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INVESTIGATION OF A MULTIDIMENSIONAL AUTOMATIC CONTROL
SYSTEM WITH DELAYS AND CHAIN FORM STRUCTURE
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Abstract. The dynamics of the forced synchronization system with delays, composed of n (n eN ) oscillators joint

into a chain, is studied. The investigation is based on the use of Jordan’s form, eigenvalues and eigenvectors of the
matrix, which describes the structure of the internal links of the system.
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1. Formulation of the problem

The automatic control systems are used in various
processes of production and in the networks of trans-
mitting and distributing of the information. Often the
delays of the fed signals in such systems must the
evaluated. Despite the great achievements in the area
of projection and implementation of control systems,
the works devoted to the exact analytical investigation
of such systems are relevant [1-2]. In the present
work, the exact theoretical investigation of the
concrete linear multidimensional delay system is
carried out.

Let us consider a multidimensional delay system
described by the following matrix differential equation

Dx(t)=Byx(t)+ B x(t —7)+ z(t) ; )

here D is the generalized differential operator

(applicable to generalized functions),
B, =diag(0, -k, -k, ...,—K), k is the coefficient,
B =28,
2
0
1 0
1 0 1
B= . 2)
0 1 01
2 0

is the n-th order matrix, x(z) = (x{(?), x5 (¢),..., X, (t))T
is the desired vector function (7' denotes operation of
transposition), z(¢) is the vector function, depending
on the initial conditions, t is the constant delay.

As an example of a control system described by
the equation (1), the forced synchronization system of
the communication network, composed of =n
oscillators joined into a chain, can be pointed out
[1,2]. In this case, the symbol x,.(t) (izl,n) in (1)
stands for the phase of the i-th oscillator.

We will investigate the dynamics of the system.

2. Step responses matrix of the system
2.1. The solution of the matrix equation

We solve the matrix differential equation with de-
layed argument (1) by applying method of “steps”.
The interval 0 <¢ <+ is divided into subintervals.
The lengths of these subintervals are equal to the delay
7. The differential equation (1) in each subinterval is
solved separately. The solution, obtained in some
subinterval is used as initial function, solving the
equation in the next subinterval. Applying the Laplace
transform, we write down the solution of the equation
(1) as follows [2]:

L i

)= (' Be™) 4 z(p), 0<t<(L+1);

1=0

here A= pE - B,, E is the identity matrix of the n-th
order,

A7 =

diag(“",l,l,m,lj, Z(p)+z(p),
ptx p
Z(p) is the Laplace transform of the function z(t)

(sign + links function with its Laplace transform),
L=0,1,2,....



Taking (2) into account, we obtain

L I
X(1)+ Z(gj e (4B A Z(p),
0<t<l(:£+1)t. 3)
We will find the step responses matrix /(z)= (hl.,. (t)) of
the system; here h; (1) (i,/ = 1,_n) is the response of

the i-th oscillator phase to a unit jump in the j-th
oscillator oscillation phase. The set of all step

responses hy; (1) (i,) = 1,_n) form the step responses
matrix /(z) of the system.

Using the expression (3), we get

L 1
h(t):(hij(t))+2(§j e‘]’/r(A—l)lBlA—l,
1=0

0<t<(L+1). “)

2.2. The /-th power of the matrix B
We will find the /-th power (/€ N) of the matrix

B in (4) by applying the expression Bl =mjr! [4],
where J is the Jordan’s form of B, T is the
transforming matrix. Matrices J and 7 can be found
provided eigenvalues and eigenvectors of the matrix
B are known. The eigenvalues of B are obtained by
solving the characteristic equation

|B—%E|=0. (5)
Let us denote
a 0
1 o 1 0
1 o 1
Dn ((l) = .. )
0 1 o 1
2 o
a 1
1 a 1 0
1 a 1
A (a)= . ; (6)
0 1 a 1
1 o
here o € R. Then
|B—AE|=D,(-}).
From (6) it follows
Dn = oL(An—l - An—3 )3 (7
A, =0, 1 A, (¥

(Ay=a?—1, Ay =a, Ag=1);
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here D, =D, (o)), A, =A,(a).

Solving difference equation (8), we obtain
a
A(a)=U|—|;
n ( ) n ( 2 )

here U, (x) is the n-th degree Chebyshev polynomial
of the second kind [5]:

(€))

sin (n + 1)arccos x
U,(x)= (, ) , 1<x
sin arccos x

<L

Taking into account (9) and the relation
2T, (1) = U,y (1) ~U,y_o (x) (see [5]), from (7) we get

D, (o) = 2aTn1(%j ; (10)

here T, (x) is the n-th degree Chebyshev polynomial
of the first kind. All the roots of the polynomial 7, (x)
are distributed in the interval [-1, 1] and can be found
by using the relation:
2k-Drn
BETEE

X, = COS k=12,..,n. (11)

This relation follows from the known equality [5]

(12)

T,(x)=cosnarccosx, —1<x<1.

Further two cases will be examined separately.

2.2.1. The order of the matrix B is an even number

Let n be an even number (n=2m, meN).
Taking into account expressions (10) and (11), we find
the roots of the characteristic equation (5) (the
eigenvalues of the even order matrix B ):
2k-Dn

n—

= -2cos L k=123, n—1.(13)

Aok

The eigenvalues A,;_; (k =1 2,.,n-Lk=# gj
are simple eigenvalues (/,, ; =1), while the eigen-
value %, (k =§) is multiple (7, , =2); here I, is

a multiplicity of the eigenvalue A;. For simple
eigenvalue A; there corresponds single Jordan’s cell
J1(4;) in the matrix J. For multiple eigenvalue A ,_;,
there corresponds single Jordan cell J,(4,_;) in the
matrix J as well, since the rank »(B—-A,_1E)=n—-1
and n—r(B-X\,_1E)=1. Taking this into account

2n—2k-1 (k =1,
n

2, T 1), we write down the Jordan’s form of the

and applying the relation A, , =-

matrix B:
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n+l

Using the equality J =T “!BT we find the matrix T

and the inverse matrix 7~'. We calculate the I-th

power of the matrix B:

Bl =117 = 57520 =5—(@;(); (19)

here

2
T
I
L+(—1)" )P,, 2/12;1 2k-1 n+2k 2"

¢,0=1
= (16)

22/1 2k— /12n72k7

Ui, [ : Uj—2+a/ Tl B
0, if j#1,

a; = )

/ 1, if j=1,

0, if i=1,

l, if i#1 and j=n,
1, if i#landj#n,

Aop—1(k=1,n—1) are eigenvalues of the matrix B

(see (13)), Ay =—2COSM, (k=1Ln-2) are
2n-2
auxiliary = numbers, satisfying the  relation

n
Mok =—hopok—2, k= 1’5_1'

2.2.2. The order of the matrix B is an odd number

Now we shall examine the case, where # is an odd
number (n =2m+1, me N). Taking (10) and (11) into
account, we find the roots of the characteristic

equation (5) (the eigenvalues of the odd order matrix
B):

—ZCOSM, if k=12,..., n-1
-2 2
A =10, ifk:”;’I, (17
—2COSM, ifpot3 s
m—2 2 2
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(14)

Since all the eigenvalues 4, (k = E) are simple,
for eigenvalue /,, there corresponds single Jordan
cell J,(4,) in the matrix J. Taking this into account,
we write down the Jordan’s form of the matrix B:

J =diag(4,, 4y, Ay,.os 4,). (18)

Using the equality J=T"'BT, we find the
matrices 7, T~' and derive the expression of the /-th
power (/ € N) of the matrix B :

L )=

2n-2 2n-2

B' =TJ'T' =

(,0): 9

here

n-1

N2
8 (1): (1 + (_ 1)1+HJ )p{/ z )“1 Y ’15+1

k=1 2
A’k A’k
Ui, (7) Uja (7

{O,ifj;tl,
aj:

Lif j=1, P

(20)

0,if i=1,

l,ifiilandj:n,
2
1, if i#1and j#n,

A (k = E) are the eigenvalues of the odd order mat-
rix B (defined by (17)).

2.3. The step responses of the system
2.3.1. The order of the matrix B is an even number
Substituting (15) into (4) and implementing the

inverse Laplace transform, we obtain the step
responses matrix of the system: A(t) = (h; (1)) ; here

eiktl(y_i_ui/(t), lf l.:j>1)
hy()=Ru,(1), if 1<i#j>1,
V{j(t),

(21)
if i>1 and j=1,



Lo k'(t—I7)
—g.(]) =—=_""7 .
2n —2,1 2! 9 (1) 1

et —t), i>1, j>1,0<t<(L+1)1,
Lo llkv(t [7)"
i
e ; o qg/(){ 2
'e—x(t—lrz]l(t_ld, i>1,j:1;0<t<(L+1)T’

uy(t)=——>

v, ()=

(1) is defined by (16); 1()=1" T 2% o
lS cIime lS c
i Y 0 if 1<0,

unit function.

Taking into account derived expressions, the step
responses matrix for the forced synchronization
system composed of n (n is an arbitrary even number)
oscillators joined into a chain can be written down.

For example, if n =4, we get

-4 0 0 O -a 0 0 O
O R B U R R
1o 00 0] ][0 000
0 0 0 —2A 0 00 a

0 0 0 0

1 e ay ay a

6(%)_6 a, as; a; a

2a, 2a, 2a; 2a,

3 a(h=a""(1-(-1))
a(D=a'1+(D") ay()=a""(1-(-D")
a,(N=a"?(+(D)") 1eN 122

12) 0 0 0

W a+h, Ok h
h(t)=(h,; () =| | 2 } S|
O=Cy@= o T o

2V 2m, 2y a+2h
a(t)=e 1)

1& 1 K'(t—I7)
hit)==S — a()E =00 owtoio gy gg,
(1) 6; 74 T (t-It)
i=234 0<t<(L+1)z,
L -1 v _
h(l)(t _%Z _al(l)|: K (t ZT)
v=0 ~

‘e_m_m]l(, —lIr), i=12, 0<t<(L+1)z.

If n =6, we would obtain
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-a 0
-c 0 0
7o 0 1 ’
00
0 0
a
o ()=
0 0 0 0 0 0
a a, as a, a, a,
lVa a a ay, a; &

2a; 2a, 2a; 2a, 22a, 2a,
ay(l)=(@"'d* + b1~ (1))
ay()=(a'd?® +c'b*)A+(-1)")
ay(l) = (@' + A= (=D

a, ()= (a'd —c'b)1+(-1)")
as()=(a'"'d-c"b)1-(-1)")
aé(l):(al+1d2 +Cl+1b2)(1_(_1)1)
az(l)=(a' + YA+ (=1

ag(l) = (a""d — )1 - (-1))
ag(l) = (a'*2d? + 21+ (-1
ag ()= (" +c"™M =D

ap (1) = (@™2d - )1+ (-1))
ap () =(a'b? + a1+ (1))
a3 () = @b - Maya- (-1
arg() = (@'b—c'a)1+1')

ajs() = (@ + ")+l

a= 2cos£, c= 2cos3—ﬂ b= 2c0sE
10 10 5

>

dzZCosz?ﬁ, leN,[>2,
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7)) o 0 0 0 0
hY  a+h, hg h, hg h,
(1)
h(t)=(hl.j(t))= Zz(l) Zs a;—hg ai’_mh le :8 ,
3 7 10 12 13 14
hgl) hy hy, hys a+hs hy
2nl"Y 2h, 2hg 2hy, 2h, a+2h,

alt)=e™1(¢),

L
1 1 l‘l') —x(t—1 . 71z
h=—Y — 1— KDVt =17), i=2,4,6,15, 0<t<(L+D)r,
l()log;2,<> (t=17) (L+1)
L /-1 Vi J—
h;l)(t)zi > L 1—2%"“’ D N(t-Ir), i=15 0<t<(L+D)r.
10 = 2! ~ V!

2.3.2. The order of the matrix B is an odd number l(t) 0 0

Substituting (19) into (4) and implementing h(t) = (h, (1)) = Y a+h, h,

necessary transformations, we find the step responses

) ) . Yo a+h
matrix of the system in the case where n is an odd 2 3 2

E

number: /(7) = (h; (7)) ; here a(t)=e ™ 1(1)
eIt +u, (L), if i=j>1, L Lo gl
_ _ g hi(t):lz L[ ai(l)Me”‘””” (¢ - i)
hy(t)=<u;(t), if 1<i# j>1, 452 I
v, (t), if i>1andj=1, =123
l]( ) ' @2) L -1
1 1 S (t-It)"
(V) —
— 1 & k't - k) W=7 2 o a)|1-2
u,‘j(f)=m > o g,() Tl(f—lr), =1 par -
o = : e\t -17), i=1,2, 0O<t<(L+1)t,
i>l j>1, O0<t<(L+1)z, )
If n=>5, we would obtain
Lol llKvt—lT = diag(-A. . - = dias(-q.—
v’] (t) = _l gij (l)|: ( ) J dlag( 15’ 2’4109 /14’ ﬂ'S ) dlag( a,— ¢, 0: C,a),
m-2 2 V=0 V1 3z
—x(1-I7) . . a=2cos—, ¢=2cos—,
e ]l(t—lz'),z>1,J=l,0<t<(L+l)r, 8 8
g; (1) is defined by (20). 0 0 0 0 0
Taking into account derived expressions, the step | a4, a; 4, 4
responses matrix for the forced synchronization B'=—|a, a a a, a,
system composed of n (n is an arbitrary odd number) 8 a a a a a
oscillators joined into a chain can be written down. 5 ’ 5 ¢ 5 7 5 s 5 ’
For example, if n=3, we get Go 245 24y 2y LAn )
J :diag(_ﬂpoa/’{‘} ):diag(_aaoaa) , a :'\/59 a (l) _ (al 16'2 +Cl 1 2)(1 ( 1) )
(D=
. o0 a,() = (@'c? +c'a®)(1+(=1))
:Z(Qg/)zz a a, a | ’
a, a; a, a,(l)=(a"""c* +cMa*)A- (-1
a,()=a""(1=(-1)") a,(l)=a"?(1+(-D") a,(l) = (@"1¢? — a1+ (-1))

ay()=a"(1=(-D") 1eN
as(l)=(a'e~c'a)l-(1)").

ag(l)=(a"c* +c'? 2)(1+( DY
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4. Conclusions

1.

The exact expressions for the step responses of
the forced synchronization system with delays,
composed of n (neN) oscillators joined into a
chain are obtained.

The obtained expressions can be applied to
investigate the transient responses of the
synchronization system, calculate statistical
characteristics, examine behaviour of the system
in the steady state.

The method of dynamic’s investigation, used in
the paper, can also be applied to other automatic
control systems, described by the linear matrix
differential equations of the first order with
delayed argument.
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