
 
 

 

 
  
 

 
 
 

 

 
 

 
 
1. Introduction 
 
A manufacturing system is an event-driven system 
that exhibits concurrent, sequential, coordinated or 
uncoordinated activities among its processes. The 
processes are asynchronous in nature and used to 
compete with each other for common resources [1, 2, 
3, 4]. As this involves the sharing of resources, 
erroneous situations such as deadlocks may occur if 
the system is not carefully analysed and designed. 
Therefore, in manufacturing system design, a major 
objective is to achieve a system which is free from 
deadlocks. On the other hand, it is equally important 
that the system is capable of reinitialised for fault 
recovery. These two properties refer to the liveness 
and reversibility of a system. Thus, in manufacturing 
system design, verification of the system liveness 
and reversibility is essentially required. In real 
practice, without a rigorous method, one need to 
walk through all possible scenarios for verification. 
The process is very time-consuming. 
 
A subclass of Petri nets, augmented marked graphs 
possess a structure which is especially desirable for 
modelling systems with shared resources. Moreover, 
there are many desirable properties, pertaining to 
their liveness and reversibility. For these reasons, 
augmented marked graphs are often used in 
manufacturing system design [5, 6, 7, 8, 9, 10]. 

In the literature, augmented marked graphs are not 
studied extensively. Only a few publications are 
found so far. Chu and Xie first investigated the 
liveness and reversibility of augmented marked 
graphs, based on siphons [6]. Huang and others 
investigated the property-preserving composition of 
augmented marked graphs [7]. Recently, the author 
further proposed a number of siphon-based and 
cycle-based characterisations for live and reversible 
augmented marked graphs [8, 9]. This paper first 
summarises these known properties of augmented 
marked graphs. Then, it will be shown how 
augmented marked graphs can be effectively used 
for modelling and analysing manufacturing systems. 
Specific focus will be place on the system liveness 
and reversibility. Examples drawn from the literature 
will be used for illustration. 
 
The rest of this paper is structured as follows. 
Section 2 provides some fundamentals of Petri nets. 
Section 3 is a review of augmented marked graphs, 
where the properties of augmented marked graphs 
are described in details. Section 4 then shows how 
manufacturing systems can be modelled and 
analysed using augmented marked graphs. This will 
be illustrated using examples of manufacturing 
systems. Section 5 concludes our results. It should be 
noted that readers of this paper are expected to have 
basic knowledge of manufacturing systems. 
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2. Fundamentals of Petri nets 
 
This section provides the preliminaries to be used in 
this paper for those readers who are not familiar with 
Petri nets [11, 12, 13, 14]. 
 
A place-transition net (PT-net) is a bipartite graph 
consisting of two sorts of nodes called places and 
transitions, such that no arcs connect two nodes of 
the same sort. In graphical notation, a place is 
represented by a circle, a transition by a box, and an 
arc by a directed line. A Petri net is a PT-net where 
tokens are assigned to its places. 
 
Definition 2.1. A place-transition net (PT-net) is a 4-
tuple N = 〈 P, T, F, W 〉, where P is a set of places, T 
is a set of transitions, F ⊆ (P × T) ∪ (T × P) is a flow 
relation and W : F → { 1, 2, ... } is a weight 
function. N is said to be an ordinary PT-net if and 
only if W : F → { 1 }. (Note : An ordinary PT-net 
can be written as 〈 P, T, F 〉. In the rest of this paper, 
unless specified otherwise, all PT-nets are ordinary.) 
 
Definition 2.2. Let N = 〈 P, T, F, W 〉 be a PT-net. 
For x ∈ (P ∪ T), •x = { y | (y, x) ∈ F } and x• = { y | 
(x, y) ∈ F } are called the pre-set and post-set of x, 
respectively. For X = { x1, x2, …, xn } ⊆ (P ∪ T), •X 
= •x1 ∪ •x2 ∪ … ∪ •xn and X• = x1

• ∪ x2
• ∪ … ∪ xn

• 
are called the pre-set and post-set of X, respectively. 
 
Definition 2.3. For a PT-net N = 〈 P, T, F, W 〉, a 
path is a sequence of nodes ρ = 〈 x1, x2, ..., xn 〉, 
where (xi, xi+1) ∈ F for i = 1, 2, ..., n-1. ρ is said to 
be elementary if and only if it does not contain the 
same node more than once. 
 
Definition 2.4. For a PT-net N = 〈 P, T, F, W 〉, a 
cycle is a sequence of places 〈 p1, p2, ..., pn 〉 such 
that ∃ t1, t2, ..., tn ∈ T : 〈 p1, t1, p2, t2, ..., pn, tn 〉 forms 
an elementary path and (tn, p1) ∈ F. 
 
Definition 2.5. For a PT-net N = 〈 P, T, F, W 〉, a 
marking is a function M : P → { 0, 1, 2, ... }, where 
M(p) is the number of tokens in p. (N, M0) 
represents N with an initial marking M0. 
 
Definition 2.6. For a PT-net N = 〈 P, T, F, W 〉, a 
transition t is said to be enabled at a marking M if 
and only if ∀ p ∈ •t : M(p) ≥ W(p,t). On firing t, M 
is changed to M' such that ∀ p ∈ P : M'(p) = M(p) - 
W(p,t) + W(t,p). In notation, M [N,t〉 M' or M [t〉 M'. 

Definition 2.7. For a PT-net (N, M0), a sequence of 
transitions σ = 〈 t1, t2, ..., tn 〉 is called a firing 
sequence if and only if M0 [t1〉 ... [tn〉 Mn. In notation, 
M0 [N,σ〉 Mn or M0 [σ〉 Mn. 
 
Definition 2.8. For a PT-net (N, M0), a marking M is 
said to be reachable if and only if there exists a firing 
sequence σ such that M0 [σ〉 M. In notation, M0 
[N,∗〉 M or M0 [∗〉 M. [N, M0〉 or [M0〉 represents the 
set of all reachable markings of (N, M0). 
 
Definition 2.9. For a PT-net (N, M0), a transition t is 
said to be live if and only if ∀ M ∈ [M0〉, ∃ M' : M 
[∗〉 M' [t〉. (N, M0) is said to be live if and only if 
every transition is live. 
 
Definition 2.10. For a PT-net (N, M0), a place p is 
said to be k-bounded or bounded if and only if ∀ M 
∈ [M0〉 : M(p) ≤ k, where k > 0. (N, M0) is said to be 
bounded if and only if every place is bounded. 
 
Definition 2.11. A PT-net (N, M0) is said to be safe 
if and only if every place is 1-bounded. 
 
Definition 2.12. A PT-net (N, M0) is said to be 
reversible if and only if ∀ M ∈ [M0〉 : M [∗〉 M0. 
 
Figure 1 shows a PT-net (N, M0), where every 
transition is live and every place is 1-bounded. (N, 
M0) is live, bounded, safe and reversible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         Figure 1. A live, bounded, safe and reversible PT-net
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3. Augmented marked graphs 
 
Augmented marked graphs were first introduced by 
Chu  and Xie [6]. 
 
Definition 3.1 [6]. An augmented marked graph (N, 
M0; R) is a PT-net (N, M0) with a specific subset of 
places R, satisfying the following conditions : 
(a) Every place in R is marked by M0. 
(b) The net (N', M0') obtained from (N, M0; R) by 

removing the places in R and their associated 
arcs is a marked graph. 

(c) For each place r ∈ R, there exist kr > 1 pairs of 
transitions Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tskr, thkr〉 }, 
where r• = { ts1, ts2, ..., tskr } and •r = { th1, th2, ..., 
thkr } and, for each 〈tsi, thi〉 ∈ Dr, there exists in N' 
an elementary path ρri from tsi to thi. 

(d) In (N', M0'), all cycles are marked and no ρri is 
marked. 

 
Figure 2 shows an augmented marked graph (N, M0; 
R), where R = { p1, p2 } and both p1 and p2 are 
marked by M0. For p1, we have Dp1 = { 〈t2, t8〉, 〈t1, 
t10〉 }. For p2, we have Dp2 = { 〈t3, t9〉, 〈t1, t10〉 }. If p1 
and p2 and their associated arcs are removed, the 
resulting net is a marked graph where every cycle is 
marked. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 2. An augmented marked graph 
 
Based on siphons and mathematical programming, 
Chu and Xie proposed a number of properties for 
augmented marked graph, pertaining to their liveness 
and reversibility [6]. 
 
Definition 3.2. For a PT-net N, a set of places S is 
called a siphon if and only if •S ⊆ S•. S is said to be 
minimal if and only if there does not exist another 
siphon S' in N, such that S' ⊂ S. 

Definition 3.3. For a PT-net N, a set of places Q is 
called a trap if and only if Q• ⊆ •Q. 
 
Definition 3.4. A PT-net (N, M0) is said to satisfy 
the siphon-trap property if and only if every siphon 
(or minimal siphon) in N contains a marked trap. 
 
Property 3.1 [6]. An augmented marked graph is 
live if and only if it does not contain any potential 
deadlock. (Note : A potential deadlock is a siphon 
which would eventually become empty.) 
 
Property 3.2 [6]. An augmented marked graph is 
reversible if it is live. 
 
Corollary 3.1. An augmented marked graph is live 
and reversible if and only if every siphon would 
never become empty. 
 
Property 3.3 [6]. An augmented marked graph is 
live and reversible if every minimal siphon, which 
contains at least one place in R, contains a marked 
trap. 
 
Corollary 3.2. An augmented marked graph is live 
and reversible if it satisfies the siphon-trap property. 
 
Based on Chu and Xie's results, the author further 
proposed a number of siphon-based and cycle-based 
characterisations for live and reversible augmented 
marked graphs [8, 9]. Specifically, a new cycle-
based property called cycle-inclusion property is 
proposed. These characterisations are described and 
illustrated as follows. 
 
For elaborating these characterisations, let us first 
introduce a number of new notations on cycles, such 
as the containment of places and transitions in cycles 
and conflict-free cycles. 
 
Definition 3.5. For a PT-net N = 〈 P, T, F 〉 and a 
place p ∈ P, ΩN denotes the set of cycles in N, and 
ΩN[p] denotes the set of cycles containing p. 
 
Definition 3.6. Let N be a PT-net. For a set of cycles 
Y ⊆ ΩN, P[Y] denotes the set of places in Y, and 
T[Y] = •P[Y] ∩ P[Y]• denotes the set of transitions 
generated by Y. 
 
Definition 3.7. For a PT-net N, a set of cycle Y ⊆ 
ΩN is said to be conflict-free if and only if, for any q, 
q' ∈ P[Y], there exists in Y a conflict-free path from 
q to q'. (Note : According to [15], an elementary path 
ρ = 〈 x1, x2, ..., xn 〉 is conflict-free if and only if, for 
any transition xi in ρ, j ≠ (i -1) ⇒ xj ∉ •xi.) 
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Figure 3 shows a PT-net N = 〈 P, T, F 〉. Consider γ1, 
γ2, γ3 ∈ ΩN[p3], where γ1 = 〈 p3, p2, p7 〉, γ2 = 〈 p3, p4 〉 
and γ3 = 〈 p3, p1, p6, p10, p8 〉. Y1 = { γ1, γ2 } is 
conflict-free as for any q, q' ∈ P[Y1], there exists in 
Y1 a conflict-free path from q to q'. Y2 = { γ2, γ3 } is 
not conflict-free. Consider p4, p8 ∈ P[Y2]. p4 is 
connected to p8 via only one path ρ = 〈 p4, t5, p3, t1, 
p1, t3, p6, t6, p10, t9, p8 〉 in Y2, where ρ is not conflict-
free because p4, p8 ∈ •t5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 3. Illustration of conflict-free cycles 
 
Lemma 3.1. Let S be a minimal siphon of an 
augmented marked graph (N, M0; R). For every 
place p ∈ S, there exists Y ⊆ ΩN[p] such that Y is 
conflict free, P[Y] = S and •p ⊆ T[Y]. 
 
Proof. Let S = { p } ∪ { p1, p2, ..., pn }. For each pi, 
according to [15], p connects to pi via a conflict-free 
path ρi in S while pi to p via another ρi' in S, forming 
a cycle γi ∈ ΩN[p], where p, pi ∈ P[γi] ⊆ S. Let Y = { 
γ1, γ2, ..., γn } ⊆ ΩN[p]. Then, P[Y] = (P[γ1] ∪ P[γ2] 
∪ ... ∪ P[γn]) = S. Y is conflict-free because there 
exists a conflict-free path from q to q', for any q, q' ∈ 
S = P[Y]. Besides, since S is a siphon, •p ⊆ (•S ∩ S•) 
= (•P[Y] ∩ P[Y]•) = T[Y]. 
 
Lemma 3.2. Every cycle in an augmented marked 
graph is marked. 
 
Proof. (by contradiction) Let (N, M0; R) be an 
augmented marked graph. Suppose there exists a 
cycle γ in (N, M0; R), such that γ is not marked. 
Then, γ does not contain any place in R. Hence, γ 
also exists in the net (N', M0') obtained from (N, M0; 
R) after removing the places in R and their 
associated arcs. However, by definition of 
augmented marked graphs, every cycle in (N', M0') is 
marked. 

Property 3.4. An augmented marked graph (N, M0; 
R) is live and reversible if and only if no minimal 
siphons, which contain at least one place of R, 
eventually become empty. 
 
Proof. (⇐) Consider a siphon S which does not 
contain any place of R. According to Lemmas 3.1 
and 3.2, S is covered by cycles and is marked. As S 
does not contain any place of R, it follows from the 
definition of augmented marked graphs that, for any 
s ∈ S, | •s | = | s• | = 1. Then, •S = S• and S is also a 
trap. S contains itself as a marked trap and would 
never become empty. Given that no minimal 
siphons, which contain at least one place of R, 
eventually become empty, every minimal siphon 
never become empty. According to Corollary 3.1, 
(N, M0; R) is live and reversible. (⇒) It follows from 
Corollary 3.1 that no minimal siphons, which contain 
at least one place of R, eventually become empty. 
 
Definition 3.8. For a PT-net N = 〈 P, T, F 〉, a place p 
∈ P is said to satisfy the cycle-inclusion property if 
and only if, for any set of cycles Y ⊆ ΩN[p], such 
that Y is conflict-free, •p ⊆ T[Y] ⇒ p• ⊆ T[Y]. 
 
For the PT-net = 〈 P, T, F 〉 shown in Figure 4, p3, p4, 
p5, p6, p7, p8, p9, p10, p11 and p12 satisfy the cycle-
inclusion property. For example, for p8, ΩN[p8] = { 
γ81, γ82, γ83, γ84, γ85 } where γ81 = 〈 p8, p1 〉, γ82 = 〈 p8, 
p2, p4 〉, γ83 = 〈 p8, p2, p9, p1 〉, γ84 = 〈 p8, p1, p5, p9, p2, 
p4 〉 and γ85 = 〈 p8, p1, p6, p10, p2, p4 〉. For any Y8 ⊆ 
ΩN[p8] such that Y8 is conflict-free, •p8 = { t4 } ⊆ 
T[Y8] and p8

• = { t7 } ⊆ T[Y8]. Hence, p8 satisfies 
the cycle-inclusion property. On the other hand, p1 
and p2 do not satisfy the cycle-inclusion property. 
For example, for p1, let Y1 = { γ11, γ12 } ⊆ ΩN[p1], 
where γ11 = 〈 p1, p8 〉 and γ12 = 〈 p1, p8, p2, p9 〉. Y1 is 
conflict-free and T[Y1] = { t4, t5, t7, t8 }. Since •p1 = { 
t7, t8 } ⊆ T[Y1] and p1

• = { t2, t4 } ⊄ T[Y1], p1 does 
not satisfy the cycle-inclusion property. 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Figure 4. Illustration of the cycle-inclusion property 
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Lemma 3.3. Let (N, M0; R) be an augmented 
marked graph. For every place r ∈ R, there exists a 
siphon S which contains only one marked place r. 
 
Proof. Let Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tsn, thn〉 }, 
where r• = { ts1, ts2, ..., tsn } and •r = { th1, th2, ..., thn }. 
For each 〈tsi, thi〉 ∈ Dr, by definition of augmented 
marked graphs, there exists an elementary path ρi 
from tsi to thi and ρi is not marked. Let S = P1 ∪ P2 ∪ 
... ∪ Pn ∪ { r }, where Pi is the set of places in ρi for 
i = 1, 2, ..., n. Consider Pi. We have •Pi ⊆ (Pi

• ∪ r•) 
because, for every p ∈ Pi, | •p | = | p• | = 1. Then, (•P1 
∪ •P2 ∪ ... ∪ •Pn) ⊆ (P1

• ∪ P2
• ∪ ... ∪ Pn

• ∪ r•). 
Besides, •r = { th1, th2, ..., thn } ⊆ (P1

• ∪ P2
• ∪ ... ∪ 

Pn
•). Hence, •S = (•P1 ∪ •P2 ∪ ... ∪ •Pn ∪ •r) ⊆ (P1

• 
∪ P2

• ∪ ... ∪ Pn
• ∪ r•) = S•, and S is a siphon. Since 

the places in each Pi are unmarked, r is the only one 
marked place in S. 
 
Property 3.5. An augmented marked graph (N, M0; 
R) satisfies the siphon-trap property if and only if 
every place of R satisfies the cycle-inclusion 
property. 
 
Proof. (⇐) Let S = { p1, p2, ..., pn } be a minimal 
siphon in N. For each pi ∈ S, according to Lemma 
3.1, there exists Yi ⊆ ΩN[pi], such that Yi is conflict-
free, P[Yi] = S and •pi ⊆ T[Yi]. It follows from 
Lemma 3.2 that S is marked. Any pi ∉ R satisfies the 
cycle-inclusion property because | •pi | = | pi

• | = 1 
and, for any Y ⊆ ΩN[pi], •pi ⊆ T[Y] ⇒ pi

• ⊆ T[Y]. 
Given that every place of R satisfies the cycle-
inclusion property, every pi satisfies the cycle-
inclusion property. Then, pi

• ⊆ T[Yi] = (•P[Yi] ∩ 
P[Yi]•), implying pi

• ⊆ •P[Yi] = •S. Since S• = (p1
• ∪ 

p2
• ∪ ... ∪ pn

•) ⊆ •S, S is a trap. S contains itself as a 
marked trap. The siphon-trap property is satisfied. 
(⇒ by contradiction) Suppose there exists r ∈ R 
which does not satisfy the cycle-inclusion property. 
According to Lemma 3.3, there exists a siphon S, in 
which r is the only marked place. Let S' ⊆ S be a 
minimal siphon in N. It follows from Lemmas 3.1 
and 3.2 that S' is covered by cycles and is marked. 
Since S' ⊆ S and r is the only one marked place in S, 
r is also the one marked place in S' and Y ⊆ ΩN[r]. 
Given that (N, M0; R) satisfies the siphon-trap 
property, there exists a marked trap Q in S'. Then, r 
∈ Q and r• ⊆ (•Q ∩ Q•). Since r does not satisfy the 
cycle-inclusion property, •r ⊆ T[Y] ⇒ r• ⊆ T[Y]. 
Since S' is a siphon, it is always true for •r ⊆ (•S' ∩ 
S'•) = (•P[Y] ∩ P[Y]•) = T[Y]. However, since r does 
not satisfy the cycle-inclusion property, r• ⊄ T[Y] = 
(•P[Y] ∩ P[Y]•) = (•S' ∩ S'•) implies r• ⊄ (•Q ∩ Q•). 
 

Corollary 3.3. An augmented marked graph (N, M0; 
R) is live and reversible if every place of R satisfies 
the cycle-inclusion property. 
 
Figure 5 shows an augmented marked graph (N, M0; 
R), where R = { p4, p7 }. Every siphon would never 
become empty. According to Corollary 3.1 or 
Property 3.4, (N, M0; R) is live and reversible. On 
the other hand, for (N, M0; R), both p4 and p7 satisfy 
the cycle-inclusion property. According to Property 
3.5, the siphon-trap property is satisfied. It then 
follows from Corollaries 3.2 or 3.3 that (N, M0; R) is 
live and reversible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. A live and reversible augmented marked graph
 

 
Figure 6 shows another augmented marked graph (N, 
M0; R), where R = { p5, p6 }. There exists a minimal 
siphon S = { p5, p6, p7, p8 } which does not contain 
any marked trap. S will become empty after firing 
the sequence of transitions 〈 t1, t2, ... 〉. According to 
Corollary 3.1 or Property 3.4, (N, M0; R) is neither 
live nor reversible. A deadlock would occur after 
firing 〈 t1, t2, ... 〉. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. An augmented marked graph which is 
neither live nor reversible 
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Properties 3.1, 3.2, 3.3 and 3.4 as well as Corollaries 
3.1 and 3.2 give the siphon-based characterisations 
for live and reversible augmented marked graphs. 
Property 3.5 and Corollary 3.3, on the other hand, 
give the cycle-based characterisations, where cycles 
instead of siphons are considered. 
 
Whereas Corollary 3.1 and Property 3.4 provide the 
necessary and sufficient conditions for liveness and 
reversibility of augmented marked graphs, Property 
3.3 and Corollaries 3.2 and 3.3 provide only the 
sufficient conditions. 
 
 
4. Manufacturing system design 
 
A manufacturing system is typically an event-driven 
system that exhibits some concurrent, sequential, 
coordinated or uncoordinated activities among its 
processes. The processes are asynchronous in nature 
and used to compete with each other for common 
resources [1, 2, 3, 4]. Erroneous situation such as 
deadlocks are easily induced because of the sharing 
of common resources. Thus, in manufacturing 
system design, a major design objective is to achieve 
a live and reversible system - liveness implies 
deadlock-freeness while reversibility allows system 
recovery. In real practice, verification of the system 
liveness and reversibility is essentially required and 
this verification is very time-consuming. 
 
In the following, we show the modelling of a 
manufacturing system using an augmented marked 
graph. Based on the properties of augmented marked 
graphs, the system liveness and reversibility can be 
effectively analysed. This is illustrated using 
examples drawn from the literature. 
 
Example 1. It is a FWS-200 Flexible Workstation 
System for the production of circuit boards, 
extracted from [3] (pp. 121-124). The system 
consists of two robots R1 and R2, one feeder area and 
one PCB area, as shown in Figure 7. There are two 
asynchronous production processes. 
 
Production process 1 : R1 picks components from the 
feeder area, and moves into the PCB area for 
inserting components. The finished product is then 
moved out from the PCB area. 
 
Production process 2 : R2 picks components from the 
feeder area, and moves into the PCB area for 
inserting components. The finished product is then 
moved out from the PCB area. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The FWS-200 Flexible Workstation 
System (Example 1) 

 
Figure 8 shows an augmented marked graph (N, M0; 
R), where R = { r1, r2 }, representing the FWS-200 
system (Example 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Semantic meaning for places and transitions 

p11 R1 is ready 
p12 Components for R1 are available 
p13 R1 is picking components from feeder 
p14 R1 is inserting components in PCB area 
p21 R2 is ready 
p22 Components for R2 are available 
p23 R2 is picking components from feeder 
p24 R2 is inserting components in PCB area 
r1 Feeder area is available 
r2 PCB area is available 
t11 R1 starts picking components 
t12 R1 finishes picking components and starts inserting components 
t13 R1 finishes inserting components and starts moving out the product 
t21 R2 starts picking components 
t22 R2 finishes picking components and starts inserting components 
t23 R2 finishes inserting components and starts out the finished product 

 
Figure 8. An augmented marked graph representing 

the FWS-200 (Example 1) 
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t31 

For the augmented marked graph (N, M0; R) shown 
in Figure 8, every siphon would never become 
empty and, according to Corollary 3.1 or Property 
3.4, (N, M0; R) is live and reversible. Besides, both 
r1 and r2 satisfy the cycle-inclusion property. 
According to Property 3.5, the siphon-trap property 
is satisfied. It then follows from Corollaries 3.2 or 
3.3 that (N, M0; R) is live and reversible. 
 
Example 2. It is a flexible assembly system, 
extracted from [4] (pp.58-61). The system consists 
of three conveyors C1, C2 and C3 and three robots R1, 
R2 and R3, as shown in Figure 9. There are three 
asynchronous assembly processes. 
 
Assembly process 1 : C1 requests R1. After acquiring 
R1, it requests R2. After acquiring R2, it performs 
assembling and then releases both R1 and R2 
simultaneously. 
 
Assembly process 2 : C2 requests R2. After acquiring 
R2, it requests R3. After acquiring R3, it perform 
assembling and then releases both R2 and R3 
simultaneously. 
 
Assembly process 3 : C3 requests R3. After acquiring 
R3, it requests R1. After acquiring R1, it perform 
assembling and then releases both R3 and R1 
simultaneously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. A flexible assembly system 
 
Figure 10 shows an augmented marked graph (N, 
M0; R), where R = { r1, r2, r3 }, representing the 
flexible assembly system (Example 2). There exists a 
siphon S = { p13, p23, p33, r1, r2, r3 } which become 
empty after firing the sequence of transitions 〈 t11, 
t21, t31 〉. According to Corollary 3.1 and Property 
3.4, (N, M0; R) is neither live nor reversible. A 
deadlock would occur after firing 〈 t11, t21, t31 〉. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Semantic meaning for places and transitions 

p12 C1 is occupying R1 
p13 C1 is occupying R1 and R2 
p21 C2 is ready 
p22 C2 is occupying R2 
p23 C2 is occupying R2 and R3 
p21 C3 is ready 
p22 C3 is occupying R3 
p23 C3 is occupying R3 and R1 
r1 R1 is available 
r2 R2 is available 
r3 R3 is available 
t11 C1 starts acquiring R1 
t12 C1 starts acquiring R2 
t13 C1 finishes assembling and release R1 and R2 simultaneously 
t21 C2 starts acquiring R2 
t22 C2 starts acquiring R3 
t23 C2 finishes assembling and release R2 and R3 simultaneously 
t31 C3 starts acquiring R3 
t32 C3 starts acquiring R1 
t33 C3 finishes assembling and release R3 and R1 simultaneously 

 
Figure 10. An augmented marked graph representing 

 the flexible assembly system (Example 2)  

 
 
5. Conclusion 
 
Manufacturing systems are typically shared resource 
systems wherein some common resources used to be 
shared among different asynchronous processes. 
Erroneous situations, such as deadlocks, arising from 
the competition and sharing of resource are easily 
induced. Therefore, in manufacturing system design, 
a major design objective is to obtain a live and 
reversible system. Possessing a specific structure and 
many desirable behavioural properties, augmented 
marked graphs are often used for modelling systems 
involving shared resources, such as manufacturing 
systems. In this paper, after summarising the 
properties of augmented marked graphs, we show 
the modelling of a typical manufacturing system 
using an augmented marked graph. Then, based on 
the desirable properties of augmented marked 
graphs, the system liveness and reversibility can be 
effectively analysed. These have been illustrated 
using examples drawn from the literature. 
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