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Abstract. Since the middle of the last century, financial engineering has become very popular among mathema-
ticians and analysts. Stochastic methods were widely applied in financial engineering. Gaussian models were the first 
to be applied, but it has been noticed out that they inadequately describe the behavior of financial series. Since the 
classical Gaussian models were taken with more and more criticism and eventually have lost their positions, new 
models were proposed. Stable models attracted special attention; however their adequacy in real market should be 
justified. Nowadays, they have become an extremely powerful and versatile tool in financial modeling. Stock market 
modeling problems are considered in this paper. Adequacy and efficiency of the chosen model are demonstrated. The 
parameters of stable laws are estimated by the maximal likelihood method. Multifractality and self-similarity hypo-
theses are tested and the Hurst analysis is made as well. 
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1. Introduction 

Modeling of financial processes and their analysis 
is a very fast developing branch of applied mathema-
tics. For a long time processes in economics and fi-
nance have been described by Gaussian distribution 
(Brownian motion). At present, normal models are 
taken with more criticism [43]. Real data are often 
characterized by skewness, kurtosis and heavy tails 
[22], [33], [35] and because of that reasons they are 
odds with requirements of the classical models. There 
are two essential reasons why the models with a stable 
paradigm [23], [24] are applied to model financial pro-
cesses.  The first one is that stable random variables 
(r.vs.) justify the generalized central limit theorem 
(CLT), which states that stable distributions are the 
only asymptotic distributions for adequately scaled 
and centered sums of independent identically distri-
buted random variables (i.i.d.r.vs.) [20]. The second 
one is that they are leptokurtotic and asymmetric [9]. 
This property is illustrated in Figure 1, where (a) and 
(c) are graphs of stable probability density functions 
(with additional parameters) and (b) is the graph of the 
Gaussian probability density function, which is also a 
special case of stable law. 

The paper is structured as follows. Overviews of 
related problems are given in Section 2, description 
and overview of stable r.vs. are introduced in Section 
3, research object and analysis of its characteristics are 
presented in Section 4. Section 5 is devoted to the ana-
lysis of stability and self–similarity by Hurst exponent 

estimation. The results and conclusions are presented 
in Section 6. 

2. Problems 

Long ago in empirical studies [26], [27] it was no-
ticed that returns of stocks (indexes, funds) are badly 
fitted by Gaussian distribution, because of heavy tails 
and strong asymmetry. Stable laws were one of the 
solutions in creating mathematical models of stock 
returns. There arises a question – why are stable laws, 
but not any others chosen in financial models? The 
answer is: because the sum of n independent stable 
random variables has a stable and only stable distribu-
tion, which is similar to the CLT for distributions with 
a finite second moment (Gaussian). If we are speaking 
about hyperbolic distributions, so, in general, the 
Generalized Hyperbolic distribution does not have this 
property, whereas the Normal-inverse Gaussian (NIG) 
[3] has it. In particular, if Y1 and Y2 are independent 
normal inverse Gaussian random variables with com-
mon parameters α and β but having different scale and 
location parameters  δ1,2 and µ1,2 , respectively, then 

21 YYY +=  is ),,,NIG( 2121 µµδδβα ++ . So NIG 
fails against a stable random variable, because, in the 
stable case, only the stability parameter α must be 
fixed and the others may be different, i.e., stable ones 
are more flexible for portfolio construction with dif-
ferent asymmetry.  

The other reason why stable distributions are se-
lected from the list of other laws is that they have 
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heavier tails than the NIG (its tail behavior is often 
classified as ''semi-heavy''). 

 
  

 
Figure 1. Stable distributions1 are leptokurtotic and asymmetric 

                                                           
1 Here a is a stability parameter, b - asymmetry parameter, m – location parameter and s is a scale parameter 

As it has been noticed before, stable distributions 
justify the generalized CLT, so from the point of view 
of financial engineering, they should be applied in 
modeling of financial portfolio. Why? Let us have n 
stocks with the returns r.vs. Xi from the class of stable 
distributions, here i=1,…,n. Then the portfolio with 
the weights wi will also be a r.v.  
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from the class of stable distributions. But here arises a 
fundamental problem: whether our data are really 
stable and how to determine that. This work offers 
some approaches to the problem. 

3. The stable distributions and an overview of 
their properties  

We start with a definition of stable random 
variable. 

We say that a r.v. X is distributed by the stable law 
and denote  
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where Sα is the probability density function, if a r.v. 
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Each stable distribution is described by 4 para-
meters: first and most important is the stability index 
α∈(0;2], which is essential when characterizing finan-
cial data. The others respectively are: β∈[-1,1] is 
skewness, µ∈R  is a position, σ is the parameter of 
scale, σ>0.  

The probability density function is  

dt)ixtexp()t()x(p −⋅= ∫
+∞

∞−

φ
π2
1

. 

In the general case, this function cannot be expres-
sed as elementary functions. The infinite polynomial 
expressions of the density function are well known, 
but it is not very useful for Maximal Likelihood esti-
mation because of infinite summation of its members, 
for error estimation in the tails, and so on. We use an 
integral expression of the PDF in standard parameteri-
zation 
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It is important to notice that Fourier integrals are 
not always practical to calculate PDF because the inte-
grated function oscillates. That is why a new formula 
is proposed which does not have this problem: 
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random variable X exists and is finite only if 0<p<α. 
Otherwise, it does not exist. 

Stable processes. A stochastic process { }TttX ∈),(   
is stable if all its finite dimensional distributions are 
stable. 
Let { }TttX ∈),(  be a stochastic process. { }TttX ∈),(

Ttt

  
is α-stable if and only if all linear combinations 
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real) are α-stable. A stochastic process { }X ∈),(  is 
called the (standard) α-stable Levy motion if: 
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(2) {X(t): t≥0} has independent increments; 
If µ=0 and σ=1, then ),,(),,( βαβα −−= xpxp . (3) X(i)-X(s)~Sα((t-s)1/α, β,0), for any 0≤s<t<∞ 

and 0<α≤2, -1≤β≤1. A stable r.v. has a property, which may be stated 
in two equivalent forms: Note that the α-stable Levy motion has stationary 

increments. As α=2, we have the Brownian motion. • If X1, X2,…, Xn are independent r.vs. distributed by 
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4. Research object 

In this paper, we pay our attention only to inter-
national indexes, because only they have long enough 
series to analyze. As we will see further, most of the 
statistical methods require long or very long sets. The 
Baltic and other Central and Eastern Europe countries 
have “young” financial markets and they are still de-
veloping, financial instruments are badly realizable 
and therefore they are often non-stationary. Stagnation 
effects are often observed in such markets, expressed 
by an extremely strong passivity: at some time pe-
riods, stock prices do not change because there are no 
transactions at all. In such a case, the number of zero 
returns can reach 89 % and the stability parameter α as 
well as the scale parameter σ extremely decrease and 
tend to 0. A new kind of model should be developed 
and analyzed, i.e., we have to include one more addi-
tional condition into the model – the daily stock return 
is equal to zero with a certain (rather high) probability 
p, while it is not so with the probability 1-p it changes. 
Models of this kind require special research in the 
future. In this paper, we apply stable models if the 
number of zeros does not exceed 16%.  

• If X1, X2,…, Xn are independent r.vs. distributed by 
),,(S µβσα , then [35] 
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One of the most fundamental stable law statements 
[20] is as follows.  

Let X1, X2,…,Xn be independent identically distri-
buted random variables and  
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where Bn>0 and An are constants of scaling and cen-
tering. If Fn(x) is a cumulative distribution function of 
r.v. ηn, then the asymptotic distribution of functions 
Fn(x), as n→∞, may be stable and only stable. And 
vice versa: for any stable distribution F(x), there exists 
a series of random variables, such that Fn(x) converges 
to F(x), as n→∞. Nevertheless, the studied series represent a wide 

spectrum of stock market. Information that is typically 
(finance.yahoo.com, www.omxgroup.com etc.) inclu-
ded into a financial database is: 

Let X have distribution Sα(σ,β,0) with α<2.  Then 
there exist two i.i.d. random variables Y1and Y2 with the 
common distribution Sα(σ,β,0) such that  • Unique trade session number and date of trade; 
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• Par value; 
• Stock price of last trade; 

Let X1 and X2 be independent random variables 
with Xi ~ Sα(σi,βi,µi), i=1,2. Then X1 +X2~ Sα(σ,β,µ), 
with  

• Opening price; 
• High - low price of trade; 
• Average price; 

( ) ααα σσσ
/1

21 += , αα

αα

σσ
σβσβ

β
21

2211

+
+

= , 21 µµµ += . 
• Closure price; 
• Price change %; 
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• Supply – Demand; 
• Number of Central Market (CM) transactions; 
• Volume; 
• Maximal – Minimal price in 4 weeks; 
• Maximal – Minimal price in 52 weeks; 
• Other related market information. 

We use here only the closure price, because we 
will not analyze data as a time series and its depen-
dence. 

We focused on 26 international companies, firms, 
indexes and funds (Table 1), and we analyzed the 
following r.vs. 
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where P is a set of stock prices. While calculating 
such a variable, we transform (Figure 2) from price to 
log price changes (“return”). 

 
Figure 2. Data transformation 

Table 1. Name of the company, index or fund  

Full name Index Time period 
Series 

N 
Market 

AIM S&P 500 INDEX INV (^ISPIX) ISPIX  10-08-98 – 27-05-05 1712 Fund 
AMEX COMPUTER TECHNOLOGY (^XCI) AMEX 26-08-83 – 27-05-05 5486 Technology Index 
AT&T CORP (T) AT&T 02-01-62 – 27-05-05 10928 Telecom 
BP PLC(BP) BP 03-01-77 – 27-05-05 7171 Oil & Gas 
CAC 40 (^FCHI) FCHI 01-03-90 – 30-05-05 3838 Index 
CAMDEN NATIONAL CORP (CAC) CAC 08-10-97 – 27-05-05 1922 Finance 
COCA-COLA CO (COKE) (KO) COCA  02-01-62 – 27-05-05 10928 Consumer Goods 
DAX IND (^GDAXI) GDAXI 26-11-90 – 30-05-05 3652 Index 
DOW JONES AIG COMMODITY INDEX (^DJC) DJC 03-01-91 – 27-05-05 3634 Index 
DOW JONES COMPANY INC (DJ) DJ 01-07-85 – 27-05-05 5019 Services 
DOW JONES INDUSTRIAL AVERAGE DJIA 26-05-1896 – 16-01-04 26958 Industry Index 
DOW JONES TRANSPORTATION AVERAGE DJTA 26-10-1896 – 26-08-03 29296 Transportation 
FIAT SPA (FIA) FIAT 30-06-89 – 27-05-05 4014 Automobile 
GENERAL ELECTRIC CO (GE) GE 02-01-62 – 27-05-05 10928 Conglomerates 
GENERAL MOTORS CORP (GM) GM 02-01-62 – 27-05-05 10928 Consumer Goods 
INTERNATIONAL BUSINESS MACHINES (IBM) IBM 02-01-62 – 27-05-05 10928 Technology 
LOCKHEED MARTIN CORP (LMT) LMT 03-01-77 – 27-05-05 7172 Industrial Goods 
MCDONALD'S CORP (MCD) MCD 02-01-70 – 27-05-05 8935 Services 
MERRILL LYNCH & CO INC (MER) MER 03-01-77 – 27-05-05 7166 Finance 
MICROSOFT CORP (MSFT) MSFT 13-03-86 – 27-05-05 4849 Technology 
NASDAQ 100 TRUST SERIES 1 (QQQQ) NASDAQ 10-03-99 – 27-05-05 1566 Index 
NIKE INC (NKE) NIKE 19-08-87 – 27-05-05 4480 Consumer Goods 
NIKKEI 225 INDEX (^N225) NIKKEI 04-01-84 – 30-05-05 5267 Index 
KONINKLIJKE PHILIPS ELECTRONICS (PHG) PHILE 30-12-87 – 27-05-05 4393 Technology 
S&P 500 INDEX (^SPX) S&P  03-01-50 – 27-05-05 13941 Index 
SONY CORP (SNE) SONY 06-04-83– 27-05-05 5585 Technology 
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One can see that the length of series is very dif-
ferent starting from 1566 (6 years, NASDAQ) to 
29296 (107 years, DJTA). Very different industries are 
chosen also, to represent the whole market. Their em-
pirical characteristics are calculated and given in Table 
2. 

5. Analysis of stability  

Examples of stability analysis can be found in the 
works of Rachev [4], [15] and Weron [44]. In the latter 
paper, Weron analyzed the DJIA index (from 1985-01-
02 to 1992-11-30, 2000 data points in all). The stabili-
ty analysis was based on the Anderson – Darling crite-
rion and by the weighted Kolmogorov criterion 
(D‘Agostino [6]), the parameters of stable distribution 
were estimated by the regression method proposed by 
Koutrouvelis [21] and fully described in [16]. The 
author states that DJIA characteristics perfectly 
correspond to stable distribution. 

The problem of estimating the parameters of stable 
distribution is usually severely hampered by the lack 
of known closed form density functions for almost all 
stable distributions. Most of the methods in mathema-
tical statistics cannot be used in this case, since these 
methods depend on an explicit form of the PDF. 
However, there are numerical methods that have been 
found useful in practice and are described below. 
Given a sample x1,…,xn from the stable law, they 
provide estimates α̂ , ,β̂ µ̂ , and σ̂ of α, β, µ, and σ, 
respectively. Stable parameters usually are estimated 
by these methods: maximal likelihood, regression, the 
method of moments, etc. All the methods are decent, 
but the maximal likelihood estimator yields the best 
results. From the practical point of view, the MLM is 
the worst method, because it is very time-consuming 
[16]. Anyway in this paper, all the 4 parameters are 
estimated by the MLM since it is most precise.  
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Figure 3. Distribution of α and β 

Almost all data series are strongly asymmetric 
( 1γ̂ ), and the empirical kurtosis ( 2γ̂ ) shows that den-
sity functions of series are more peaked than Gaus-
sian. That is why we make an assumption that 
Gaussian models are not applicable to these financial 
series. The distribution (Figure 3) of α and β estimates 

shows that usually α is over 1.5 and for sure less than 
2 (this case 1.8) for financial data. 

Now we will check two hypotheses: the first one – 
H0

1 is our sample (with empirical mean µ̂  and empi-
rical variance σ̂ ) distributed by the Gaussian distribu-
tion. The second – H0

2 is our sample (with parameters 
α, β,µ and σ) distributed by the stable distribution. 
Both hypotheses are examined by two criteria: 
Anderson – Darling (A-D) method [19] and Kolmogo-
rov – Smirnov (K-S) method [19]. The first criterion is 
more sensitive to the difference between empirical and 
theoretical distribution functions in far quantiles 
(tails), in contrast to the K-S criterion, which is more 
sensitive to the difference in the central part of distri-
bution.  

These two methods were very nicely applied in the 
works of Rachev et al. [15], [4], Weron [44], and in 
[16], too (to test the distribution of stock portfolio). 

In Table 2, one can see the results of statistical 
analysis by A-D and K-S criteria. 

In the marked cells, the values of A-D and K-S cri-
teria are given which are acceptable with the confi-
dence level of 5%. The A-D criterion rejects the 
hypothesis of Gaussianity in all cases with the confi-
dence level of 5%. Hypotheses of stability were rejec-
ted only in 15 cases out of 27, but the values of 
criteria even, in the rejected cases, are better than for 
the Gaussian distributions. Referring to the K-S crite-
rion, we give only such values that are acceptable with 
the 5% confidence level. One can see that there are 
only four acceptable cases which means that our 
samples are better fitted in tails than in the central part 
of distribution. 

Then a new question arises – which kind of models 
could be expedient? There is only one answer – non–
Gaussian models, and because of high kurtosis it 
would be useful to choose models with Pareto pro-
perties.  

Following Rachev [4, 15] – “the α-stable distribu-
tion offers a reasonable improvement if not the best 
choice among the alternative distributions that have 
been proposed in the literature over the past four 
decades”. But before applying stable models to finan-
cial data, it is necessary to demonstrate that data sets 
are really stable.  

To prove the stability hypothesis, other researchers 
applied the method of infinite variance, because non–
Gaussian stable r.vs. have infinite variance. The 
method of converging variance was proposed [14], 
[31] to test the hypothesis of stability. The set of 
empirical variances  of random variable X with 
infinite variance diverges [14].   

2
n

S

Let x1,… xn be a series of i.i.d.r.vs. X. Let 
∞<≤ Nn  and nx  be the mean of the first n obser-

vations, ∑
=
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bution has finite variance, then there exists a finite 
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constant c<∞ such, that  c)xx(
n

n

i
ni →−∑

=1

21  (al-

most surely), as . And vice versa, if the series 
is simulated by the non–Gaussian stable law, then the 
series  diverges. Fofack [10] has applied this as-
sumption to a series with finite variance (standard 
normal, Gamma) and with infinite variance (Cauchy 
and totally skewed stable). In the first case, the series 
of variances converged very fast and, in the second 
case, the series of variances oscillated with a high 
frequency, as n . Fofack and Nolan [11] applied 

this method in the analysis of distribution of Kenyan 
shilling and Morocco dirham exchange rates in the 
black market. Their results allow us to affirm that the 
exchange rates of those currencies in the black market 
change with infinite variance, and even worse – the 
authors state that distributions of parallel exchange 
rates of some other countries do not have the mean 
(α<1 in the stable case). We present, as an example, 
the graphical analysis of the variance process of 
Microsoft corporation stock prices returns (Figure 4). 
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Table 2. Empirical characteristics of data sets and criterion probabilities of Anderson – Darling and Kolmogorov – Smirnov 
statistics 

Empirical characteristics  Parameters estimates of stable model 
Index  

  1γ̂
 2γ̂

 

Value of  
A-D crit. 

α β µ σ 
Value of 
A-D crit. 

Value of 
K-S crit. 

ISPIX  0 0.0002 -0.0203 2.1077 0.99970 1.7864 0.0393  0.0001  0.0078 0.63744 0.02584 

AMEX -0.0004 0.0003 0.4237 11.725 0.99999 1.6984 0.1283  -0.0001  0.0099 0.83053 0.01824 

AT&T 0.0002 0.0005 18.403 1190.7 0.99999 1.5319 -0.0679 -0.0001  0.0075 0.99999 - 

BP 0 0.0006 14.415 426.03 0.99999 1.7356 -0.0706 -0.0004  0.0101 0.98932 - 

FCHI -0.0002 0.0002 0.1002 2.7032 0.99999 1.7506 0.1881 -0.0000 0.0081 0.28359 0.01198 

CAC 0.0002 0.001 20.754 739.51 0.99999 1.5145 -0.1701 -0.0006  0.0088 0.99866 - 

COCA  0.0001 0.0006 19.445 660.44 0.99999 1.7121 -0.0699 -0.0004  0.0088 0.98818 - 

GDAXI -0.0003 0.0002 0.1928 3.5719 0.99999 1.6502 0.1607 -0.0001  0.0079 0.84363 - 

DJC -0.0001 0.0001 0.5157 7.4797 0.99999 1.7954 0.0778 -0.0001 0.0046 0.87824 - 

DJ 0 0.0004 1.9248 41.859 0.99999 1.7046 -0.0107 -0.0000 0.0103 0.91486 - 

DJIA 0.0002 0.0001 -0.9114 26.040 0.99999 1.5958 -0.0995 0.0002 0.0056 0.99834 - 

DJTA 0.0001 0.0001 -0.1545 15.259 0.99999 1.5629 0.01586 0.0002 0.0056 0.99970 - 

FIAT 0.0004 0.0007 -3.7374 126.16 0.99999 1.6331 -0.0692 0.0006  0.0127 0.99999 - 

GE 0.0001 0.0006 20.253 749.55 0.99999 1.7431 -0.0558 -0.0003  0.0090 0.97881 - 

GM 0.0001 0.0003 5.3537 204.43 0.99999 1.7339 -0.0908 -0.0000  0.0098 0.99769 - 

IBM 0.0002 0.0006 23.209 1114.1 0.99999 1.7005 -0.0548 -0.0002  0.0091 0.91800 - 

LMT -0.0003 0.0008 12.869 476.76 0.99999 1.6322 -0.1375 -0.0007  0.0115 0.97905 - 

MCD 0 0.0007 11.471 284.85 0.99999 1.7296 -0.039  -0.0005  0.0106 0.88734 - 

MER -0.0002 0.0009 7.6567 184.51 0.99999 1.7705 -0.1355 -0.0005 0.0148 0.89021 - 

MSFT 0 0.0013 9.9985 180.47 0.99999 1.7381 -0.0021 -0.0010  0.0141 0.83503 - 

NASDAQ 0.0006 0.001 7.9646 188.53 0.99999 1.6753 0.2431 0.0013 0.0145 0.82352 0.02928 

NIKE -0.0003 0.0009 9.2816 223.60 0.99999 1.6714 -0.1450 -0.0010  0.0130 0.93361 - 

NIKKEI 0 0.0002 0.1113 7.6903 0.99999 1.6431 0.1526 0.0003  0.0076 0.98046 - 

PHILE -0.0001 0.001 16.206 663.69 0.99999 1.6482 0.0058 -0.0004 0.0138 0.98355 - 

S&P  -0.0003 0.0001 1.3313 35.117 0.99999 1.6735 0.1064 -0.0002 0.0049 0.99913 - 

SONY -0.0002 0.0005 4.8083 150.51 0.99999 1.6769 -0.2057 -0.0005  0.0115 0.98979 - 

 
The columns in this graph show the variance at 

different time intervals, the solid line shows the series 
of variances . One can see that, as n increases, i.e. 

∞→n , the series of empirical variance  not only 
diverges, but also oscillates with a high frequency. The 
same situation is for mostly all our data sets presented. 

2
n

S
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Figure 4. Series of empirical variance of the MICROSOFT company (13-03-86 – 27-05-05) 

5.1. Stability by homogeneity  

The third method to verify the stability hypothesis 
is based on the fundamental statement. Suppose we 
have an original financial series (returns or subtraction 
of logarithms of stock prices) X1, X2,…,Xn. Let us 
calculate the partial sums Y1,Y2,…,Y[n/d], where 

, k=1…[n/d], and d is the number of 

sum components (freely chosen). The fundamental 
statement implies that original and derivative series 
must be homogeneous. Homogeneity of original and 
derivative (aggregated) sums was tested by the 
Smirnov and Anderson criteria (ω

∑
⋅

+⋅−=

=
dk

d)k(i
ik XY
11

2) [19].  
The accuracy of both methods was tested with 

generated sets, which were distributed by the uniform 
R(-1,1), Gaussian N(0, 31 ), Cauchy C(0,1) and 
stable S1.75(1,0.25,0) distributions. Partial sums were 
scaled, respectively, by d , d , , . The 
test was repeated for a 100 times. The results of this 
modeling show that the Anderson criterion (with 
confidence levels 0.01, 0.05 and 0.1) is more precise 
than that of Smirnov with the additional confidence 
level (for details see Appendix A).  

d 7511 ./d

It should be noted that these criteria require large 
samples (of size no less than 200), that is why the 
original sample must be large enough. The best choice 
would be if one could satisfy the condition n/d>200.  

The same test was performed with real data from 
Table 1, but homogeneity was tested only by the An-
derson criterion. Partial series were calculated by 
summing d=10 and 15 elements and scaling with 

. The parameter α was taken from Table 2. The 
results of this test are presented in Table 3. 

α/d 1

 

Table 3.  Test of homogeneity of the  series of partial sums 
and original series  by the Anderson criterion (significance 
level 5%) 

Index  m = 10 m = 15 
ISPIX  + + 
AMEX + + 
AT&T + - 
BP + + 
FCHI + + 
CAC - - 
COCA  + + 
GDAXI + + 
DJC + + 
DJ + + 
DJIA - - 
DJTA + + 
FIAT - - 
GE + + 
GM + + 
IBM + + 
LMT + + 
MCD + + 
MER + + 
MSFT + + 
NASDAQ - + 
NIKE + + 
NIKKEI - - 
PHILE + + 
S&P  + + 
SONY + + 

The value “+” means that the hypothesis of ho-
mogeneity of the original and derivative samples is 
acceptable, with the confidence level 5% and, vice 
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versa, the value “-” means that it is unacceptable with 
the 5% confidence level. 

One may draw a conclusion from the fundamental 
statement that for international indexes ISPIX, 
AMEX, BP, FCHI, COCA, GDAXI, DJC, DJ, DJTA, 
GE, GM, IBM, LMT, MCD, MER, MSFT, NIKE, 
PHILE, S&P, SONY the hypothesis on stability is 
acceptable. 

5.2 Self – similarity and multifractality 

As mentioned before, for a long time it has been 
known that normal models do not properly describe 
financial series. Due to that, there arises a hypothesis 
of fractionallity or self–similarity. The Hurst indicator 
(or exponent) is used to characterize fractionallity. The 
process with the Hurst index H=½ corresponds to the 
Brownian motion, when variance increases at the rate 
of t , where t is the amount of time. Indeed, in real 
data this growth rate (Hurst exponent) is longer [5]. As 
0.5<H≤1, the Hurst exponent implies a persistent time 
series characterized by long memory effects, and 
when 0≤H<0.5, it implies an anti-persistent time series 
that covers less distance than a random process. Such 
behavior is observed in mean – reverting processes. 

There are a number of different, not equivalent de-
finitions of self-similarity [37]. The standard one 
states that a continuous time process Y { Tt),t(Y }∈=  
is self-similar, with the self-similarity parameter H 
(Hurst index), if it satisfies the condition: 

100 <≤>∀∈∀= − H,a,Tt),at(Ya)t(Y H
d

,   (1) 

where the equality is in the sense of finite-dimensional 
distributions. The canonical example of such a process 
is Fractional Brownian Motion (H=½). Since the 
process Y satisfying (1) can never be stationary, it is 
typically assumed to have stationary increments [5].  

 
Figure 5. Self-similar processes and their relation to Levy 

and Gaussian processes 

Figure 5 shows that stable processes are the pro-
duct of a class of self–similar processes and that of 
Levy processes. Suppose a Levy process X={X(t), 

t≥0}. Then X is self-similar if and only if each X(t) is 
strictly stable [7]. The index α of stability and the 
exponent H of self-similarity satisfy α=1/H. 

Consider the aggregated series X(m), obtained by 
dividing a given series of length N into blocks of 
length m, and averaging the series over each block. 

∑
+−=

=
km

m)k(i
i

)m( X
m

)k(X
11

1 , here k=1, 2…[N/m]. 

Self-similarity is often investigated not through the 
equality of finite-dimensional distributions, but 
through the behavior of the absolute moments. Thus, 
consider  

∑∑
==

−==
m

k

q)m(
qm

i

)m( X)k(X
m

)i(X
m

E)q(AM
11

11  

If X is self-similar, then  is proportio-

nal to , it means that ln  is linear in 

 for a fixed q: 

)q(AM )m(

q(AM )m()q(mβ )

mln

)q(Cmln)q()q(AMln )m( += β .  (2) 

In addition, the exponent )q(β  is linear with respect 

to q. In fact, since , we have  )i(X(X H)m( m)i
d

−= 1

)H(q)q( 1−=β  (3) 

Thus, the definition of self-similarity is simply that the 
moments must be proportional as in (2) and that 

)q(β satisfies (3). 
This definition of a self-similar process given 

above can be generalized to that of multifractal pro-
cesses. A non-negative process X(t) is called multifrac-
tal if the logarithms of the absolute moments scale 
linearly with the logarithm of the aggregation level m. 
Multifractals are commonly constructed through mul-
tiplicative cascades [8]. If the multifractal can take 
positive and negative values, then it is referred to as a 
signed multifractal (the term “multiaffine” is some-
times used instead of “signed multifractal”). The key 
point is that, unlike self-similar processes, the scaling 
exponent )q(β  in (2) is not required to be linear in q. 
Thus, signed multifractal processes are a generaliza-
tion of self-similar processes. To discover whether a 
process is (signed) multifractal or self-similar, it is not 
enough to examine the second moment properties. 
One must analyze higher moments as well. 

As one can see from Appendix B and Table 4, all 
the considered series are multifractal, since 

 is linear on  ln  (2), and most of them 

are also self-similar, because 

)q(AMln )m( m

q
)q()q(Ĥ β

+= 1  (3) is 

linear on q. However, visually one can see that only 
few have nice linear dependence. That is because we 
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estimate only from 10 points, which is really too little 
and, thus, the reliability of the correlation coefficient 
is very doubtful.  

are known as time domain estimators. Estimators of 
this type are based on investigating the power law 
relationship between a specific statistic of the series 
and the so-called aggregation block of size m. 

Table 4. Correlation coefficient between H(q) and q  The following three methods and their modifica-
tions are usually presented as time-domain estimators: Index Corelation 

Coef. 
Visualy  
linear? 

Self-similar or 
Multifractal 

ISPIX  97.57 yes Self-similar 
AMEX 99.01 yes Self-similar 
AT&T 92.572 no Multifractal  
BP 92.445 no Multifractal 
FCHI 98.533 yes Self-similar 
CAC 90.77 no Multifractal 
COCA  92.48 no Multifractal 
GDAXI 99.174 yes Self-similar 
DJC 99.597 yes Self-similar 
DJ 97.828 yes Self-similar 
DJIA 98.103 yes Multifractal 
DJTA 98.501 yes Self-similar 
FIAT 96.829 Yes-no Multifractal 
GE 92.435 no Multifractal 
GM 96.915 Yes-no Multifractal 
IBM 92.989 no Multifractal 
LMT 95.257 no Multifractal 
MCD 93.778 no Multifractal 
MER 95.25 no Multifractal 
MSFT 92.567 no Multifractal 
NASDAQ 94.513 no Multifractal 
NIKE 94.367 no Multifractal 
NIKKEI 98.305 yes Self-similar 
PHILE 93.651 no Multifractal 
S&P  98.581 yes Self-similar 
SONY 96.918 Yes-no Multifractal 

• Periodogram method [13, 36, 39]. Also one can 
find some modifications of this method [38]. 

• Whittle  [12, 41]. Some robust methods, such as 
the Aggregated Whittle Method [18] or Local 
Whittle Method [34] were developed; 

• Abry-Veitch (AV) [2, 17]. 

The methods of this type are based on the frequency 
properties of wavelets. 

All Hurst exponent estimates were calculated with 
SELFIS software (Table 5), which is freeware and can 
be found on the web page [45].  

For estimating by the method of Aggregate Va-
riance, R/S, Periodogram, Absolute Moments and Va-
riance of Residuals, the correlation coefficients are 
found as well. Estimates of Abry-Veitch and Whittle 
confidence intervals are given, too.  

The correlation coefficient (Table 5 and Figure 6) 
for the Hurst exponent illustrates the adequacy of 
estimation. Since we need a high adequacy, we take 
the Hurst estimates only with the correlation over 0.9 
(Figure 7).  Over 60% of the cases fall into this area 
(only the methods of Aggregate Variance, R/S, and 
Variance of Residuals). One can see that the methods 
of periodogram and absolute moments are not very 
good applicable, to estimate the Hurst exponent. 
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Finally only 9 indexes are self–similar: ISPX, 

Amex, FCHI, gdaxi, djc, dj, djta, Nikkei, s&p. 

5.2.1. Hurst exponent estimation 

There are many methods to evaluate this index, but 
in literature the following are usually used [17]: 
  a. Time-domain estimators, 
  b. Frequency-domain/wavelet-domain estimators, Figure 6. Correlation of the Hurst exponent estimate, by the 

methods of Aggregate Variance, R/S, Periodogram, 
Absolute Moments, and Variance of Residuals 

The methods: 
• Absolute Value method(Absolute Moments) [36, 

37, 39]; 
If one looks again at Figure 7, one can see that in 

almost 30% (mostly estimated by the method of 
Aggregate Variance) of the cases the Hurst exponent is 
less than 0.5, so we have to reject the hypothesis of 
stability (in that case) or not to use that method. 

• Variance method (Aggregate Variance) [36, 39, 
40]; 

• R/S method. R/S is one of the better known me-
thods. It has been discussed in detail since 1969. 
The author of this idea was Mandelbrot [28, 29, 
30, 36, 39]. This method also has some robust 
modifications, the best known of them is Lo – R/S  
[25, 42]. 

Figure 8 shows us overall distribution of the Hurst 
exponent of all series, but it gives not much informa-
tion since all the methods (either with correlation less 
than 0.9) are included.  

• Variance of Residuals. [32, 39]; 
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Table 5. Hurst index estimates and their correlation coefficient or confidence interval 

INDEX Parameter Aggregate 
Variance R/S Periodo-

gram 
Absolute 
Moments 

Variance 
of 

Residuals 

Abry-Veitch 
Estimator 

Whittle 
Estimator 

ISPIX 

Hurst e. e. 
Correlation 

coef. or 
confidence 

interval 

0.516 
98.70% 

0.561 
99.66% 

0.438 
6.967% 

0.855 
26.90% 

0.601 
99.03% 

0.540 
[0.483-0.598] 

0.500 
[0.461-0.538] 

AMEX Hurst e. e. 
CC or CI 

0.470 
99.52% 

0.573 
99.92% 

0.448 
7.720% 

0.675 
64.35% 

0.584 
99.40% 

0.527 
[0.503-0.552] 

0.500 
[0.480-0.519] 

AT&T Hurst e. e. 
CC or CI 

0.393 
97.70% 

0.555 
99.96% 

0.507 
1.561% 

0.616 
83.01% 

0.656 
98.40% 

0.452 
[0.435-0.468] 

0.500 
[0.486-0.513] 

BP Hurst e. e. 
CC or CI 

0.522 
99.48% 

0.541 
99.77% 

0.481 
2.790% 

0.759 
66.42% 

0.611 
98.71% 

0.494 
[0.469-0.518] 

0.500 
[0.481-0.519] 

FCHI Hurst e. e. 
CC or CI 

0.558 
98.92% 

0.568 
99.92% 

0.435 
9.037% 

0.813 
40.65% 

0.570 
98.41% 

0.543 
[0.506-0.580] 

0.500 
[0.472-0.527] 

CAC Hurst e. e. 
CC or CI 

0.317 
96.10% 

0.563 
99.82% 

0.371 
18.87% 

0.619 
54.03% 

0.469 
99.45% 

0.541 
[0.483-0.598] 

0.500 
[0.461-0.538] 

COKE Hurst e. e. 
CC or CI 

0.397 
99.48% 

0.505 
99.59% 

0.503 
0.590% 

0.617 
83.76% 

0.591 
98.77% 

0.514 
[0.497-0.531] 

0.500 
[0.486-0.513] 

GDAXI Hurst e. e. 
CC or CI 

0.549 
99.37% 

0.585 
99.97% 

0.495 
0.578% 

0.794 
44.38% 

0.551 
99.00% 

0.529 
[0.492-0.566] 

0.500 
[0.472-0.527] 

DJC Hurst e. e. 
CC or CI 

0.540 
99.58% 

0.599 
99.84% 

0.485 
2.394% 

0.828 
31.82% 

0.561 
99.11% 

0.544 
[0.507-0.581] 

0.504 
[0.477-0.531] 

DJ Hurst e. e. 
CC or CI 

0.409 
99.45% 

0.545 
99.82% 

0.444 
7.625% 

0.621 
68.04% 

0.491 
99.60% 

0.523 
[0.498-0.548] 

0.500 
[0.480-0.519] 

DJIA Hurst e. e. 
CC or CI 

0.471 
99.41% 

0.580 
99.94% 

0.551 
7.628% 

0.648 
70.84% 

0.539 
99.59% 

0.564 
[0.553-0.576] 

0.511 
[0.501-0.520] 

DJTA Hurst e. e. 
CC or CI 

0.434 
95.85% 

0.579 
99.92% 

0.525 
3.902% 

0.621 
69.54% 

0.567 
99.71% 

0.597 
[0.586-0.609] 

0.544 
[0.534-0.554] 

FIAT Hurst e. e. 
CC or CI 

0.503 
99.85% 

0.549 
99.62% 

0.445 
7.318% 

0.732 
59.42% 

0.518 
99.00% 

0.513 
[0.476-0.551] 

0.500 
[0.472-0.527] 

GE Hurst e. e. 
CC or CI 

0.414 
98.24% 

0.530 
99.88% 

0.489 
1.772% 

0.628 
80.99% 

0.631 
99.22% 

0.605 
[0.588-0.622] 

0.500 
[0.486-0.513] 

GM Hurst e. e. 
CC or CI 

0.474 
99.75% 

0.547 
99.89% 

0.495 
0.669% 

0.659 
73.12% 

0.523 
99.33% 

0.558 
[0.542-0.575] 

0.500 
[0.486-0.513] 

IBM Hurst e. e. 
CC or CI 

0.448 
98.82% 

0.543 
99.73% 

0.509 
1.748% 

0.664 
84.22% 

0.614 
99.55% 

0.443 
[0.426-0.460] 

0.500 
[0.486-0.513] 

LMT Hurst e. e. 
CC or CI 

0.487 
99.61% 

0.568 
99.93% 

0.558 
8.571% 

0.711 
69.35% 

0.642 
98.97% 

0.458 
[0.433-0.483] 

0.500 
[0.480-0.519] 

MCD Hurst e. e. 
CC or CI 

0.319 
98.21% 

0.541 
99.88% 

0.479 
3.137% 

0.515 
82.05 

0.560 
99.31% 

0.548 
[0.531-0.564] 

0.500 
[0.486-0.513] 

MER Hurst e. e. 
CC or CI 

0.475 
99.66% 

0.549 
99.72% 

0.480 
2.766% 

0.680 
75.91% 

0.582 
99.77% 

0.531 
[0.506-0.556] 

0.500 
[0.480-0.519] 

MSFT Hurst e. e. 
CC or CI 

0.383 
99.26% 

0.503 
99.35% 

0.472 
4.317% 

0.603 
83.19% 

0.586 
99.44% 

0.493 
[0.468-0.518] 

0.500 
[0.480-0.519] 

NASDAQ Hurst e. e. 
CC or CI 

0.515 
98.82% 

0.567 
99.89% 

0.502 
0.392% 

0.799 
40.49% 

0.582 
97.81% 

0.497 
[0.440-0.554] 

0.500 
[0.461-0.538] 

NIKE Hurst e. e. 
CC or CI 

0.327 
97.48% 

0.528 
99.49% 

0.510 
1.688% 

0.550 
78.79% 

0.546 
99.79% 

0.611 
[0.587-0.636] 

0.503 
[0.484-0.522] 

NIKKEI Hurst e. e. 
CC or CI 

0.316 
93.90% 

0.572 
99.92% 

0.512 
1.880% 

0.531 
66.54% 

0.505 
99.53% 

0.528 
[0.504-0.553] 

0.500 
[0.480-0.519] 

PHILE Hurst e. e. 
CC or CI 

0.491 
99.81% 

0.570 
99.93% 

0.503 
0.708% 

0.695 
83.92% 

0.697 
98.32% 

0.569 
[0.544-0.594] 

0.500 
[0.480-0.519] 

S&P Hurst e. e. 
CC or CI 

0.464 
99.37% 

0.578 
99.94% 

0.477 
3.421% 

0.674 
62.89% 

0.546 
99.52% 

0.570 
[0.554-0.587] 

0.520 
[0.506-0.534] 

SONY Hurst e. e. 
CC or CI 

0.497 
99.60% 

0.579 
99.95% 

0.539 
6.246% 

0.710 
66.43% 

0.618 
98.95% 

0.642 
[0.617-0.666] 

0.522 
[0.503-0.541] 
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Figure 10. Dependence between Hurst exponent and 

stability index alfa 
Figure 7. Correlation of the Hurst exponent estimate, by the 

methods of Aggregate Variance, R/S, and Variance of 
Residuals (correlation ≥0,9) 

Hurts exponent is estimated by R/S method, 
whereas the stability parameter α by maximal 
likelihood method. 
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Table 6. Hurst exponent and stability index alfa 

 R/S Hurst 1/Hurts alfa 
ISPIX 0.561 1.783 1.786 
AMEX 0.573 1.745 1.698 
AT&T 0.555 1.802 1.532 
BP 0.541 1.848 1.736 
FCHI 0.568 1.761 1.751 
CAC 0.563 1.776 1.515 
COCA 0.505 1.980 1.712 
GDAXI 0.585 1.709 1.650 
DJC 0.599 1.669 1.795 
DJ 0.515 1.942 1.705 
DJIA 0.58 1.724 1.596 
DJTA 0.579 1.727 1.563 
FIAT 0.549 1.821 1.633 
GE 0.53 1.887 1.743 
GM 0.547 1.828 1.734 
IBM 0.543 1.842 1.701 
LMT 0.568 1.761 1.632 
MCD 0.541 1.848 1.730 
MER 0.549 1.821 1.771 
MSFT 0.503 1.988 1.738 
NASDAQ 0.567 1.764 1.675 
NIKE 0.528 1.894 1.671 
NIKKEI 0.572 1.748 1.643 
PHILE 0.57 1.754 1.648 
S&P 0.578 1.730 1.674 
SONY 0.579 1.727 1.677 
ISPIX 0.561 1.783 1.786 

Figure 8. Hurst exponent estimates by all the methods for 
all series 

Hurst exponent in 75% of the cases is over the 
level H=0.5, which means that α is less than 2 (non–
Gaussian) and 68% are in the interval (0.5 ; 0.666], 
when α∈[1.5 ; 2). In fact, none is over 0.9 (α<1.1). 
Finally, we can conclude that only the methods of R/S 
and Variance of Residuals are good enough to estimate 
the Hurts exponent and stability parameter α. 
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Figure 9. Hurst exponent estimates by the methods of R/S, 

and Variance of Residuals for all series 
One can see that indexes in third and fourth rows 

are similar (theoretically they should be equal). The 
average absolute difference is equal to 0.132 (min 
0.004 and max 0.27). 

In these cases (Figure 9), correlation is in the inter-
val [0.97 ; 1] and the Hurst exponent H∈(0.5 ; 0.7), 
which means that α∈(1.42 ; 2).  

Finally, we can find an empirical dependence 
between stability index and Hurst exponent (Figure 10 
and Table 6). 

44 



A Study of Stable Models of Stock Markets 

6. Conclusions 

For a long time Gaussian models were applied to 
model stock price return. Empirically, it has been 
shown that some stock price returns are not distributed 
by Gaussian distribution, therefore a stable (max-
stable, geometric stable, α-stable, symmetric stable, 
and others) approach was proposed. Stable random 
variables satisfy the generalized CLT. Since fat tails 
and asymmetry are typical for them, they fit the empi-
rical data distribution better (than Gaussian). Besides, 
they are leptocurtotic. But small question arise: are the 
data distributed by the stable law? This work offers 
some approaches to the problem.  

The adequacy of the mathematical model for fi-
nancial modeling was tested in this paper by two 
methods: that of Anderson – Darling  and Kolmogorov 
– Smirnov. The first criterion is more sensitive to the 
difference between empirical and theoretical distribu-
tion functions in far quantiles (tails), in contrast to the 
second criterion, which is more sensitive to the diffe-
rence in the central part of the distribution. Since the 
stable law is heavy-tailed, the A-D criterion was 
chosen as principal one.  

Another approach to the stability hypothesis is the 
homogeneity test of partial sums and original series. It 
has been proved that the Anderson criterion is more 
precise than the Smirnov criterion. The Anderson cri-
terion was chosen as the principal one. 

We have investigated 26 international financial 
series focusing on the issues of stability, multifrac-
tality, and self-similarity. It has been established that 
the hypothesis of stability was ultimately rejected in 
14.81% cases, definitely stable in 22.22%, and the rest 
are doubtful (see Appendix C). It is important to note 
that, even in the case of rejection, the value of the A-D 
criterion for stability testing was much better than for 
the test of Gaussianity. No series was found with the 
Gaussian distribution. For more information on the 
dependence between the stability tests see Appendix 
C. 
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Figure 11. Distribution of α and β for stable series 

Stable model parameters were estimated by the 
maximal likelihood method. As one can see in Figure 
11, the stability indexes of stable series are 
concentrated between 1.65 and 1.8, which confirms 

the results of other authors that the stability parameter 
of financial data is over 1.5. Asymmetry parameters 
are scattered in the area between -0.017 and 0.2. 

The investigation of self-similarity has concluded 
that 66.67% of the series are only multifractal and the 
other 33.33% concurrently are self-similar. 

The Hurst analysis has showed that the methods of 
R/S and Variance of Residuals are significant in the 
stability analysis. Following these two methods, Hurst 
exponent estimates are in the interval H∈(0.5;0.7), 
which means that the stability index α∈(1.42 ; 2). 
When the Hurst exponent is calculated by R/S 
method, H∈(0.5; 0.6), then α∈(1.666 ; 2). 

The stable models are suitable for financial engi-
neering, however the analysis has shown that not all 
(only 22% in our case) the series are stable, so the 
model adequacy and other stability tests are necessary 
before model application. The studied series represent 
a wide spectrum of stock market, but it must be stres-
sed that the research requires a further continuation: to 
extend the models. 
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Appendix A 

Appendix A deals with testing of reliability of two criteria (Anderson and Smirnov) for homogeneity of two 
samples. They are described in detail in Section 5.2.  
Notations in Tables: 

P – confidence level; 
h – number of components in sums; 
T – sample size (of original – simulated series); 
Max – maximum value in that table; 
Min – minimum value in that table; 
Average – average homogeneity of all tests  
The number in a marked cell shows how many times (out of 100 tries) original and derivate series were 

homogenous. 
The significance level in all the tables is P=0.05. 

 
A.1. Uniform distribution R(-1,1) 
 

Table A.1. Results of testing of the Anderson criterion  
h\T 300 400 500 600 700 800 900 1000   

5 62 52 28 9 5 2 1 0   
10     1 0 0 0 0 0 min 0 
15           0 0 0 max 62 
20               0 average 8,89 

Table A.2. Results of testing of the Smirnov criterion 
h\T 300 400 500 600 700 800 900 1000   

5 0 0 0 0 0 0 0 0   
10   0 0 0 0 0 0 min 0 
15      0 0 0 max 0 
20        0 average 0 

  
A.2. Cauchy distribution  C(0,1) 
 

Table A.3. Results of testing of the Anderson criterion 
h\T 300 400 500 600 700 800 900 1000   

5 100 100 100 99 100 99 100 100   
10     99 96 97 95 98 100 min 95 
15           100 97 98 max 100 
20               95 average 98,5 

Table A.4. Results of testing of the Smirnov criterion 
h\T 300 400 500 600 700 800 900 1000   
5 99 97 100 98 99 93 96 97   

10   96 97 95 99 96 98 min 93 
15      96 95 96 max 100 
20        97 average 96,89 

 

A.3. Gaussian distribution N(0, 31 ) 
Table A.5. Results of testing of the Anderson criterion 

h\T 300 400 500 600 700 800 900 1000   
5 100 100 100 100 100 99 100 100   

10     100 100 100 98 100 100 min 97 
15           100 100 97 max 100 
20               99 average 99,61 
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Table A.6. Results of testing of the Smirnov criterion 
h\T 300 400 500 600 700 800 900 1000   

5 100 100 100 99 100 100 100 100   
10     97 98 95 98 99 98 min 93 
15           98 100 96 max 100 
20               93 average 98,4 

 
A.4. Stable distribution S1.25(1,0.5,0) 

Table A.7. Results of testing of the Anderson criterion 
h\T 300 400 500 600 700 800 900 1000   

5 100 100 100 100 100 100 100 100   
10     100 96 97 97 98 97 min 96 
15           96 98 100 max 100 
20               99 average 98,78 

 
Table A.8. Results of testing of the Smirnov criterion 

h\T 300 400 500 600 700 800 900 1000   
5 100 95 99 99 100 98 99 98   

10     95 99 100 99 100 97 min 95 
15           96 98 96 max 100 
20               96 average 98 

 
Some cells in the tables are empty, because the methods require that the sample size of each sample would be 

no less than 50. 
 

In the Uniform distribution case, random variables X (original series) and Y (series of sums) are distributed 
differently, i.e., they are not homogeneous. Obviously (Tables A.1, A.2), the Smirnov method indicates non-
homogeneity better than that of Anderson. In other cases, the random variables X and Y must be distributed by the 
same distribution function, i.e., they are homogenous and, as one can see (Tables A.3. – A.8.), in the average, the 
criterion of Anderson distinguishes homogeneity better than that of Smirnov. 
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Appendix B 

 
Column A 

Plots of  versus ln  for the respective 
financial series with mean subtracted (q=1,…,5 from top 
to bottom). 

)q(AMln )m( m
Column B 

Plots of  versus q  for the respective financial 
series. 
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Appendix C 
The relationship of stability tests. The results marked by value “0” indicates clearly stable financial series, and the results 
marked by value “1” are probably stable (one of the methods shows the stability, another does not), “2” marks non-stability. 

Code 
 
 

Acceptable (+)  
by A-D criterion 

Acceptable (+)  
by K-S criterion 

 

Acceptable (+)  
by sum by m = 10 

 

Acceptable (+)  
by sum by m = 15 

 

Self-similar (+)  
or Multifractal (-) 

Result 

ISPIX + + + + + 0 
AMEX + + + + + 0 
AT&T - - + - - 1 

BP - - + + - 1 
FCHI + + + + + 0 
CAC - - - - - 2 

COCA - - + + - 1 
GDAXI + - + + + 0 

DJC + - + + + 0 
DJ + - + + + 0 

DJIA - - - - - 2 
DJTA - - + + + 1 
FIAT - - - - - 2 
GE - - + + - 1 
GM - - + + - 1 
IBM + - + + - 1 
LMT - - + + - 1 
MCD + - + + - 1 
MER + - + + - 1 
MSFT + - + + - 1 

NASDAQ + + - + - 1 
NIKE + - + + - 1 

NIKKEI - - - - + 1 
PHILE - - + + - 1 
S&P - - + + + 1 

SONY - - + + - 1 
 


