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Abstract. The dynamics of the forced synchronization system with delays, composed of n  oscillators joint 
into a chain, is studied. The investigation is based on the use of Jordan’s form, eigenvalues and eigenvectors of the 
matrix, which describes the structure of the internal links of the system. 
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1. Formulation of the problem As an example of a control system described by 
the equation (1), the forced synchronization system of 
the communication network, composed of n 
oscillators joined into a chain, can be pointed out 
[1,2]. In this case, the symbol ( ) ( )n,itxi 1=  in (1) 
stands for the phase of the i-th oscillator. 

 The automatic control systems are used in various 
processes of production and in the networks of trans-
mitting and distributing of the information. Often the 
delays of the fed signals in such systems must the 
evaluated. Despite the great achievements in the area 
of projection and implementation of control systems, 
the works devoted to the exact analytical investigation 
of such systems are relevant [1-2]. In the present 
work, the exact theoretical investigation of the 
concrete linear multidimensional delay system is 
carried out. 

We will investigate the dynamics of the system. 

2. Step responses matrix of the system 
2.1. The solution of the matrix equation 

Let us consider a multidimensional delay system 
described by the following matrix differential equation 

)()()(( 10 tztxBtxB)tDx +−+= τ ; (1) 

We solve the matrix differential equation with de-
layed argument (1) by applying method of “steps”. 
The interval +∞<< t0  is divided into subintervals. 
The lengths of these subintervals are equal to the delay 

. The differential equation (1) in each subinterval is 
solved separately. The solution, obtained in some 
subinterval is used as initial function, solving the 
equation in the next subinterval. Applying the Laplace 
transform, we write down the solution of the equation 
(1) as follows [2]: 

τhere  is the generalized differential operator 
(applicable to generalized functions), 
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T  denotes operation of 
transposition),  is the vector function, depending 
on the initial conditions,  is the constant delay. 
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Z(p) is the Laplace transform of the function ( )tz  
(sign ÷  links function with its Laplace transform), 
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Taking (2) into account, we obtain here )(α= nn DD , )(α∆=∆ nn . 
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Solving difference equation (8), we obtain 
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We will find the step responses matrix ( ) ( )( )thth ij=  of 

the system; here h  ()(tij nj ,1, =i ) is the response of 
the i-th oscillator phase to a unit jump in the j-th 
oscillator oscillation phase. The set of  all step 
responses  ()(thij n,1j, =i ) form the step responses 

matrix  of the system. (th )

here U  is the n-th degree Chebyshev polynomial 
of the second kind [5]:  
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here  is the n-th degree Chebyshev polynomial 
of the first kind. All the roots of the polynomial T  
are distributed in the interval [  and can be found 
by using the relation: 
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2.2. The l-th power of the matrix B 

We will find the -th power  of the matrix 

 in (4) by applying the expression  [4], 
where  is the Jordan’s form of , 

l ( Nl∈
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J T  is the 
transforming matrix. Matrices  and J T  can be found 
provided eigenvalues and eigenvectors of the matrix 

 are known. The eigenvalues of  are obtained by 
solving the characteristic equation  
B B
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This relation follows from the known equality [5] 
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Further two cases will be examined separately.  

0=λ− EB . (5) 2.2.1. The order of the matrix B is an even number 
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 Let n be an even number ( )m,mn N  2 ∈=

B

. 
Taking into account expressions (10) and (11), we find 
the roots of the characteristic equation (5) (the 
eigenvalues of the even order matrix ): 
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a multiplicity of the eigenvalue λ . For simple 
eigenvalue 
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λ  there corresponds single Jordan’s cell 
)i(1J λ  in the matrix J. For multiple eigenvalue 1−λn , 

there corresponds single Jordan cell )1−(2 nJ λ  in the 
matrix J as well, since the rank 1)( 1 −=λ− −B n nEr  
and 1)( 1 =λ−− −B n Ern . Taking this into account  
and applying the relation ,1 (12212 =−= − kn −−k kλλ  
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matrix B: 
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Since all the eigenvalues ( )n,kλk 1=  are simple, 
for eigenvalue , there corresponds single Jordan 
cell 

kλ
( )kλJ1  in the matrix J. Taking this into account, 

we write down the Jordan’s form of the matrix B: 

Using the equality  we find the matrix T  
and the inverse matrix 
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1−T . We calculate the l-th 

power of the matrix B: 
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)1,1(12 −=λ − nkk  are eigenvalues of the matrix B 

(see (13)), 
22
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 are the eigenvalues of the odd order mat-
rix  (defined by (17)). 

2.3. The step responses of the system 2.2.2. The order of the matrix B is an odd number 
2.3.1. The order of the matrix B is an even number Now we shall examine the case, where n is an odd 

number ( . Taking (10) and (11) into 
account, we find the roots of the characteristic 
equation (5) (the eigenvalues of the odd order matrix 
B): 
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Taking into account derived expressions, the step 
responses matrix for the forced synchronization 
system composed of n (n is an arbitrary even number) 
oscillators joined into a chain can be written down. 

For example, if , we get 4=n
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2.3.2. The order of the matrix B is an odd number ( )
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Substituting (19) into (4) and implementing 
necessary transformations, we find the step responses 
matrix of the system in the case where n is an odd 
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)l(gij  is defined by (20).  

Taking into account derived expressions, the step 
responses matrix for the forced synchronization 
system composed of n (n is an arbitrary odd number) 
oscillators joined into a  chain can be written down. 
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,  

, 
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,   

, ))1 l−
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4. Conclusions 

1. The exact expressions for the step responses of 
the forced synchronization system with delays, 
composed of n  oscillators joined into a 
chain are obtained. 

( Nn∈ )

2. The obtained expressions can be applied to 
investigate the transient responses of the 
synchronization system, calculate statistical 
characteristics, examine behaviour of the system 
in the steady state.  

3. The method of dynamic’s investigation, used in 
the paper, can also be applied to other automatic 
control systems, described by the linear matrix 
differential equations of the first order with 
delayed argument. 
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