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Abstract. Kahn process network is a kind of data flow process networks. It is a computation model in which many 
concurrent processes communicate through unbounded FIFO buffer and can be executed simultaneously. In real time 
digital signal processing applications execution time is infinite. However, failures of implementation hardware can 
occur. In our work, dynamic run-time reconfiguration is introduced into process network which ensures error handling, 
avoiding deadlocks, continuous and on-time result delivery. After dynamic reconfiguration, network execution results 
may become non deterministic, but this helps avoiding critical termination of network execution. In this paper, we 
present a description of possible failures of network execution and discuss the means for avoiding these failures. 
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1. Introduction 

Real time data flow processing is frequently used 
in digital signal processing (DSP), multimedia and 
control applications. Depending on implementation, 
the application may be control oriented and/or event 
driven. Such systems respond to changes of internal 
states or environment. In response to these changes, 
the system must reconfigure itself. A well-designed 
system should always have a powerful mechanism for 
handling error conditions. Reconfiguration can be 
used in ensuring error proof ness of the system. 

Error-proof data flow applications should use 
general computational model for design, modelling, 
analysis and implementation in various platforms. 
Such computational models are Synchronous Data 
Flow (SDF) [13], Parameterized Synchronous Data 
Flow (PSDF) [12], Discrete-Event (DE) [12], Kahn 
Process Network (KPN) [2, 9], etc. 

Kahn Process Network is a subset of more general 
Process Network (PN) model. PN consists of concur-
rent processes communicating over first-in first out 
unidirectional queues. PN is useful for modelling and 
exploiting functional parallelism in streaming data 
applications. The PN model maps easily onto multi-
processor and/or multi-threaded targets. 

Synchronous Data Flow network is useful for 
modelling simple dataflow systems without compli-
cated flow of control. In SDF, nodes (processes) read 
and write a fixed number of tokens each time they are 
executed. The number of tokens and execution time 
are defined during system design. Process Network 
differs significantly from SDF, as PN uses completely 
dynamic execution of nodes. In PN, nodes are 

executed asynchronously, but the result of network 
execution is deterministic. Determinism is ensured by 
blocked reading from channel.  

Parameterized Synchronous Data Flow is useful 
for modelling dataflow systems with reconfiguration. 
PSDF represents a design point between complete 
static scheduling in SDF and completely dynamic 
execution in Process Networks.  

Discrete-Event model differs from other discussed 
models as it supports time-oriented models of systems 
such as queuing systems, communication networks 
and digital hardware. 

KPN ensures completely dynamic execution of 
nodes. In KPN, there is no need for describing sche-
duling during system design, because scheduling does 
not affect the functional behaviour of the nodes. These 
features of KPN are very useful in dynamic network 
reconfiguration. In this work, Error-Proof Process 
Network (EPPN) model is presented, based on Kahn 
process network model. Because of dynamic reconfi-
guration used in EPPN, execution results may become 
non deterministic, but this helps avoiding critical 
termination of network execution. 

DSP real time systems often require non-standard 
and costly hardware and software solutions. Modern 
workstation can represent an alternative to develop 
real time intensive signal processing applications. 
Furthermore, the programming model of Process Net-
work corresponds completely to this kind of applica-
tions and fits perfectly on multiprocessor systems. 
Various PNs can be modelled using personal com-
puter. This helps in finding and processing critical net-
work operation points. Performance can be improved 
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dynamically changing network parameters. On the 
other hand, hardware systems (embedded systems, 
programmable logic) dedicated to a particular problem 
class can be used to minimize processing time. Pro-
cess network implementation in the hardware system 
would help in verifying efficiency of the solution in 
the particular situation [10]. 

The remainder of this paper is structured as fol-
lows. The next section discusses related works. This is 
followed by the formal definition of Error-Proof 
Process Network model. Next, implementation issues 
are discussed. In section 5, we conclude and present 
suggestions for future. 

2. Related work 

Process networks and dataflow networks are a 
good model of computation for streaming multimedia 
and digital signal processing applications [14]. The 
most popular models for streaming applications are 
Synchronous Data Flows and Kahn Process Networks. 

Synchronous Data Flow network is applicable to 
simple dataflow systems without complicated flow of 
control. In SDF, a node produces and consumes a 
fixed number of data tokens on each of its outgoing 
and incoming channels during each activation. For 
activation of the node it must have at least as many 
tokens on its input channels as it needs to consume. 
The number of tokens and execution times must be 
defined during system design [6]. 

KPN is a computation model in which many con-
current processes communicating over first-in first-out 
unidirectional queues can be executed simultaneously. 
KPN is mostly applicable for parallel processing of 
streaming data. Many of the existing KPN modelling 
tools (Ptolemy [12], YAPI [10]) are commonly used 
for simulation rather than implementation. In analyzed 
dataflow process networks modelling methods, two 
important issues are considered: detection of critical 
execution points and dynamic network reconfigura-
tion. 

An important task of the system designer is to 
determine which parts of the application can be 
implemented in software and which parts are more 
critical and, hence, should be performed by dedicated 
hardware. To help the designer determine the critical 
parts of the system, in [7, 8] an algorithm for deter-
mining the relative criticality of processes in Kahn 
Process Networks is presented. 

Since the PN model is Turing complete, memory 
requirements cannot be predicted statically. In general, 
any bounded-memory scheduling algorithm for this 
model requires run-time deadlock detection. The few 
PN implementations that perform deadlock detection 
detect only global deadlocks. Not all local deadlocks, 
however, will cause a PN system to reach global 
deadlock. Olson and Evans [17] presented local 
deadlock detection algorithm for PN models based on 
the Mitchell and Merritt algorithm. Their algorithm is 

suitable for both parallel and distributed PN imple-
mentations. 

In order to capture the interaction between input 
events and execution units as well as reconfiguration 
in dynamic stream processing, Reactive process 
Networks (RPN) are introduced [4]. The foundation 
for RPN was laid by efforts to integrate dataflow 
model and its reactive behaviour [5, 11]. Reactive 
behaviour in these models is commonly specified 
using hierarchical state machines.  

Another means for specifying dynamic network 
reconfiguration during run-time is parameterizable 
SDF model [1, 3]. In PSDF, node execution is 
characterized by iterations that fire subprocesses in a 
particular order. Node execution can be reconfigured 
between iterations at run-time. 

Yet another approach for dynamic process network 
reconfiguration is presented in the work of Neuendorf-
fer and Lee [16]. It is concentrated on reconfiguration 
as a particular kind of event handling. The states of the 
network, when reconfigurations are allowed, are 
named quiescent states. The FIFO channel communi-
cation is used for sending and receiving events or 
parameters and for dividing input ports into streaming 
input ports and parameter input ports. This work 
focuses primarily on reconfiguration of SDF net-
works. This work along with the other discussed 
works on dynamic reconfiguration focuses on using 
reconfiguration for increasing efficiency. 

Our work differs from the above-discussed ap-
proaches because it presents another point of view to 
the purpose of process network dynamic reconfi-
guration. This point of view is based on the idea that 
we must specify critical moments in network execu-
tion in order to avoid critical termination. These 
critical moments appear when communication bet-
ween network nodes is broken or node fails. Error-
Proof Process Network proposed in this work can be 
reconfigured dynamically in order to capture and 
process critical moments of network execution. 

3. An Operational Model of Fault Tolerant 
Process Network 

There are two common approaches for describing 
dataflow process network: denotational and operatio-
nal. In PN, every node consumes input tokens and 
computes a functional result, which is then written to 
its outputs. The denotational interpretation of the net-
work can be derived from the composition of these 
functions of the nodes. This approach is commonly 
used to capture the intended functionality of a process 
network or to define the functional semantics of a sys-
tem or programming language implementing process 
networks, without specifying unnecessary implemen-
tation details. 

When network is characterized operationally, pro-
cesses read tokens from channels or write tokens to 
channels and perform computations in the mean time. 

125 



J. Čeponis, E. Kazanavičius, A. Mikuckas 

The channels that connect processes store tokens that 
are in transit from one process to another. The 
operational semantics has means for describing 
network implementation details, such as required 
buffer capacities, priorities of the nodes, deadlock 
detection. 

In our work, the operational semantics is used for 
Error-Proof Process Network. The specification is 
presented in the form of Labelled Transition Systems 
(LTS). 

We start with some common definitions and nota-
tions for process network. For FIFO channel specifi-
cation we assume the universal finite set of channels 
CH and for every channel c CH∈  there is a corres-
ponding finite channel alphabet Σ. Each channel 

 is described by its length L and pointer c(p) 
which refers to the last data record in the channel. The 
actions for data transfer through the channel 
are

CHc ∈

Σ∈∈← aCHcaca ,|,→c . The action ac ←  
denotes input of data into channel. The action  
denotes output of data from channel. These actions 
form the set of actions for data transfer 

ac →

{ }Σ∈∈←→ CHcaca |,= cAc a, . The channel can 
be in one of states scn during network execution. The 
set Sc={sc⊥,scw,sccf,scce,scpop,scpush,scinc,scdec} defines 
all possible states of the channel. After setting initial 
parameters in state sc⊥, channel transits to waiting 
state scw. In this state channel waits for requests from 
the nodes. When request from writing node arrives, 

channel moves to state sccf, in which it checks the 
availability of free space in channel memory. If there 
is a free space in memory, channel moves to the state 
scpush. During this state the incoming token is written 
to the channel. When request from reading node 
arrives, channel moves to state scce, in which it checks 
the availability of data in channel. If there are at least 
one data token, channel moves to the state scpop and 
send first data token to reading node. When the token 
from the writing node arrives and channel is full, 
channel transits to the state scinc in which the length of 
the channel is increased. The amount of memory used 
for increasing channel length depends on chosen 
strategy for memory allocation. Let’s say we have a 
network with K channels and we can allocate M 
amount of memory in this network. The possible 
strategies for memory allocation are: 

• all channels get M/K amount of memory; 
• channel length is estimated according to expec-

ted data intensity; 
• channel length is alternating according to net-

work state. 
When channel length increasing is successful it 

moves to state scpush, otherwise it moves to state scw. 
The channel can transit to state scdec when a request 
from reading node arrives and other channels require 
to be increased. In state scdec, the length of the channel 
is decreased thus freeing memory for other channels. 

 
Figure 1. The states of channels in EPPN 

CheckEmpty = (empty -> Waiting | 
not_empty -> Pop | dec -> Decrease), 

Sequences of actions in the states of channel are 
described textually as finite state processes (FSP) and 
displayed and analysed by the LTSA analysis tool 
(presented in Figure 1) [15]. 

Decrease = (dec_ok -> Pop ), 
Pop = ( pop_ok -> Waiting). 

For network nodes specification, we use a univer-
sal finite set of nodes N and for every node of this set 
n∈N there is a corresponding set of atomic actions 
Act. All actions of all network nodes are defined by 
the set A and the actions of every node Act⊆A. Every 
node has a set of input and output channels 
( ) CHcc outin ∈, . The node can be in one of the states 
nsn (presented in Figure 2). 

Channel = Initial, 
Initial = (set_par -> Waiting), 
Waiting = (read -> CheckFull | write 
-> CheckEmpty), 
CheckFull = (full -> Waiting | 
not_full -> Push | inc -> Increase), 
Push = (push_ok -> Waiting), 
Increase = (inc_ok -> Push | 
inc_not_ok -> Waiting), 
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Figure 2. The states of nodes in EPPN 

{ cexbwwbrr nsnsnsnsnsnsnsNs ,,,,,,⊥= }is the set of 
states, which defines all possible states of the network 
node. Initial node state ns⊥ denotes the starting point of 
node execution. In this state, initial working 
parameters and values of variables are set for the 
node. Afterwards, the node moves to reading state nsr 
and tries to read data from input channels cin∈CH. If 
at least one c(p)=null | c∈cin, the node transits to state 
nsbr and waits until data are available in the channel. 
When the node has successfully read data from input 
channels, it moves to state nsex and executes actions 
Act⊆A. After finishing execution, the node transits to 
writing state nsw and writes results to its output 
channels cout∈CH. If at least one c(p)≠ null | c∈cout, 
p=L, the node moves to blocked writing state nsbw and 
waits for available free space in the output channel. 
When the node has finished writing data to channels, 
it moves to state nsr. 

The change of network execution parameters may 
be required in two cases: 

• a node is in blocked reading or blocked writing 
states (nsbr or nsbw) and timeout occurs; 

• external request is received.  
In any of these two cases the node moves to 

control state nsc and changes required parameters. 
Afterwards, the node transits to reading or writing 
state (nsr or nsw) and continues execution. 

Sequences of actions in the states of node are 
described textually as finite state processes and 
displayed and analysed by the LTSA analysis tool 
(presented in Figure 2). 

Node = Initial, 
Initial = (set_parameters -> 
Reading), 
Reading = (reading_ok -> Execution | 
channel_empty -> BlockedReading), 
Execution = (execution_ok -> 
Writing), 
Writing = (writing_ok -> Reading | 
channel_full -> BlockedWriting), 

BlockedReading = (channel_not_empty 
-> Reading | reading_timeout -> 
Control), 
BlockedWriting = (channel_not_full -
> Writing | writing_timeout -> 
Control), 
Control = (reading_continue -> 
Reading | writing_continue -> 
Writing). 

The operational semantics of EPPN is based on the 
elements described above and will be presented in the 
form of labelled transition system (LTS).  

DEFINITION. (Labelled Transition System) A 
labelled transition system is a tuple 

 consisting of countable set of 
states S, initial state , set of input channels 

, set of output channels , set of 
input (

),,,,,ˆ,( →MAOIsS

CHI ⊆
Ss ∈ˆ

ICHO \⊆
{ }CH ⊆ Aca Σ∈cac ∈← ,| ) and output 

( { } Ac⊆aCHcac Σ∈∈→ ,|
M

AS

) actions , set of 
network nodes  and labelled transition 
relation 

AcA ⊆
N⊆

S××→⊆ . 
Labelled transition → is used to define atomic 

actions (reading data from channel, writing data into 
channel, processing data in the node). A 3-tuple 
( )∈→+1,, ii ss α is said to be a transition and is usually 

written as  which denotes that LTS in 
state s

1+→ isαis

Ssi

i can perform action α which brings it to state 
si+1 Action α can be atomic action or composite action 
consisting of several atomic actions. Transition from 
state si caused by action α is possible only if there is 
some ∈+1  such that s . 1+→ isαi

DEFINITION. (Data transmission) Data 
transmission in LTS is a sequence 

, where 11 ...ˆ 10
+→→→ ii ssss iααα Ssn ∈ , 

An ∈α  and denotes execution time. 0≥i
Given a data transmission in LTS with actions 

...10 ⋅⋅= ααα  , we can find out all input and output 
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data values in set of channels C⊆CH. For each 
channel c∈C,  is a bounded or unbounded 
(according to execution time) input sequence 
consisting of elements from the set Σ. These elements 
are acquired by mapping the actions α to reading 
actions in channel c.  

ac ←

mult

4. Implementing EPPN  

Real time digital signal processing applications 
implemented using process networks are becoming 
more dynamic, often requiring run-time reconfigura-
tions of network execution parameters or even its 
structure. These issues are especially important if net-
work is implemented in a distributed multicomputer 
system [6]. In our work, we are using a multi-threaded 
implementation of EPPN but we believe that imple-
mentation of EPPN is applicable to multicomputer 
system made up of several independent computers 
interconnected by a telecommunications network. An 
important problem in a distributed system emerges 
when we have to deal with hardware failures. Any 
failure in network node or channel causes global dead-
lock and network execution terminates. Faulty net-
work node does not read data from its input channels 
and does not write data to its output channels. In such 
situation, preceding network node is blocked because 
its output channel (which is also the input channel of 
the faulty node) gets full. This leads to chain reaction 
of blocking all network nodes preceding the faulty 
one. The network node succeeding faulty node is also 
blocked as it cannot read data from its input channel 
(which is also the output channel of the faulty node). 
This also leads to chain reaction of blocking all net-
work nodes succeeding the faulty node. Thus global 
deadlock occurs and execution of the whole network 
terminates. Analogical situation can be observed in 
case of network channel failure. The network nodes 
connected by faulty channel are blocked which leads 
to chain reaction of blocking all network nodes. Run-
time network reconfiguration can be used for avoiding 
such situations. 

in1

digp sum out

in2
 

Figure 3. FIR filter Kahn process network model 

In our work, we are proposing to use run-time 
reconfiguration for solving problems with network 

hardware failures. The further presented process net-
work example of FIR filter is implemented using 
parallel programming and based on EPPN specifi-
cation. The initial FIR filter process network model is 
presented in Figure 3. 

In case of network node failure we need to 
redistribute its actions to other nodes. We also need to 
redistribute the input and output channels of the faulty 
node. Data loss occurs each time of network element 
failure. To solve this problem, we introduce the default 
value to compensate lost data. This conflicts process 
network determinism feature but enables further 
execution and helps to synchronize data. 

In order to minimize data loss, the change of 
network parameters must follow these rules: 
 1. All nodes connected with faulty node n perform 

their actions until: 
a. input channels of the faulty node become full; 
b. output channels of the faulty node become 

empty. 
 2. The nodes connected with faulty node n transit to 

blocked reading or blocked writing states.  
 3. After timeout the nodes connected with faulty 

node n transit to control state. In this state:  
a. actions of the faulty node n are transferred to 

node n1 which first transits to control state and 
is connected to output channel of n; 

b. the channel between n and n1 is destroyed;  
c. output channels of n are connected to n1; 
d. input channels of n are connected to n1; 
e. the data lost during failure are compensated. 

 4. The nodes which are in control state move to 
writing or reading states and reconfigured 
network continues execution.  

These rules are applicable to network nodes which 
have input and output channels (cin,cout)⊆CH. There 
are two exceptions when these rules cannot be applied. 
The first one is when the faulty node does not have 
input channels (cin=∅). The reconfiguration in this 
situation should follow these rules: 
 1. All nodes connected with faulty node n perform 

their actions until output channels of the faulty 
node become empty. 

2. The nodes connected with faulty node n transit to 
blocked reading states.  

 3. After timeout the nodes connected with faulty 
node n transit to control state. In this state:  
a. actions of the faulty node n are transferred to 

node n1 which first transits to control state and 
is connected to output channel of n; 

b. the channel between n and n1 is destroyed;  
c. output channels of n are connected to n1; 
d. the data lost during failure are compensated. 

 4. The nodes which are in control state move to 
writing or reading states and reconfigured 
network continues execution.  
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 7. The nodes which are in control state move to 
writing or reading states and reconfigured 
network continues execution.  

The second exception is when the faulty node does 
not have output channels (cout = ∅). The 
reconfiguration in such case should follow these rules: 

In order to analyze the behaviour of process net-
work in case of hardware failure we are using a multi-
threaded implementation of EPPN. IIR and FIR filters 
process network models were chosen for testing 
implementation. The example process networks were 
implemented in C# programming language using mul-
tiple threads running at the same time and performing 
different tasks of process network. We used separate 
thread for each element of the process network (node 
and channel) and main program for coordination. The 
failures of network elements were imitated by destroy-
ing a thread of node or channel. 

 1. All nodes connected with faulty node n perform 
their actions until input channels of the faulty 
node become full. 

 2. The nodes connected with faulty node n transit to 
blocked writing states.  

3. After timeout the nodes connected with faulty 
node n transit to control state. In this state:  
a. actions of the faulty node n are transferred to 

node n1 which first transits to control state and 
is connected to input channel of n; 

b. input channels of n are connected to n1; 
c. the data lost during failure are compensated. 

 4. The nodes which are in control state move to 
writing or reading states and reconfigured 
network continues execution.  

5. Conclusion and future work  

Process networks are frequently used in streaming 
multimedia applications. In real time digital signal 
processing applications, execution time is infinite. 
However, failures of implementation hardware can 
occur. In our work, dynamic run-time reconfiguration 
is introduced into process network which ensures 
handling of hardware failures, avoiding deadlocks, 
effective utilization of available resources, continuous 
and on-time result delivery.  

In order to demonstrate the actions taken in case of 
node failure we are going to analyze the FIR filter 
process network model (Figure 3). Suppose network 
node mult fails. A possible solution for such situation 
is presented in Figure 4. The actions of faulty node 
mult are transferred to the modified node multsum, the 
input channels of mult become input channels of 
multsum and the channel connecting mult and sum is 
destroyed. The Error Proof Process Network presented in this 

paper is modelled as a labelled transition system. 
Formal specification of EPPN and the states of 
network elements during execution is presented. This 
specification was used as a base for describing the 
rules for network run-time reconfiguration in case of 
network element failure. These rules minimize data 
loss and enable further execution of EPPN. Multi-
threaded implementation of EPPN was used to 
analyze the behaviour of process network in case of 
hardware failure. The failures of network elements 
were imitated by destroying a thread of a node or 
channel. 

in1

digp mult
sum out

in2
 Future works include implementation of EPPN in a 

distributed multicomputer system. Attention will also 
be focussed on data loss compensation algorithms. 

Figure 4. Modified FIR filter Kahn process network model 

In distributed process network, channel failure is 
also critical for network execution and can cause a 
global deadlock. In case of network channel failure, 
the change of network parameters must follow these 
rules: 
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