is 8. We 

consider three training/error estimation samples of 

size 32, 40 and 48. 

QSAR biodegradation database [13]. This data set 

describes 1055 molecules that are ready biodegradable 

(356) or not ready biodegradable (699). The number 

of features is 41. Training/error estimation sample size 

is 60, 80, 100 and 120. 

Spambase data set [1]. This datebase is composed 

of 4601 instances of which 1813 are spam and 2788 

are non-spam. The number of features is 57. We use 

three training/error estimation samples of size 60, 80 

and 100. 

Banknote authentication data [1]. This data set 

consists of 1372 instances of which 762 are classified 

as genuine and 610 are classified as forged. The 

number of attributes is 4. Training/error estimation 

sample size is 20, 30 and 40. 

Fig. 14-25 show the experimental results of all six 

error estimation methods on four real world data sets. 

Here we can see that the proposed method outper-

forms all non-convex error counting estimators (in 

RMS sense). The closest competitor to the proposed 

method is 0.632 bootstrap. This method performs 

better in Banknote authentication data set and is com-

parable to the proposed convex estimator in Spambase 

 

Figure 14. RMS results, Pima Indian Diabetes data 

 

Figure 15. RMS results, QSAR biodegradation data 

 

Figure 16. RMS results, Spambase data 

 

Figure 17. RMS results, Banknote authentication data 

 

Figure 18. Variance results, Pima Indian Diabetes data 
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Figure 19. Variance results, QSAR biodegradation data 

 

Figure 20. Variance results, Spambase data 

 

Figure 21. Variance results, Banknote authentication data 

 

Figure 22. Bias results, Pima Indian Diabetes data 

 

Figure 23. Bias results, QSAR biodegradation data 

 

Figure 24. Bias results, Spambase data 

 

Figure 25. Bias results, Banknote authentication data 

data set. In all other cases, the proposed method 

performs better than 0.632 bootstrap. The experiments 

also show that the variance of the proposed convex 

error rate estimator lies between the variances of 0.632 

bootstrap and random subsampling. Additionally, the 

proposed method is less biased than 0.632 bootstrap 

and resubstitution. 

5. Conclusion 

In this paper, we have proposed a new convex 

error estimation method, which approximates 

unbiased convex classification error rate estimator. 

Experiments with real world and synthetic data sets 
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show that resubstitution, repeated 10-fold cross-

validation, leave-one-out and random subsampling are 

outperformed by the proposed convex estimator (in 

RMS sense). The closest competitor to the proposed 

convex estimator is 0.632 bootstrap, however, 

contrary to the proposed method, bootstrap is more 

biased. 
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