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Abstract. This paper deals with the algorithm for an estimate of fundamental frequency, which is based on signal 
processing by window functions in time domain and parametric Cubic interpolation in frequential domain. In the 
second part of the paper, the results of the simulation of the algorithm for Catmull-Rom’s, Greville’s and Greville’s 
two-parametric kernel are presented. Taking MSE as a measure of the algorithm quality, optimal parameters of the 
selected kernel, selected kernel and a suitable window function are defined. 
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1. Introduction 

In many fields of speech signal processing, such as 
speech coding, speech synthesis, speech and speaker 
recognition, it is necessary to define a fundamental 
frequency. One characteristic example is the improve-
ment of speech signal quality by reducing dissonant 
frequencies [1, 2]. There are a great number of algo-
rithms for defining fundamental frequency, where the 
analysis is done in time and frequential domain (for 
example [3, 4]). 

Many signals, such as speech, radar or sonar sig-
nals, have spectral characteristics variable in time, 
and, thus, cannot be efficiently described by Fourier’s 
analysis. The problem of the estimate of Instantaneous 
Frequency (IF) is of special interest. In [5, 6], an 
algorithm for defining IF and fundamental frequency 
is presented. The algorithm is based on speech signal 
filtration by Bandpass filter and making decisions on 
Discrete IF estimator with time signal processing, 
using smoothing window functions. In [7,8], the algo-
rithm for IF estimate using Polynomial Wigner-Ville 
Distribution (PWVD) is described. Polynomial algo-
rithm is based on finding out parameters of peak of 
PWVD. Some methods of estimate of IF with mono-
componential signal are proposed in [9, 10, 11]. In 
[12], an algorithm for localization of phase monocom-
ponential signal with phase modulation is presented. 

PWVD algorithm does not show satisfactory re-
sults with multicomponential signals, that is, interpo-
lation of results is hindered [13]. In order to increase 
time–frequential resolution, various distributions are 
applied [14]. In [15, 16], the square time-frequential 

resolution, which gave good results with multicompo-
nential signals, is presented. In [17], two-sided linear 
prediction (TSP) is presented for IF estimate. In the 
paper [7], the algorithm for finding out the peak of 
PWVD is described, where the accuracy of defining 
the position of the peak is increased by using interpo-
lation. Detailed analysis proved that linear interpola-
tion is suitable for SNR (Signal-to-noise ratios) low 
values, whereas sinc interpolation is suitable for high 
values. 

Frequently used method for defining fundamental 
frequency is based on picking peaks of amplitudinal 
characteristic in specified frequential domain. This 
method is used to analyse signal values in a spectrum 
at points where DFT is calculated. More often, the true 
value of frequency is not at frequencies where DFT is 
calculated, but between two samples. Error of fre-
quency estimate is therefore caused and it is in the 
interval between [-Fs /(2N)Hz, Fs /(2N)Hz], where Fs is 
the sampling frequency and N is the number of points 
where DFT is calculated. One way to reduce the error 
is to increase the sampling frequency. However, it 
requires hardware-software arrangement of the system 
for signal processing. The other way is defining 
interpolation function and estimate of spectrum 
characteristics in the interval between two sampes. By 
this procedure, the reconstruction of the spectrum by 
DFT is done. Parameters of the spectrum are after that 
defined by analytic procedures (differentiation, integ-
ration, extreme values, …) [18].  

Calculation of interpolation function using Para-
metric Cubic Convolution (PCC) is shown in [19, 20]. 
The special case of PCC interpolation, which is used 
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Step 2: By using peak picking algorithm [26], the 
position of the maximum of the real spectrum that is 
between kth and (k+1)th samples is determined, where 
the values X(k) and X(k+1) are the highest in the 
specified domain. 

in computer graphics, is called Catmull-Rom’s inter-
polation [21]. Detailed analysis of fundamental 
frequency estimate, as well as the advantage of PCC 
interpolation which is primarily seen in the efficiency 
of defining parameters of interpolation function, are 
described in the paper [22]. In [23], there are the 
results of using PCC interpolation for defining 
fundamental frequency in case of using certain win-
dow functions in discrete speech signal processing. 
Analyses of the algorithm’s efficiency were done by 
simulation procedures, where Mean Square Error 
(MSE) is used as a measure of the algorithm quality. 
The best results were obtained by the algorithm with 
the implemented Blackman’s window function. The 
analysis of the algorithm’s efficiency in the circums-
tances of variable SNR, with the presence of a great 
number of relevant harmonics of fundamental fre-
quency, shown in [24], confirmed the algorithm’s 
efficiency with the Blackman’s window function. 

Step 3: The position of the maximum of the spect-
rum is calculated by PCC interpolation. The reconst-
ructed function is: 

( ) ( ) 1kfk    ,
1

+≤≤−⋅= ∑
++

−=

ifrpfX
Lk

Lki
ir , (2) 

where pi=X(i), r(f) is the kernel of interpolation and L 
is the number of samples that participate in inter-
polation. 

The quality of the algorithm for the estimate of 
fundamental frequency can be also expressed by MSE: 

In the following text, an algorithm of estimate of 
fundamental frequency using PCC interpolation with 
Catmull-Rom’s, Geville’s and two-dimensional kernel 
is described. The kernel parameters and the imple-
mented window function will be determined so that 
the minimal error of fundamental estimate can be 
generated. 

The paper is organized as follows. In section 2, the 
algorithm of fundamental frequency estimate with 
PCC interpolation is described. The analytic shape of 
Catmull-Rom’s [22], Greville and Greville’s two-para-
metric kernel (G2D), is presented. In section 3, the 
algorithm for defining optimal values of parameters of 
interpolation kernel in relation to the implemented 
window function, is described. In section 4, a tabular 
presentation of the results of the simulation is given 
and a comparative analysis is done, in order to define 
the interpolation kernel with the optimal parameters 
and an adequate window function. 

2.  Algorithm of estimate of fundamental 
frequency 

The algorithm of estimate of fundamental frequen-
cy is shown in Figure 1. It can be realized throughout 
a few steps: 

 
Figure 1. Algorithm of estimate of fundamental frequency 

Step 1: The spectrum is calculated by using DFT 
on the discrete signal x(n) that is achieved by time 
sampling of a continuous signal s(t): 

( ) ( )( nxDFTkX = )

)
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
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where f is true fundamental frequency and fe is funda-
mental frequency estimate.   

Next, we give definitions of the interpolation 
kernels which are tested in this paper: 

a) Catmull-Rom’s interpolation kernel: 
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The Maximum of the reconstructed function Xr(f) 
is found by differentiating in spectrum domain and 
equalizing  the first derivative to zero. The position of 
the maximum is 
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b) Greville’s interpolation kernel: 
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The spectrum is calculated at discrete points k=0, ... 
N-1, where N is the length of DFT. The real spectrum 
of signals x(n) is continuous, whereas DFT defines the 
values of the spectrum at some discrete points. 
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c) Greville’s two-parametric cubic convolutional 
kernel (G2D) [21]: 

In the paper [22], the results of the estimate of 
fundamental frequency, using PCC algorithm and 
Catmull-Rom’s kernel, are presented. The algorithm is 
applied to the simulation signal: 
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where fo is the fundamental frequency, θi and aι are the 
phase and amplitude of the i-th harmonic, respectively, 
K is the number of harmonics, M is the number of 
points between two samples in the spectrum at which 
PCC interpolation is carried out, fs is sampling 
frequency and N window length. In the simulation, fo 
and θi are random variables uniformly distributed in 
the range [G2 (97.99Hz), G5 (783.99Hz)] and [0,2π], 
respectively. The sampling frequency is fs=16 kHz, 
and window length N=512, by which the analysis of 
subsequencies, which last for 32ms, is provided. The 
results presented in the rest of the paper relate to 
fo=187.5Hz, K=1, M=100. 

In Eq. (4-8), there are parameters α and β. The 
Optimal values of these parameters will be determined 
by the minimal value of MSE, for Catmull-Rom’s, 
Greville’s and G2D kernels. For the first two of them, 

(MSEopt
α

=α minarg ) , (9) 

and for the G2D kernel: 
( ) (MSEoptopt

βα
)βα

,
minarg, = . (10) 

In the paper [22], optimal values are defined for: 
a) Hamming’s, b) Hann’s, c) Blackman’s window 
function. In the following subsections of our paper, 
optimal values of Catmull-Rom’s kernel will be pre-
sented, when: a) rectangular, b) Kaiser’s and c) tri-
angular window function is applied. In addition, para-
meters for Greville’s and G2D kernels will be defined. 
The analysis will include rectangular, triangular and 
Kaiser’s window functions. 

3.1. Catmull-Rom’s kernel    The Detailed analysis in [22,23,24] showed that 
the minimal value of MSE depends on the application 
of window function by which signal processing x(n) is 
carried out in time domain. MSE will be defined for: 
a) Hamming’s, b) Hann’s, c) Blackman’s, d) rectangu-
lar, e) Kaiser’s and f) triangular window. 

Using the algorithm for defining parameters of 
interpolation kernel, MSE(α) charts are drawn and αopt 
values are determined for: a) rectangular (Figure 2,  
αopt=-2.61), b) Kaiser’s (Figure 3, αopt=-1.125), and 
c) triangular (Figure 4, αopt=-1.028)  window func-
tions. 

 

3.   Defining the parameters of interpolation 
kernels 

The Parameters of interpolation kernels α and β 
(Eq. (4), (7), (8)) are defined according to the fol-
lowing algorithm: 

Step 1: оut of time continual signal x(t) by samp-
ling in the time domain a discrete signal x(n) is got. 
The signal x(n) is being modified by the window func-
tion w(n) of length N. 

Step 2: by using DFT, discrete spectrum X(k) is de-
termined; 

Step 3: by using PCC interpolation, the reconstruc-
tion of continuous function, which stands for the 
spectrum X(k), is carried out; 

Figure 2. MSE(α) for the application of rectangular window 
in Catmull-Rom’s PCC interpolation Step 4: MSE is calculated for different values of 

the parameters α and β, depending on the implemented 
window function; 

Step 5: parameters αopt and βopt are defined, for 
which the minimal value of MSE is achieved. 
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Figure 3. MSE(α) for the application of Kaiser window  

in Catmull-Rom’s PCC interpolation 

 
Figure 4. MSE(α) for the application of triangular window 

in Catmull-Rom’s PCC interpolation 

3.2. Greville’s kernel 

MSE(α) charts for Greville’s kernel are presented 
in Figure 5. αopt values are calculated for: a) Ham-
ming’s (Figure 5a, αopt=-0.57), b) Hann’s (Fig.5b, 
αopt=-0.449), c) Blackman’s (Figure 5c, αopt=-0.415), 
d) rectangular (Figure 5d, αopt=-2.25), e) Kaiser’s 
(Figure 5e, αopt=-0.6676) and f) triangular (Figure 5f, 
αopt=-0.575) window function. 

3.3 G2D kernel 

MSE(α,β) charts for G2D kernel are presented in 
Figure 6. αopt and βopt values are calculated for: a) 
Hamming’s (Figure 6a, Figure 6b, αopt=-0.55, 
βopt=0.03), b) Hann’s (Figure 6c, Figure 6d, αopt=-0.5, 
βopt=0.015), c) Blackman’s (Figure 6e, Figure 6f, 
αopt=-0.42, βopt=0.002), d) rectangular (Figure 6g, 
Figure 6h, αopt=-2.272, βopt=0.005), e) Kaiser’s (Fi-
gure 6i, Figure 6h, αopt=-0.681, βopt=0.001) and f) tri-
angular (Figure 6k, Figure 6l, αopt=-0.6, βopt=-0.001) 
window functions. In Figures 6b, 6d, 6f, 6h, 6j and 6l, 
the positions of MSE(αopt,βopt) minimum in (α,β) 

plane for Gerville’s (point A) and G2D (point B) inter-
polation kernels, are shown. Vector AB shows the 
position change of min(MSE(αopt,βopt)). 

 
a) 

 
b) 

 
c) 

 
d) 

e) 
 

f) 

Figure 5. MSE(α) for the application of: a) Hamming, 
b) Hann, c) Blackman, d) rectangular, e) Kaiser and 

f) triangular windows in Greville’s PCC interpolation 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 
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g) 

 
h) 

 
i) 

 
j) 

 
k) 

 
l) 

Figure 6. MSE(α,β) for the application of: a) Hamming, 
c) Hann, e) Blackman, g) rectangular, i) Kaiser and 
k) triangular windows in G2D PCC interpolation;  

Positions of min (MSE(αopt,βopt)) in the plane (α,β) of:  
b) Hamming, d) Hann, f) Blackman, h) rectangular,  

j) Kaiser and l) triangular windows in G2D PCC 
interpolation 

4. Comparative analysis 

Comparative analysis of the algorithm for the 
estimate of fundamental frequency is done in relation 
to MSE. In Table 1, MSEmin values for Catmull-Rom’s 
[8] and Greville’s interpolation are shown. In Table 2, 
values αopt and βopt and MSE2Dmin with G2D interpo-
lation are listed. 

According to these above reported results, it is 
clear that: 

a) Greville’s interpolation estimates the fundamen-
tal frequency more accurately than Catmull-Rom’s 
interpolation; 

b) G2D interpolation estimates the fundamental 
frequency more accurately than Greville’s interpola-
tion; 

c) in all algorithms, min(MSE(α,β)) is with the 
application of Blackman’s window function: Catmull-
Rom (MSEmin=0.001), Greville (MSEmin=0.0009) and 
G2D (MSEmin=0.000377). 
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Table 1. MSE minimal values and αopt with the application 
of Catmull-Rom’s and Greville’s interpolation 

Catmull-Rom Greville 
 

αopt MSECRmin αopt MSEGmin 

Hamming -1.005 0.023 -0.57 0.0175 

Hann -0.885 0.004 -0.449 0.0027 

Blackman -1.801 0.001 -0.415 0.0009 

Rectangular -2.61 0.515 -2.254 0.4054 

Kaiser -1.125 0.02 -0.6676 0.0124 

Triangular -1.028 0.0028 -0.575 0.002 

Table 2. MSE minimal values, αopt and βopt with the 
application of G2D interpolation 

 αopt βopt  MSE2Dmin 

Hamming -0.55 0.03 0.0046 

Hann 0.5 0.015 0.0018 

Blackman -0.42 0.002 0.000377 

Rectangular -2.272 0.005 0.2244 

Kaiser -0.681 0.001 0.0096 

Triangular 0.6 -0.001 0.001 

5. Conclusion 

The simulation results of the estimate of funda-
mental frequency by the algorithm with PCC interpo-
lation are presented in this paper. The results of the 
application of Catmull-Rom’s, Greville’s and G2D 
interpolation kernels and several window functions are 
analysed. The given results clearly point out the 
advantage of the algorithm with the implemented G2D 
interpolation kernel and Blackman’s window function. 
Given in percentages, the minimal value of MSE is for 
43% and 58,1% lower than MSE with Catmull-Rom’s 
and Geville’s interpolation, respectively. 
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