
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.2

FAULT TOLERANT PROCESS NETWORKS

Jonas Čeponis, Egidijus Kazanavičius, Antanas Mikuckas
Department of Computer Engineering, Kaunas University of Technology

Studentu st. 50-213, LT-51368 Kaunas, Lithuania

Abstract. Kahn process network is a kind of data flow process networks. It is a computation model in which many
concurrent processes communicate through unbounded FIFO buffer and can be executed simultaneously. In real time
digital signal processing applications execution time is infinite. However, failures of implementation hardware can
occur. In our work, dynamic run-time reconfiguration is introduced into process network which ensures error handling,
avoiding deadlocks, continuous and on-time result delivery. After dynamic reconfiguration, network execution results
may become non deterministic, but this helps avoiding critical termination of network execution. In this paper, we
present a description of possible failures of network execution and discuss the means for avoiding these failures.

Keywords: Process Networks, Data Flow, Dynamic Reconfiguration, Concurrent Processes, Labelled Transition
Systems.

1. Introduction

Real time data flow processing is frequently used
in digital signal processing (DSP), multimedia and
control applications. Depending on implementation,
the application may be control oriented and/or event
driven. Such systems respond to changes of internal
states or environment. In response to these changes,
the system must reconfigure itself. A well-designed
system should always have a powerful mechanism for
handling error conditions. Reconfiguration can be
used in ensuring error proof ness of the system.

Error-proof data flow applications should use
general computational model for design, modelling,
analysis and implementation in various platforms.
Such computational models are Synchronous Data
Flow (SDF) [13], Parameterized Synchronous Data
Flow (PSDF) [12], Discrete-Event (DE) [12], Kahn
Process Network (KPN) [2, 9], etc.

Kahn Process Network is a subset of more general
Process Network (PN) model. PN consists of concur-
rent processes communicating over first-in first out
unidirectional queues. PN is useful for modelling and
exploiting functional parallelism in streaming data
applications. The PN model maps easily onto multi-
processor and/or multi-threaded targets.

Synchronous Data Flow network is useful for
modelling simple dataflow systems without compli-
cated flow of control. In SDF, nodes (processes) read
and write a fixed number of tokens each time they are
executed. The number of tokens and execution time
are defined during system design. Process Network
differs significantly from SDF, as PN uses completely
dynamic execution of nodes. In PN, nodes are

executed asynchronously, but the result of network
execution is deterministic. Determinism is ensured by
blocked reading from channel.

Parameterized Synchronous Data Flow is useful
for modelling dataflow systems with reconfiguration.
PSDF represents a design point between complete
static scheduling in SDF and completely dynamic
execution in Process Networks.

Discrete-Event model differs from other discussed
models as it supports time-oriented models of systems
such as queuing systems, communication networks
and digital hardware.

KPN ensures completely dynamic execution of
nodes. In KPN, there is no need for describing sche-
duling during system design, because scheduling does
not affect the functional behaviour of the nodes. These
features of KPN are very useful in dynamic network
reconfiguration. In this work, Error-Proof Process
Network (EPPN) model is presented, based on Kahn
process network model. Because of dynamic reconfi-
guration used in EPPN, execution results may become
non deterministic, but this helps avoiding critical
termination of network execution.

DSP real time systems often require non-standard
and costly hardware and software solutions. Modern
workstation can represent an alternative to develop
real time intensive signal processing applications.
Furthermore, the programming model of Process Net-
work corresponds completely to this kind of applica-
tions and fits perfectly on multiprocessor systems.
Various PNs can be modelled using personal com-
puter. This helps in finding and processing critical net-
work operation points. Performance can be improved

124

Fault Tolerant Process Networks

dynamically changing network parameters. On the
other hand, hardware systems (embedded systems,
programmable logic) dedicated to a particular problem
class can be used to minimize processing time. Pro-
cess network implementation in the hardware system
would help in verifying efficiency of the solution in
the particular situation [10].

The remainder of this paper is structured as fol-
lows. The next section discusses related works. This is
followed by the formal definition of Error-Proof
Process Network model. Next, implementation issues
are discussed. In section 5, we conclude and present
suggestions for future.

2. Related work

Process networks and dataflow networks are a
good model of computation for streaming multimedia
and digital signal processing applications [14]. The
most popular models for streaming applications are
Synchronous Data Flows and Kahn Process Networks.

Synchronous Data Flow network is applicable to
simple dataflow systems without complicated flow of
control. In SDF, a node produces and consumes a
fixed number of data tokens on each of its outgoing
and incoming channels during each activation. For
activation of the node it must have at least as many
tokens on its input channels as it needs to consume.
The number of tokens and execution times must be
defined during system design [6].

KPN is a computation model in which many con-
current processes communicating over first-in first-out
unidirectional queues can be executed simultaneously.
KPN is mostly applicable for parallel processing of
streaming data. Many of the existing KPN modelling
tools (Ptolemy [12], YAPI [10]) are commonly used
for simulation rather than implementation. In analyzed
dataflow process networks modelling methods, two
important issues are considered: detection of critical
execution points and dynamic network reconfigura-
tion.

An important task of the system designer is to
determine which parts of the application can be
implemented in software and which parts are more
critical and, hence, should be performed by dedicated
hardware. To help the designer determine the critical
parts of the system, in [7, 8] an algorithm for deter-
mining the relative criticality of processes in Kahn
Process Networks is presented.

Since the PN model is Turing complete, memory
requirements cannot be predicted statically. In general,
any bounded-memory scheduling algorithm for this
model requires run-time deadlock detection. The few
PN implementations that perform deadlock detection
detect only global deadlocks. Not all local deadlocks,
however, will cause a PN system to reach global
deadlock. Olson and Evans [17] presented local
deadlock detection algorithm for PN models based on
the Mitchell and Merritt algorithm. Their algorithm is

suitable for both parallel and distributed PN imple-
mentations.

In order to capture the interaction between input
events and execution units as well as reconfiguration
in dynamic stream processing, Reactive process
Networks (RPN) are introduced [4]. The foundation
for RPN was laid by efforts to integrate dataflow
model and its reactive behaviour [5, 11]. Reactive
behaviour in these models is commonly specified
using hierarchical state machines.

Another means for specifying dynamic network
reconfiguration during run-time is parameterizable
SDF model [1, 3]. In PSDF, node execution is
characterized by iterations that fire subprocesses in a
particular order. Node execution can be reconfigured
between iterations at run-time.

Yet another approach for dynamic process network
reconfiguration is presented in the work of Neuendorf-
fer and Lee [16]. It is concentrated on reconfiguration
as a particular kind of event handling. The states of the
network, when reconfigurations are allowed, are
named quiescent states. The FIFO channel communi-
cation is used for sending and receiving events or
parameters and for dividing input ports into streaming
input ports and parameter input ports. This work
focuses primarily on reconfiguration of SDF net-
works. This work along with the other discussed
works on dynamic reconfiguration focuses on using
reconfiguration for increasing efficiency.

Our work differs from the above-discussed ap-
proaches because it presents another point of view to
the purpose of process network dynamic reconfi-
guration. This point of view is based on the idea that
we must specify critical moments in network execu-
tion in order to avoid critical termination. These
critical moments appear when communication bet-
ween network nodes is broken or node fails. Error-
Proof Process Network proposed in this work can be
reconfigured dynamically in order to capture and
process critical moments of network execution.

3. An Operational Model of Fault Tolerant
Process Network

There are two common approaches for describing
dataflow process network: denotational and operatio-
nal. In PN, every node consumes input tokens and
computes a functional result, which is then written to
its outputs. The denotational interpretation of the net-
work can be derived from the composition of these
functions of the nodes. This approach is commonly
used to capture the intended functionality of a process
network or to define the functional semantics of a sys-
tem or programming language implementing process
networks, without specifying unnecessary implemen-
tation details.

When network is characterized operationally, pro-
cesses read tokens from channels or write tokens to
channels and perform computations in the mean time.

125

J. Čeponis, E. Kazanavičius, A. Mikuckas

The channels that connect processes store tokens that
are in transit from one process to another. The
operational semantics has means for describing
network implementation details, such as required
buffer capacities, priorities of the nodes, deadlock
detection.

In our work, the operational semantics is used for
Error-Proof Process Network. The specification is
presented in the form of Labelled Transition Systems
(LTS).

We start with some common definitions and nota-
tions for process network. For FIFO channel specifi-
cation we assume the universal finite set of channels
CH and for every channel c CH∈ there is a corres-
ponding finite channel alphabet Σ. Each channel

 is described by its length L and pointer c(p)
which refers to the last data record in the channel. The
actions for data transfer through the channel
are

CHc ∈

Σ∈∈← aCHcaca ,|,→c . The action ac ←
denotes input of data into channel. The action
denotes output of data from channel. These actions
form the set of actions for data transfer

ac →

{ }Σ∈∈←→ CHcaca |,= cAc a, . The channel can
be in one of states scn during network execution. The
set Sc={sc⊥,scw,sccf,scce,scpop,scpush,scinc,scdec} defines
all possible states of the channel. After setting initial
parameters in state sc⊥, channel transits to waiting
state scw. In this state channel waits for requests from
the nodes. When request from writing node arrives,

channel moves to state sccf, in which it checks the
availability of free space in channel memory. If there
is a free space in memory, channel moves to the state
scpush. During this state the incoming token is written
to the channel. When request from reading node
arrives, channel moves to state scce, in which it checks
the availability of data in channel. If there are at least
one data token, channel moves to the state scpop and
send first data token to reading node. When the token
from the writing node arrives and channel is full,
channel transits to the state scinc in which the length of
the channel is increased. The amount of memory used
for increasing channel length depends on chosen
strategy for memory allocation. Let’s say we have a
network with K channels and we can allocate M
amount of memory in this network. The possible
strategies for memory allocation are:

• all channels get M/K amount of memory;
• channel length is estimated according to expec-

ted data intensity;
• channel length is alternating according to net-

work state.
When channel length increasing is successful it

moves to state scpush, otherwise it moves to state scw.
The channel can transit to state scdec when a request
from reading node arrives and other channels require
to be increased. In state scdec, the length of the channel
is decreased thus freeing memory for other channels.

Figure 1. The states of channels in EPPN

CheckEmpty = (empty -> Waiting |
not_empty -> Pop | dec -> Decrease),

Sequences of actions in the states of channel are
described textually as finite state processes (FSP) and
displayed and analysed by the LTSA analysis tool
(presented in Figure 1) [15].

Decrease = (dec_ok -> Pop),
Pop = (pop_ok -> Waiting).

For network nodes specification, we use a univer-
sal finite set of nodes N and for every node of this set
n∈N there is a corresponding set of atomic actions
Act. All actions of all network nodes are defined by
the set A and the actions of every node Act⊆A. Every
node has a set of input and output channels
() CHcc outin ∈, . The node can be in one of the states
nsn (presented in Figure 2).

Channel = Initial,
Initial = (set_par -> Waiting),
Waiting = (read -> CheckFull | write
-> CheckEmpty),
CheckFull = (full -> Waiting |
not_full -> Push | inc -> Increase),
Push = (push_ok -> Waiting),
Increase = (inc_ok -> Push |
inc_not_ok -> Waiting),

126

Fault Tolerant Process Networks

127

Figure 2. The states of nodes in EPPN

{ cexbwwbrr nsnsnsnsnsnsnsNs ,,,,,,⊥= }is the set of
states, which defines all possible states of the network
node. Initial node state ns⊥ denotes the starting point of
node execution. In this state, initial working
parameters and values of variables are set for the
node. Afterwards, the node moves to reading state nsr
and tries to read data from input channels cin∈CH. If
at least one c(p)=null | c∈cin, the node transits to state
nsbr and waits until data are available in the channel.
When the node has successfully read data from input
channels, it moves to state nsex and executes actions
Act⊆A. After finishing execution, the node transits to
writing state nsw and writes results to its output
channels cout∈CH. If at least one c(p)≠ null | c∈cout,
p=L, the node moves to blocked writing state nsbw and
waits for available free space in the output channel.
When the node has finished writing data to channels,
it moves to state nsr.

The change of network execution parameters may
be required in two cases:

• a node is in blocked reading or blocked writing
states (nsbr or nsbw) and timeout occurs;

• external request is received.
In any of these two cases the node moves to

control state nsc and changes required parameters.
Afterwards, the node transits to reading or writing
state (nsr or nsw) and continues execution.

Sequences of actions in the states of node are
described textually as finite state processes and
displayed and analysed by the LTSA analysis tool
(presented in Figure 2).

Node = Initial,
Initial = (set_parameters ->
Reading),
Reading = (reading_ok -> Execution |
channel_empty -> BlockedReading),
Execution = (execution_ok ->
Writing),
Writing = (writing_ok -> Reading |
channel_full -> BlockedWriting),

BlockedReading = (channel_not_empty
-> Reading | reading_timeout ->
Control),
BlockedWriting = (channel_not_full -
> Writing | writing_timeout ->
Control),
Control = (reading_continue ->
Reading | writing_continue ->
Writing).

The operational semantics of EPPN is based on the
elements described above and will be presented in the
form of labelled transition system (LTS).

DEFINITION. (Labelled Transition System) A
labelled transition system is a tuple

 consisting of countable set of
states S, initial state , set of input channels

, set of output channels , set of
input (

),,,,,ˆ,(→MAOIsS

CHI ⊆
Ss ∈ˆ

ICHO \⊆
{ }CH ⊆ Aca Σ∈cac ∈← ,|) and output

({ } Ac⊆aCHcac Σ∈∈→ ,|
M

AS

) actions , set of
network nodes and labelled transition
relation

AcA ⊆
N⊆

S××→⊆ .
Labelled transition → is used to define atomic

actions (reading data from channel, writing data into
channel, processing data in the node). A 3-tuple
()∈→+1,, ii ss α is said to be a transition and is usually

written as which denotes that LTS in
state s

1+→ isαis

Ssi

i can perform action α which brings it to state
si+1 Action α can be atomic action or composite action
consisting of several atomic actions. Transition from
state si caused by action α is possible only if there is
some ∈+1 such that s . 1+→ isαi

DEFINITION. (Data transmission) Data
transmission in LTS is a sequence

, where 11 ...ˆ 10
+→→→ ii ssss iααα Ssn ∈ ,

An ∈α and denotes execution time. 0≥i
Given a data transmission in LTS with actions

...10 ⋅⋅= ααα , we can find out all input and output

J. Čeponis, E. Kazanavičius, A. Mikuckas

data values in set of channels C⊆CH. For each
channel c∈C, is a bounded or unbounded
(according to execution time) input sequence
consisting of elements from the set Σ. These elements
are acquired by mapping the actions α to reading
actions in channel c.

ac ←

mult

4. Implementing EPPN

Real time digital signal processing applications
implemented using process networks are becoming
more dynamic, often requiring run-time reconfigura-
tions of network execution parameters or even its
structure. These issues are especially important if net-
work is implemented in a distributed multicomputer
system [6]. In our work, we are using a multi-threaded
implementation of EPPN but we believe that imple-
mentation of EPPN is applicable to multicomputer
system made up of several independent computers
interconnected by a telecommunications network. An
important problem in a distributed system emerges
when we have to deal with hardware failures. Any
failure in network node or channel causes global dead-
lock and network execution terminates. Faulty net-
work node does not read data from its input channels
and does not write data to its output channels. In such
situation, preceding network node is blocked because
its output channel (which is also the input channel of
the faulty node) gets full. This leads to chain reaction
of blocking all network nodes preceding the faulty
one. The network node succeeding faulty node is also
blocked as it cannot read data from its input channel
(which is also the output channel of the faulty node).
This also leads to chain reaction of blocking all net-
work nodes succeeding the faulty node. Thus global
deadlock occurs and execution of the whole network
terminates. Analogical situation can be observed in
case of network channel failure. The network nodes
connected by faulty channel are blocked which leads
to chain reaction of blocking all network nodes. Run-
time network reconfiguration can be used for avoiding
such situations.

in1

digp sum out

in2

Figure 3. FIR filter Kahn process network model

In our work, we are proposing to use run-time
reconfiguration for solving problems with network

hardware failures. The further presented process net-
work example of FIR filter is implemented using
parallel programming and based on EPPN specifi-
cation. The initial FIR filter process network model is
presented in Figure 3.

In case of network node failure we need to
redistribute its actions to other nodes. We also need to
redistribute the input and output channels of the faulty
node. Data loss occurs each time of network element
failure. To solve this problem, we introduce the default
value to compensate lost data. This conflicts process
network determinism feature but enables further
execution and helps to synchronize data.

In order to minimize data loss, the change of
network parameters must follow these rules:
 1. All nodes connected with faulty node n perform

their actions until:
a. input channels of the faulty node become full;
b. output channels of the faulty node become

empty.
 2. The nodes connected with faulty node n transit to

blocked reading or blocked writing states.
 3. After timeout the nodes connected with faulty

node n transit to control state. In this state:
a. actions of the faulty node n are transferred to

node n1 which first transits to control state and
is connected to output channel of n;

b. the channel between n and n1 is destroyed;
c. output channels of n are connected to n1;
d. input channels of n are connected to n1;
e. the data lost during failure are compensated.

 4. The nodes which are in control state move to
writing or reading states and reconfigured
network continues execution.

These rules are applicable to network nodes which
have input and output channels (cin,cout)⊆CH. There
are two exceptions when these rules cannot be applied.
The first one is when the faulty node does not have
input channels (cin=∅). The reconfiguration in this
situation should follow these rules:
 1. All nodes connected with faulty node n perform

their actions until output channels of the faulty
node become empty.

2. The nodes connected with faulty node n transit to
blocked reading states.

 3. After timeout the nodes connected with faulty
node n transit to control state. In this state:
a. actions of the faulty node n are transferred to

node n1 which first transits to control state and
is connected to output channel of n;

b. the channel between n and n1 is destroyed;
c. output channels of n are connected to n1;
d. the data lost during failure are compensated.

 4. The nodes which are in control state move to
writing or reading states and reconfigured
network continues execution.

128

Fault Tolerant Process Networks

 7. The nodes which are in control state move to
writing or reading states and reconfigured
network continues execution.

The second exception is when the faulty node does
not have output channels (cout = ∅). The
reconfiguration in such case should follow these rules:

In order to analyze the behaviour of process net-
work in case of hardware failure we are using a multi-
threaded implementation of EPPN. IIR and FIR filters
process network models were chosen for testing
implementation. The example process networks were
implemented in C# programming language using mul-
tiple threads running at the same time and performing
different tasks of process network. We used separate
thread for each element of the process network (node
and channel) and main program for coordination. The
failures of network elements were imitated by destroy-
ing a thread of node or channel.

 1. All nodes connected with faulty node n perform
their actions until input channels of the faulty
node become full.

 2. The nodes connected with faulty node n transit to
blocked writing states.

3. After timeout the nodes connected with faulty
node n transit to control state. In this state:
a. actions of the faulty node n are transferred to

node n1 which first transits to control state and
is connected to input channel of n;

b. input channels of n are connected to n1;
c. the data lost during failure are compensated.

 4. The nodes which are in control state move to
writing or reading states and reconfigured
network continues execution.

5. Conclusion and future work

Process networks are frequently used in streaming
multimedia applications. In real time digital signal
processing applications, execution time is infinite.
However, failures of implementation hardware can
occur. In our work, dynamic run-time reconfiguration
is introduced into process network which ensures
handling of hardware failures, avoiding deadlocks,
effective utilization of available resources, continuous
and on-time result delivery.

In order to demonstrate the actions taken in case of
node failure we are going to analyze the FIR filter
process network model (Figure 3). Suppose network
node mult fails. A possible solution for such situation
is presented in Figure 4. The actions of faulty node
mult are transferred to the modified node multsum, the
input channels of mult become input channels of
multsum and the channel connecting mult and sum is
destroyed. The Error Proof Process Network presented in this

paper is modelled as a labelled transition system.
Formal specification of EPPN and the states of
network elements during execution is presented. This
specification was used as a base for describing the
rules for network run-time reconfiguration in case of
network element failure. These rules minimize data
loss and enable further execution of EPPN. Multi-
threaded implementation of EPPN was used to
analyze the behaviour of process network in case of
hardware failure. The failures of network elements
were imitated by destroying a thread of a node or
channel.

in1

digp mult
sum out

in2
 Future works include implementation of EPPN in a

distributed multicomputer system. Attention will also
be focussed on data loss compensation algorithms.

Figure 4. Modified FIR filter Kahn process network model

In distributed process network, channel failure is
also critical for network execution and can cause a
global deadlock. In case of network channel failure,
the change of network parameters must follow these
rules:

References
 [1] B. Bhattacharya, S. Bhattacharyya. Parameterized

dataflow modeling for DSP systems. IEEE Transac-
tions on Signal Processing, 49(10), 2001, 2408-2421. 1. The nodes connected by faulty channel transit to

blocked reading and writing states nsbr and nsbw. [2] J. Čeponis, E. Kazanavičius, A. Mikuckas. Design
and analysis of DSP systems using Kahn process
networks. Ultragarsas, 2002, Vol.45, ISSN 1392-2114,
43-46.

 2. After timeout the nodes connected by faulty
channel transit to control state nsc.

 3. Creation of a new channel is initiated by the node
which first transits to control state. [3] M. Dyer, M. Platzner and L. Thiele. Efficient Exe-

cution of Process Networks on a Reconfigurable Hard-
ware Virtual Machine. Proceedings of the 12th Annual
IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM’04), 2004.

4. The new communication channel is connected to
the reading node as its input channel.

 5. The new communication channel is connected to
the writing node as its output channel. [4] M. Geilen, T. Basten. Reactive Process Networks.

EMSOFT’04, 2004. 6. The data lost during failure are compensated.

129

J. Čeponis, E. Kazanavičius, A. Mikuckas

 [5] A. Girault, B. Lee, E. Lee. Hierarchical finite state
machines with multiple concurrency models. IEEE
Transactions on Computer-aided Design of Integrated
Circuits and Systems, 18(6), 1999, 742-760.

 [6] M. Goel. Process networks in Ptolemy II. Technical
Memorandum UCB/ERL No.M98/69, University of
California, EECS Dept., 1998.

 [7] D. Hofstee. Exploring Criticality Numbers for Kahn
Process Networks. MSc Thesis, 2003.

 [8] D. Hofstee, B.H.H. Juurlink. Determining the criti-
cality of processes in Kahn process networks for
design space exploration, Proceedings ProRISC 2002,
Veldhoven, The Netherlands, 2002, 292-297.

 [9] G. Kahn. The semantics of a simple language for pa-
rallel programming. Information Processing 74: Proc.
of the IFIP Congress 74, 1974, 471-475.

[10] E. Kock. YAPI: Application modeling for signal pro-
cessing systems. In Proc. of the 37th. Design Automa-
tion Conference, IEEE, 2000, 402-405.

[11] B. Lee. Specification and Design of Reactive Systems.
PhD thesis, Electronics Research Laboratory, Univer-
sity of California, EECS Dept., 2000.

[12] E. Lee. Overview of the Ptolemy project. Technical
Memorandum UCB/ERL No.M01/11, University of
California, EECS Dept., 2001.

[13] E. Lee, D. Messerschmitt. Synchronous data flow.
IEEE Proceedings, 75(9), 1987, 1235-1245.

[14] E. Lee, T. M. Parks. Dataflow process networks. Pro-
ceedings of the IEEE, 83(5), 1995, 773-798.

[15] J. Magee, J. Kramer. Concurrency: State Models &
Java Programs. John Wiley & Sons, 1999.

[16] S. Neuendorffer, E.A. Lee. Hierarchical reconfigura-
tion of dataflow models. In Proc. Second ACM-IEEE
International Conference on Formal Methods and
Models for Codesign (MEMOCODE 2004), IEEE
Computer Society Press, 2004.

[17] A.G. Olson, B.L. Evans. Deadlock detection for dis-
tributed process networks. Proc. IEEE Int. Conf. on
Acoustics, Speech and Signal Proc., Vol.5, 2005, 73-76.

Received January 2006.

