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Abstract. In the article, we present a method for data classification that is based on the Dirichlet mixture statistics. 
An important property of the method is its ability to classify data of any type. To test performance of the method, we 
implemented it as a stand-alone program and tested it on the three different databases of real data. Receiver operating 
characteristics of the classification was used to compare the method of Dirichlet mixtures to the other classification 
methods. The classification results and its performance are discussed in the article. The practical value of this study is 
that the method based on the complex statistics is implemented as a tool and compiled as a library for further 
development of machine learning environments. 

 
1. Introduction 

“Classification, the separation and naming of ap-
pearances, is one of the most basic cultural activities 
of humanity; it is a fundament for our science and 
civilization” [1]. These are words written by Frank 
Hampel, the famous professor of statistics, and they 
have a philosophical meaning as well. Basically, clas-
sification is grouping of data into predefined 
categories according to their similarity, where simila-
rity in particular can be measured by means of an 
ordered set of related attributes that logically and 
physically describe data. In the real world, diversity of 
data is high and quantities of data to be processed in 
order to obtain significant results differ from field to 
field. In addition, data specificity varying over fields 
of investigations requires specific expertise systems to 
process them correctly. All this makes human difficult 
to directly inspect data distributions, to interpret those, 
to accept hypotheses, or reject them. Therefore, the 
main goal of data classification is to simplify repre-
sentation of the real world and to infer rules by which 
data could successfully be mapped into categories. In 
other words, classification proposes clearer under-
standing about data. 

In order to make observed data proper for classify-
cation they are assigned to meaningful categories. 
Without accurate and systematic specification of 
categories according to common properties, statistical 
models applied to data cannot guarantee reliable and 
mutually comparable results. Developed mathematical 
and statistical models formally describe distribution of 

data with respect to common properties, what means 
that those models can be applied to data to classify 
them when there is no knowledge about categories 
data could belong to. However, for valid classification, 
data and classification in general must meet several 
essential requirements. For instance, to avoid ambigui-
ty observed data cannot have been assigned to mul-
tiple categories, a set of categories must be consistent, 
data should be predicted to belong to one category, 
and classification must have conceptual base and 
logical structure. 

Accuracy of classification depends on mathema-
tical models used to classify data, or in other words, it 
depends on how accurately model-based distribution 
simulates that of the real world data. There are a lot of 
methods that can successfully be (have been) used to 
create formal models. Consequently, space of feasible 
classification architectures built on these models and 
tuned for specific problems is hardly practically 
exhaustible. 

One of the recently published classification me-
thods [2] based on theory of graphs assigns data to 
categories according to a dynamically composed 
graph. That classifier applied to an image recognition 
problem is compared to Support Vector Machines [3]. 
Another publication [4] presents a classifier that is 
based on computations of multivariate Gaussian 
density where the parameters of the classifier are 
optimized by Expectation Maximization algorithm [5]. 
This model-based clustering has successfully been 
applied to Magnetic Resonance Imaging for classifi-
cation and clustering of MRI data. Support Vector 
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machines (SVM) have extremely become popular in 
bioinformatics. Various SVM architectures [6-9] are 
used to classify proteins into the appropriate classes 
and folds. In addition, SVM architectures are con-
figured with neural networks [10], dynamic program-
ming algorithms [11], and other methods in order to 
make particular classifier better in performance. The 
methods mentioned above reveal a small part of their 
possible usage in classification of the real world data, 
and they are just a few examples of practical 
classifiers. 

∑ =
=

l

j jj gq
1

ϕ , (2) 

where gj are the individual Dirichlet densities with 
their own set of parameters α , and q{ } ||

1
A
=

=
ijij α j are the 

mixture coefficients for which the sum  

holds true. We name the entire set of parameters 
∑ =

=
l

j jq
1

1

{ } { }( )l
jj

l
jj q

11
,

==
=Θ α  a Dirichlet mixture model. Each 

component in the mixture formally describes a 
particular probability density defined by parameters, 
hence their mixture is useful in data classification 
where data possess the properties the individual 
components can recognize. A mixture with one com-
ponent becomes a simple Dirichlet density. The num-
ber of components in a mixture is unlimited but the 
large number of them increases the number of para-
meters in a model and makes finding of the optimal 
parameter values difficult. 

In this article, we present a classification method 
that is based on computations of Dirichlet mixture 
density. In mathematical statistics, Dirichlet mixtures 
are important where multinomial distribution is used 
to describe frequency characteristics of some data. 
Dirichlet mixtures and mixtures in general are specific 
in that mean they can be adapted to classify data 
whose attributes can logically be grouped to compose 
complex data structures [12]. For instance, amino acid 
distribution in multiple protein sequence alignments 
[13] can expose various biologically important and 
specific regions. Using the posterior probability distri-
bution estimated from the analysis of multiple se-
quence analysis, one is able to model biologically im-
portant evolutionary processes [14, 15].  

2.2. Classification by Dirichlet mixture 

Let us suppose that the letters from an alphabet A 
are multinomial distributed random variables and for 
each alphabet letter ai we have the corresponding 
frequency ni that matches the number of occurrences 
for that letter. Then the entire set of frequencies can be 
denoted as { } ||

1
An == iin  and the likelihood of the 

frequency vector n is defined  

The method presented in this article can be used 
for classification of data of any kind. Though Dirichlet 
mixture method was used to solve some particular 
problems [16] and there were derived general Bayes 
mixture models [17, 18], to our knowledge, a tool 
based on Dirichlet mixtures has not been developed to 
classify data of any kind. 
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i in i is an occurrence probability 
of a letter ai from the alphabet A. There are a number 
of methods how to estimate pi and one of them is to 
use a Dirichlet density or a mixture of those. Assume 
that the random variables pi have the Dirichlet density 
function defined by (1). We see that the probability 
vector p depends on a certain parameter vector αj, 
what means that the frequency vector likelihood 
depends on the parameters αj so that 

2. Methods 
2.1. Dirichlet densities and their mixtures 

A Dirichlet density g is a probability density 
function of probability vectors, p [12, 16]. Let us 
introduce some alphabet A with cardinality denoted as 
|A|. Then each possible vector p corresponds to a 
priori probabilities for distribution of the letters of 
alphabet A. A Dirichlet density is defined by a vector 
of parameters α  with α{ } ||

1
A
== iiα i > 0 and is equal to 

( )Γ α

( ) ( ) ( )∫
∈

=
Pp

pαppnαn dgPP jj ||| , (4) 

( )
( )∏∏ =

−

=
Γ

=
||

1
1

||

1

| A
Aαp

i
α
i

i i

ip
α

g , (1) 
where integral is taken over the entire domain P of 
probability vectors p. Substituting (1) and (3) into (4) 
we obtain [16] 
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If we assume that p conforms a Dirichlet mixture 
density, then the frequency vector n depends on the 
model parameters Θ and the likelihood of n is defined 
as follows: 

A mixture of Dirichlet densities is a weighted su-
perposition of individual Dirichlet densities that con-
stitute a new probability density function. Each indivi-
dual density in the mixture is assigned a weight called 
mixture coefficient, and each individual density is 
called a component of the mixture. A Dirichlet mix-
ture density ϕ composed of l components is defined 
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One can think of data classification as a process 
consisting of two stages: training and classification. In 

158 



Data Classification Using Dirichlet Mixtures 

the training stage, probabilities used in frequency 
distribution (observed data) should be estimated as 
accurately as possible. In the classification stage, it is 
supposed those estimated probabilities match distribu-
tion of the frequencies observed in the classification 
set of data best. That means, if in the training stage 
one have obtained the optimal probabilities, it is very 
likely that in the classification stage one will be able 
to classify observed data (not used in the training 
stage) accurately. However, a question is how to find 
optimal estimators for probabilities. 

Posterior mean estimate and maximum likelihood 
estimation are a few techniques of hypothesis testing. 
It is known [20, 21] that posterior mean estimate takes 
the form 
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where p is a vector with components pi and pi is 
supposed to be a probability having the Dirichlet 
mixture density function (2). Once we have the 
Dirichlet mixture, we can expand  
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It is also known from the theory [22] that the 
posterior mean estimate in the case of a single 
Dirichlet density is equal to 
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here the parameters {α1,i} comprise a single vector α1  
(a mixture consists of one Dirichlet density). Using 
Bayes’ rule it is possible to express 
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Substituting (10) and (11) into (9), we obtain 
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Now we have the posterior mean estimates for all 
the probabilities {pi}. However, we have not defined 
yet how to obtain the optimal parameter values from 
the model Θ. In this place we have to return shortly to 
the expression of P(n | Θ). The frequency likelihood 
depends on all the parameters we should find and on 
the observed frequency vector n. Before making a 
certain decision, people often perform many measure-
ments to get enough experimental data. The same is 
with automata: the more data are used in the training 
of a machine, the more accurate results one could 
expect to obtain employing the machine on the control 
dataset. For instance, a rule-based machine will derive 
more robust rules from the data collected from many 
patients, say, with the arrhythmia heart disease, than in 

the case when the machine will be trained on the data 
from one patient. Or, one will not be able to reliably 
classify proteins to their families if a classifier has 
been trained according to a distribution of amino acids 
from the proteins one per family. Hence, sufficient 
amount of data is crucial for development of an accu-
rate classifier. 

A vector n corresponds to one observation (each 
element matches one attribute). Then, a classifier is 
supposed to process many vectors { }  to have opti-
mized the parameters as accurately as possible. If we 
assume the set of vectors {n

N
cc 1=n

c} to be independent and 
identically distributed (iid) random variables, then 
according to maximum likelihood estimation [21] the 
set of parameters Θ can be optimized by maximizing 
the product ΠcP(nc | Θ). Since the logarithm is a 
monotonically increasing function, it is possible to 
minimize the sum of logarithms instead of maxi-
mizing the product of raw probabilities: 

( ) ( )∑ =
Θ−=Θ N

c cPf
1

|log n . (13) 

The last expression (13) gives the objective 
function to be minimized in order to find the optimal 
parameters for data classification machine. 

3. Implementation 

To test capabilities of Dirichlet mixtures to classify 
data of any kind, we have implemented a classifier 
based on Dirichlet mixture statistics as a stand-alone 
tool and compiled as a library of classification rou-
tines. Since in this article we do not consider the prog-
ramming aspects of the developed software, we limit 
ourselves to some implementation features of the tool 
which we used in this work to test how well the Diri-
chlet mixture method performs. For implementation of 
the tool we used the routine library of an integrated 
data mining system, Rosetta 1.0 [23]. Rosetta encom-
passes a machine learning computational kernel based 
on rough sets theory [24, 25] as well as other compu-
tational facilities used to process and prepare data for 
classification with the rules derived in the training 
stage be more rigorous. Those additional facilities in-
clude data discretization, reduction methods, scaling, 
completing and other algorithms. However, we used 
the Rosetta library only to represent data in a format 
Rosetta does, i.e. we used the Rosetta structures to 
keep data in the internal representation formats. 

Rosetta represents data with a table in which each 
row corresponds to a single observation called an 
object. Values in the columns (observation values) 
used to name the attributes of the table characterize 
and physically describe the objects. Let us denote not 
an empty set of objects by U and let T be not an empty 
set of attributes, then an information system (a table) 
S = ( U , T ). In order to be capable to classify data, in 
the training stage there must be given a priori infor-
mation about belonging of the objects to the classifi-
cation categories called decision classes. One object 
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can belong to one and only one decision class and that 
means measurements for the object correspond to a 
known classification category. If we denote an additio-
nal attribute for classification categories, called a 
decision attribute, by d ∉ T, then an augmented 

information system with the decision attribute is 
called a decision system and has a notation 
S = ( U , T ∪ {d}). An example of a decision system is 
shown in Figure 1. 
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Figure 1. An example of a decision table with the objects enumerated.  

Each of the objects is described by the set of global properties called attributes.  
The last attribute is a decision attribute that defines a decision class an object belongs to 

The source code of the Rosetta system is freely 
available to use for non-commercial purposes [26]. 
The code is structural and reusable. Nevertheless, our 
decision to use this system is not due to its publicity 
alone but due to successful applications of the system 
itself and of the methods encapsulated in it as well. 
Rough sets and the Rosetta system proved to be useful 
in a number of scientific investigations: in identifica-
tion and prediction of gastric carcinomas according to 
microarray gene expression profiles [27], in early 
diagnosis of coronary artery disease [28], in predicting 
protein functions [29], and in discovering regulatory 
binding sites according to gene expression profiles 
[30] and in the other projects. Therefore, it would be a 
good idea to compare the classifier of Dirichlet mix-
tures to the classification method based on rough sets.  

For all the datasets we chose to test the Dirichlet 
mixture classifier on, we compare the classifier with 
two other classification methods, namely, with classi-
fication by rules derived on the basis of rough sets 
computations and with the Naïve Bayes method [31]. 
We chose several databases from different scientific 
fields to check the pronounced feature of the method 
to classify data of any kind. A question may here arise 
is how to computationally treat data of any kind where 
types of attributes may vary from table to table.  

Each attribute in a decision table is given a data 
type (Figure 1). There are three data types an attribute 
can be of: integer number, floating point number, and 
string. Floating point numbers and strings are conver-
ted to integers so that mapping from those data types 
is unique. After attribute values are converted, a distri-
bution of values in a decision table is supposed to be a 
distribution of frequencies that make up frequency 
vectors nc for each of the objects in the table. When 

negative values for attributes are observed, then each 
value in a column is linearly transformed so that it 
acquires a non-negative value. The range of values an 
attribute with its value can fall in may be very wide. 
Hence, scaling of values is performed before optimi-
zation of Dirichlet mixture parameters takes place. 
The scaling is necessary because large particular attri-
bute values can negatively affect the optimization pro-
cess. 

The objective function (13) to be minimized is 
continuous and rather complex because: (i) the num-
ber of observations is unlimited and the number of 
frequency vectors can be large, (ii) the objective func-
tion is to be computed in a multi-dimensional space 
where dimensionality of the space depends on the 
number of parameters of a Dirichlet mixture model. 
For example, if one defines the Dirichlet mixture 
model to consist of 20 components and each of them 
has 20 pseudo frequency parameters , then 
there are 420 parameters overall to be optimized. The 
function has many local minima (see Figure 2 for 
illustration) and to find the global minimum point is a 
complicated task. 

{ }20
1=ijiα

To optimize the objective function, we used three 
optimization methods: genetic algorithm [32, 33], the 
conjugate gradient method, and the Levenberg-Mar-
quardt method [34]. Genetic algorithm is a combi-
natorial optimization method that best fit for problems 
where an objective function is discrete or has many 
local minima. However, as we see later, the other two 
optimization methods are used not needlessly. There 
are cases [35] where genetic algorithm converges 
rather slowly and requires many generations to per-
form. We decided to implement [36] the convex opti-
mization methods (conjugate gradient and Levenberg-
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Marquardt) to learn which of the optimization me-
thods fit our problem best. A weak point of the convex 
optimization methods is that sometimes their perfor-
mance in finding the global minimum for the most 

part depends on how lucky one is in choosing the 
starting point for the iterative search [34]. Combining 
combinatorial and convex optimizations can lead to 
better results. 

 
Figure 2. The landscape of the objective function (13) is drawn for a specific problem using a Dirichlet mixture model consisting 

of 20 components and 7 pseudo frequencies in each. The figure shows how the objective function varies with respect to two 
arbitrary chosen parameters α3,3 and α5,7 from the components 3 and 5, respectively, when the other 158 parameters are set to be 
fixed near a locally optimum point. The inset illustrates the objective function’s profile with respect to the same parameters, α3,3 

and α5,7, when they vary in the neighborhood of another locally optimum point moved closer towards the origin 

4. Results and discussion 

To test the performance of the Dirichlet mixture 
classifier, we chose three databases from the machine 
learning database repository of the University of Cali-
fornia [37]: the cardiac arrhythmia database, the E.coli 
protein classification database, the database for 
classification of radar returns from the ionosphere. Be-
fore the training of the classifiers, we divided all the 
datasets into the training and testing datasets so that 
data in the testing dataset are not used to be in the 
training dataset. We trained the classifiers on the 
training dataset and tested them on the testing dataset. 
The ratios of the sizes of the training and testing data-
sets for the arrhythmia, E.coli, and ionosphere data-
bases were 90:10, 86:14, and 86:14, respectively. In 
all cases we compiled the testing datasets to have 
equal percentage of the objects from all the classi-
fication categories in a dataset. For example, if there 
are two classification categories in the ionosphere 
database, ‘g’ and ‘b’, then the testing dataset for this 
database would contain 14% of the objects from both  
classification categories ‘g’ and ‘b’. 

We assess the performance of the Dirichlet mixture 
classifier by the ROC characteristic curves [38]. The 
ROC curves characterize the classification accuracy 
with a set of points corresponding to different levels of 

specificity and sensitivity. Specificity indicates how 
accurately (what percentage) a particular classifier has 
recognized objects that do not actually belong to a 
classification category. Sensitivity indicates how accu-
rately a classifier has recognized objects that do be-
long to the classification category. 

To examine how the Dirichlet mixture classifier 
compares to the other classification methods, we draw 
the ROC curves for the other two methods: the classi-
fication by rules generated by rough sets computations 
and the Naïve Bayes method. There were used the 
same datasets as for the classification by the Dirichlet 
mixtures. Before classifying the data by the rules, the 
data were applied the discretization and reduction 
algorithms under the rough sets theory to make the 
rules more generalized. The Naïve Bayes method was 
also fed the data after discretization because doing so 
led us to the better classification results. There are 
depicted the best ROC curves obtained for the both 
classification methods, the classification by rules and 
the Naïve Bayes classifier. No discretization and re-
duction were performed in the case of classification by 
the Dirichlet mixtures. 
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4.1. Arrhythmia dataset 

The data [39] are compiled to distinguish between the 
presence and absence of cardiac arrhythmia. The 
classification categories cover 16 distinct levels of 
cardiac arrhythmia, the first of which refers to 
“normal”. The data comprise 279 attributes: age of 
patients, sex, height, weight, number of heart beats per 
minute, and other specific information. The data are 
collected form the 452 patients (number of objects). 
There are missing attribute values, namely 0.33%. 

 
a) 

 
b) 

Figure 3. The classification performance illustrated by the 
ROC characteristic curves for the Dirichlet mixture 

(Dirichlet mixt.), for the rules (Rules), and for the Naïve 
Bayes method characterizes the predictions obtained for the 
Arrhythmia dataset for the two classification categories, ‘1’ 

(a) and ‘10’ (b). The area under the ROC curve (AUC) 
expresses the classification performance in one value.  

The parameter σ denotes standard deviation of the AUC 
computation 

We trained the Dirichlet mixture classifier with the 
conjugate gradient method, the Levenberg-Marquardt 
method, and the genetic algorithm. However, the 

reasonable results were obtained by genetic algorithm 
while the other two methods failed to converge or 
stuck in a local minimum. We noticed from the ana-
lysis of the landscape of the objective function that the 
surface of the function is rather flat and it most likely 
happened to be a reason why the convex optimization 
methods failed. 

We tried various compositions for the Dirichlet 
mixture model and learned that for this dataset a 
simple Dirichlet classifier performs best. So, one mix-
ture component and 279 pseudo frequency parameters 
{ }279

1,1 =iiα  comprised the Dirichlet mixture model. We 
ran 200 genetic algorithm’s generations and applied 
the even-odd crossover algorithm and the flip 
mutation algorithm for genes. The other parameters 
we chose: crossover probability, 0.9, mutation prob-
ability, 0.1, population size, 60, number of individuals 
to be replaced in each generation, 9. The mutation 
probability is relatively high because of we tried to 
simulate rapid mutations and to reduce number of 
generations required for convergence of the algorithm. 
We ran more than 2000 generations with the mutation 
probability set to 0.01 as well and obtained similar 
results.  

From the ROC curves (Figure 3) one can realize 
that for the two classification categories (‘1’ and ‘10’) 
the classification by the rules and the classification by 
the Dirichlet mixture differ slightly. The Naïve Bayes 
method was unable to classify this dataset: the area 
under the ROC curve (AUC) is equal to 0.5 indicating 
a random classification. The classification by the rules 
was superior to the dirichlet mixture classifier a little, 
though the accuracy of the Dirichlet mixture classifier 
for the categories ‘1’ and ‘10’ is 75% and 20%, 
respectively; while that of the classification by the 
rules for the same categories is 17% and 0% altoge-
ther. The overall accuracy of the Dirichlet mixture 
classifier is 47.5% while that for the rules is 10%. 
Such numbers can be explained by the fact that the 
predictions made by the Dirichlet mixture classifier 
were comparable to each other and this reduces the 
reliability of the results. On the other hand, ROC 
curves are drawn by changing a threshold value a clas-
sifier’s output must exceed to treat it as a prediction, 
and this could explain why the performance of the 
classifications by the Dirichlet mixture and by the 
rules with respect to ROC analysis is found to be 
similar. 

There are 245 objects from the classification 
category ‘1’ and 50 objects from the classification 
category ‘10’. There are more data from the category 
‘1’ and it has influenced the results obtained. 
However, the overall accuracy is not high but we can 
conclude that this dataset is complicated for the auto-
mated machine learning methods. The authors of this 
dataset state [39] that the voting feature interval me-
thod they used in the 10-fold cross-validation [40] 
procedure attained classification accuracy of 62%, 
which is not high. Furthermore, they remarked 

162 



Data Classification Using Dirichlet Mixtures 

frequent discrepancies between the expert’s decisions 
and the classifier’s predictions. 

4.2. E.coli dataset 

The dataset contains data of proteins functioning in 
bacterium E.coli and groups them according to the 
cellular localization sites [41]. Eight different classifi-
cation groups, or categories, correspond to the cellular 
mediums the proteins function in; those are cytoplasm 
(cp), inner membrane with no signal sequence (im), 
periplasm (pm), inner membrane with uncleavable sig-
nal sequence (imU), non-lipoprotein outer membrane 
(om), lipoprotein outer membrane (omL), lipoprotein 
inner membrane (imL), inner membrane with cleav-
able signal sequence (imS). The sequence analysis 
scores as outputs from the signal sequence recognition 
methods contribute 7 attributes for the data. Number 
of the objects (protein information vectors) in the 
dataset is 336. There are no missing attribute values. 

As in the previous case, we tried three optimiza-
tion methods: the conjugate gradient method, the 
Levenberg-Marquardt method, and the genetic algo-
rithm. In contrast to the arrhythmia dataset, the Leven-
berg-Marquardt method performed best though the 
genetic algorithm did approximately well. We used 
various models for the Dirichlet mixture and the one 
performing quite well was of 20 components each 
with 7 pseudo frequency parameters. Probably the op-
timized model obtained by the genetic algorithm could 
have been more precise resulting in more accurate 
classification in case we would have used more than 
several thousands of the genetic algorithm gene-
rations. 

The Levenberg-Marquardt method requires the 
Jacobian to be explicitly provided with the objective 
function. The partial derivatives of the objective func-
tion (13) with respect to the parameters αji of the Diri-
chlet mixture are defined (see [16] for the derivation): 
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Here we used a notation Ψ(z) = Γ′(z) / Γ(z) which 
is the digamma function of argument z. To compute 
the derivatives with respect to qj, we introduce 
variable Qj so that qj = Qj / |Q| where |Q| = ΣjQj. The 
substitution of qj is to ensure the mixture coefficients 
qj sum to one. Computing the partial derivatives with 
respect to Qj ensures us that the required constraints 
will be met and the coefficients qj will be unambi-
guously solved: 
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One can observe that computing of the Jacobian 
matrix by (14) and (15) is a rather complicated and 
time-consuming process if there are many frequency 
vectors given and the Dirichlet mixture model consists 

of many components each with a number of para-
meters. One also knows that the approximated Jaco-
bian matrix can be calculated by the finite difference 
method [42]. In the Levenberg-Marquardt optimiza-
tion, we alternatively used both the explicitly given 
and approximated Jacobian computations. Interesting-
ly, we found that employing the approximated Jaco-
bian computations resulted in the optimized para-
meters whose utility gave us the most accurate classi-
fication. In all our studies with the Dirichlet mixtures 
this was the case. Not surprisingly, successful replace-
ment of the Jacobian by the approximated computa-
tions in large problems does not contradict the theory 
[34]. 

 
a) 

 
b) 

Figure 4. The classification performance for the two 
decision classes of the E.coli dataset. The classification 
performance by the ROC curves for the classification 

categories ‘cp’ (a) and ‘im’ (b) is depicted for the Dirichlet 
mixture classifier (Dirichlet mixt.), for the rule classifier 

(Rules), and for the Naïve Bayes classifier. AUC stands for 
the area under the ROC curve and the parameter σ expresses 

standard deviation of the AUC computation 
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The results of the Dirichlet mixture classifier seen 
in Figures 4 and 5 are obtained using the Levenberg-
Marquardt optimization with the approximated Jaco-
bian computations. The Dirichlet mixture classifier 
was superior to the other two classifiers, the rule and 
Naïve Bayes classifiers. Despite the Naïve Bayes clas-
sifier performed similarly to the Dirichlet mixture 
classifier for the category ‘cp’, it did much worse for 
the other categories. Actually, the Naïve Bayes method 
all the data objects assigned to the same classification 
category ‘cp’, and the accuracy for the other catego-
ries did not exceed 0%. Most of the data objects in the 
test dataset fell in the category ‘cp’, namely 143, the 
numbers of the data objects in the other categories are: 
77 from ‘im‘, 52 from ‘pp‘, 35 from ‘imU‘, 20 from 
‘om‘, 5 from ‘omL‘, 2 from ‘imL‘, 2 from ‘imS‘. 
Probably the Naïve Bayes classifier overestimated it-
self in the training process and did not manage to 
recognize the objects from the other categories. Its 
overall classification accuracy is far from high, 44.4%. 
The rule classifier failed for this dataset and the ROC 
curves for all the categories resemble random classifi-
cation. The overall accuracy of the rule classifier is 
not competing, 35.6%. 

 
Figure 5. The classification performance by the ROC curves 
of the Dirichlet mixture classifier for all the decision classes  

of the E.coli dataset used to be in the testing procedure 

The Dirichlet mixture classifier was able to classi-
fy the data objects near evenly accurate and it achie-
ved the accuracy of 80% in total. The ROC curves of 
the Dirichlet mixture classifier for all the categories 
(Figure 5) show strong discriminative power in classi-
fying the E.coli protein data objects. The authors of 
the dataset published they arrived at the accuracy of as 
high as 81% [41] using the probabilistic model deve-
loped specially for this dataset.  

4.3. Ionosphere dataset 

This dataset is for classification of radar returns 
from the ionosphere where the targets were free 

electrons in the ionosphere [43]. This is a binary 
classification task and there are two classification 
categories, ‘g’ and ‘b’. "Good" radar returns (category 
‘g’) are those showing evidence of some type of struc-
ture in the ionosphere. "Bad" returns (category ‘b’) are 
those that do not; their signals pass through the iono-
sphere. Received signals were processed using an 
autocorrelation function whose arguments were the 
pulse numbers and comprise 34 attributes for classifi-
cation. The number of the objects (radar returns) in the 
dataset is 351. There are no missing attribute values. 

As in the case of the Arrhythmia dataset, the clas-
sification by the Dirichlet mixture was most accurate 
when using the parameters optimized by the genetic 
algorithm. Interestingly, the similar results were ob-
tained with the maximum likelihood (13) estimate and 
the posterior mean estimate (12) suggesting that both 
techniques can successfully be used for estimation of 
the parameters for the likelihood expressions. 

We found that the Dirichlet mixture model con-
sisting of the 32 components each with the 34 pseudo 
frequency parameters { }34

1=ijiα  furnished us with the 
best classification results. To train the Dirichlet mix-
ture classifier, we ran 200 genetic algorithm’s genera-
tions, applied the even-odd crossover algorithm and 
the flip mutation algorithm for genes. The other para-
meters were as follows: crossover probability, 0.9, 
mutation probability, 0.1, population size, 60, the 
number of individuals to be replaced in each gene-
ration, 9. We also tried various genetic configurations 
by changing scaling schemes for the fitness function 
(no scaling, linear scaling, power law scaling, etc.), 
the individual replacement schemes (the parent, worst, 
best, or other individuals), the population housekee-
ping strategies (how many populations to keep, over-
lapping or in parallel) [33] and discovered that for this 
problem the sigma truncation scaling, replacement of 
the worst individuals, management of the overlapping 
populations gave us the most reasonable optimization. 

The Dirichlet mixture classifier outperformed the 
other two classifiers (The Naïve Bayes method was in-
correct for this dataset and we omitted it from the fur-
ther analysis). The overall accuracy for the Dirichlet 
mixture and rule classifiers are 76% and 28%, respec-
tively. The Dirichlet mixture classifier correctly pre-
dicted all 32 data objects from category ‘g’ (100%) 
and did properly for 6 ones from category ‘b’ having 
18 data objects in total (33.3%). The rules did not 
predict the objects to belong to category ‘g’ at all; the 
ROC curve (Figure 6) indicates the poor classification 
with the curve segment up to the level of specificity of 
0.5. The accuracy of the rule classifier for category ‘b’ 
was 77.8%; the classifier correctly predicted 14 ob-
jects out of 18. Conversely, in the case of classi-
fication by the rules, predictions were made either for 
category ‘b’ or there were no predictions made at all. 
Therefore, the specificity of the rules for the dataset is 
low and the ROC curves demonstrate the poorer 
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performance with respect to that of the Dirichlet 
mixture classifier. 

The results (Figure 6) suggest that the Dirichlet 
mixture classifier is sensitive to the amount of data 
used in the training dataset. Category ‘g’ contained 
most of the data objects, namely 225, and the Dirichlet 
mixture classifier performed for this category without 
errors, however it was not so accurate in classifying 
the objects from category ‘b’ which enclosed 126 data 
objects. On the other hand, the area under the ROC 
curve (Figure 6) for this class is the same as that for 
class ‘b’, showing that the predictions for class ‘b’ 
could be more reliable and accurate if, for classifica-
tion, one chooses the threshold value gained from the 
ROC analysis. 

The authors of the dataset affirm [43] they reached 
an accuracy of 96% using the neural network archi-
tecture built particularly for this dataset. 

 
Figure 6. The classification performance by the ROC curves 

of the Dirichlet mixture classifier and the rule classifier  
for all the decision classes of the Ionosphere dataset. The 

parameter σ means the standard deviation of the area  
under the ROC curve (AUC) computation 

5. Conclusions 

By its attempt to formally describe real-world data 
and, at the same moment, to simplify and to clarify 
data representation of the real world, classification has 
necessarily become a very important field in many 
scientific investigations and industrial activities. How-
ever, there is no accurate universal classification mo-
del developed to fit any classification problem. In this 
article, we have proposed a method based on the Diri-
chlet mixture statistics that is aimed at wide range of 
various problems. To show usefulness of this method 
to classify data from the diverse fields of human acti-
vity, we chose three different databases to test the 
classifiers on. After the classifiers were applied on the 
medical, biological, and physical databases, it was ob-
served by the ROC analysis that the Dirichlet mixture 
classifier outperformed the other two classifiers we 

had chosen to compare the Dirichlet mixture classifier 
with. For all three datasets used, neither the classi-
fication by rules in the context of the rough sets theory 
nor the Naïve Bayes classifier could compete in accu-
racy with the Dirichlet mixtures. To judge the Diri-
chlet mixtures classifier against the originally built 
classification architectures (published by the authors 
of the datasets), we contrasted the accuracies obtained 
by the methods. The Dirichlet mixtures performed al-
most identically with the classifier constructed for the 
biological dataset. For the other two datasets, the 
mixtures did not attain accuracy as high as that of the 
originally developed classifiers. However, we were 
unable to accomplish ROC analysis for the original 
classifiers (we did not have data), which would tell 
more about the reliability and the performance of the 
classifiers. It should be noted as well, that the propor-
tions and the distribution of the training and testing 
datasets used in our tests necessarily differed from 
those used in the original studies, what made up a bias 
of several percents of accuracy. On the other hand, we 
did not accomplish cross-validation procedure that 
would have helped us to more precisely asses the 
overall accuracy of the Dirichlet mixture classifier.  

By applying the Dirichlet mixture classifier on the 
three different datasets, we simulated practicability of 
the classification method for data of any kind. The 
feasibility of the Dirichlet mixture classifier extends to 
configuration of the classification models that would 
consist of any number of Dirichlet components each 
with a defined number of pseudo frequency para-
meters. This option enables to tune the Dirichlet mix-
ture for a specific problem as this was demonstrated in 
the text. We implemented the Dirichlet mixture me-
thod as a computational tool and also compiled as a 
library for further development of machine learning 
environments. The latter increases the practical value 
of the method and this study. 
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